Approximate Implicitization using Linear Algebra

Oliver Barrowclough¹

SINTEF ICT Department of Applied Mathematics

September 30, 2011

¹joint work with Tor Dokken (SINTEF)

Approximate Implicitization using Linear Algebra

Contents

- Introduction and Motivation
 - Curve and surface representation
 - High degree implicit surfaces
- Approximate Implicitization
 - General approach
 - Choosing a basis for approximation
- Examples
 - Comparing numerical stability of the approaches
 - Approximate implicitization of Newells' teapot patches

Introduction

Representation of Curves and Surfaces

Parametric representation: Rational surface given by

 $\mathbf{p}(s,t)=(p_1(s,t),p_2(s,t),p_3(s,t),h(s,t)) \quad ext{for} \quad (s,t)\in \Omega$

and bivariate polynomials p1, p2, p3, h (homogeneous form).
Implicit (algebraic) representation: Surface given by

$$\{(x, y, z, w) : q(x, y, z, w) = 0\}.$$

where q is a polynomial in homogeneous form.

• For *intersection algorithms* it is useful to have both representations available...

Introduction

Motivation - Intersection Algorithms

Implicitization

Exact methods

- Traditional methods give exact results:
 - Gröbner bases,
 - Resultants and moving curves/syzygies [Sederberg, 1995],
- Often performed using symbolic computation.
- Surface implicitization can result in very high degrees.
- Algorithms are often slow.

Introduction

Implicit degree of parametric surfaces

- Tensor-product bicubic patch
- 16 control points
- Total implicit degree 18
- Defined implicitly by 1330 coefficients!
- Approximation is desirable

Implicitization

Approximate methods

- Approximate methods where the degree m can be chosen are desirable:
 - keep the degree low,
 - better stability for floating pt. implementation,
 - faster algorithms.
- Approximation should be good within a region of the parametric curve/surface.
- Algorithms give exact results if the degree is high enough.

Preliminaries

First, describe implicit polynomial q in a basis (q_k)^M_{k=1}, of degree m:

$$q(\mathbf{x}) = \sum_{k=1}^{M} b_k q_k(\mathbf{x})$$

with unknown coefficients b.

• A good error measure is given by algebraic distance $q(\mathbf{p}(s))$.

Original method (singular value decomposition)

Original method [Dokken, 1997], gives general framework:
 Form matrix D = (d_{jk})_{jk=1}^{L,M} such that
 $q(\mathbf{p}(s)) = \sum_{k=1}^{M} b_k q_k(\mathbf{p}(s))$ $= \sum_{k=1}^{M} b_k \sum_{j=1}^{L} \alpha_j(s) d_{jk}.$

where $(\alpha_j)_{j=1}^L$ is a polynomial basis in *s*.

An approximation is given by right singular vector v_{min} corresponding to smallest singular value of D.

Convergence rates of approximate implicitization

Implicit degree	1	2	3	4	5	6
Convergence rate	2	5	9	14	20	27

Surfaces in
$$\mathbb{R}^3$$

Curves in \mathbb{R}^2

 Convergence as we approximate smaller regions of the curve or surface.

Original method

- Choosing different polynomial bases solves different approximation problems:
- Orthogonal bases solve continuous least squares problems

$$\min_{\|\mathbf{b}\|_2=1}\int_{\Omega}q(\mathbf{p}(s))^2w(s) \,\mathrm{d}s.$$

 Bernstein/Lagrange bases solve problems which approximate the least squares problem.

Least squares approximation

■ Introduced in [Dokken, 2001], [Corless et al., 2001]:

$$\min_{\|\mathbf{b}\|_2=1}\int_{\Omega}q(\mathbf{p}(s))^2w(s) \,\mathrm{d}s.$$

• Method: Form matrix $\mathbf{M} = (m_{kl})_{k,l=1}^M$,

$$m_{kl} = \int_{\Omega} q_k(\mathbf{p}(s))q_l(\mathbf{p}(s))w(s) \; \mathrm{d}s$$

• The eigenvector corresponding to the smallest eigenvalue as the solution.

Orthogonal basis method

The original method using orthogonal polynomials can be used instead:

• Choose a basis $(T_j)_{j=1}^L$ that is orthonormal w.r.t. w:

$$\begin{split} [\mathbf{M}]_{kl} &= \int_{\Omega} q_k(\mathbf{p}(s)) q_l(\mathbf{p}(s)) w(s) \, \mathrm{d}s \\ &= \int_{\Omega} \left(\sum_{j=1}^{L} T_j(s) d_{jk} \right) \left(\sum_{i=1}^{L} T_i(s) d_{ik} \right) w(s) \, \mathrm{d}s \\ &= \sum_{i=1}^{L} \sum_{j=1}^{L} d_{jk} d_{ik} \int_{\Omega} T_j(s) T_i(s) w(s) \, \mathrm{d}s \\ &= \sum_{j=1}^{L} d_{jk} d_{jl} \\ &= (\mathbf{D}^T \mathbf{D})_{kl} \end{split}$$

Comparison of methods

- The two methods are mathematically equivalent.
- Singular values of D are square roots of eigenvalues of D^TD = M.
- Original SVD method is more numerically stable.
- Choosing Chebyshev polynomials allows fast method for constructing the matrix D (via FFT).

Properties of approximate implicitization

- Near equioscillating behaviour in algebraic error function with number of roots corresponding to convergence rates.
- Fast algorithm based on point sampling, Fast Fourier transform (FFT).
- Directly generalizable to tensor-product surfaces.
- Some methods work for triangular surfaces (not Chebyshev).
- Unwanted self-intersections can occur in the approximation need to add constraints or use gradient information.

Numerical stability of least squares method

Exact implicitization of degree 5 curve using double precision:

$$sing(\mathbf{D}) = \begin{pmatrix} \vdots \\ 2.45 \times 10^{-6} \\ 6.05 \times 10^{-7} \\ 3.59 \times 10^{-7} \\ 4.58 \times 10^{-8} \\ 1.24 \times 10^{-8} \\ 6.15 \times 10^{-18} \end{pmatrix}, \quad eig(\mathbf{M}) = \begin{pmatrix} \vdots \\ 6.02 \times 10^{-12} \\ 3.65 \times 10^{-13} \\ 1.29 \times 10^{-13} \\ 2.09 \times 10^{-15} \\ 1.50 \times 10^{-16} \\ 6.84 \times 10^{-19} \end{pmatrix}$$

Implicitization of 32 teapot patches:

32 parametric patches.

• All patches are bicubic.

Implicitization of teapot spout patches:

- Exact implicit degree 18.
- Approximated by degree 6 surfaces.
- Extra branches present.

Implicitization degrees of Newells' teapot

	Exact <i>m</i>	Approximate <i>m</i>
		32 patches
rim	9	4
upper body	9	3
lower body	9	3
upper handle	18	4
lower handle	18	4
upper spout	18	5
lower spout	18	6
upper lid	13	3
lower lid	9	4
bottom	15	3

Implicitization of 32 teapot patches:

- 32 approximately implicitized bicubic patches.
- All patches of degree ≤ 6 .
- Extra branches present.
- No continuity conditions used.

Approximate Implicitization using Linear Algebra

Thank you!

References:

- T. Dokken, Aspects of intersection algorithms and approximations, Ph.D. thesis, Univ. of Oslo, (1997).
- R.M. Corless et al., Numerical implicitization of parametric hypersurfaces with linear algebra, *Artificial Intelligence and Symbolic Computation*, Springer, (2001).

