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Abstract 

In this work, we propose a method to estimate the product compositions in a distillation 
column section based on a combination of a number of temperature measurements from 
different locations in the column stages.  
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Introduction 
 
The Kaibel distillation column is considered as an intensified process where can replace three 
conventional columns and separate a feed to 4 products. This four product divided-wall 
distillation column (DWC) contains fully thermally coupled sections built into a single shell. 
This arrangement is interesting for strongly reduced energy consumption and construction 
costs. The tight integration makes it challenging to control, compared to the conventional 
sequence of simple columns. 
 
It is critical to have a good estimate of product compositions. Reliable and accurate 
measurement of product compositions is one of the important issues in distillation column 
control. On-line composition measurement devices are expensive and not very reliable to be 
used directly in closed loop control and there is usually a considerable time delay that may be 
a limitation to control performance. Temperature measurements are fast, inexpensive and 
more reliable and have been used for distillation column control in industry instead of 
composition analyzers. Skogestad [5] presents some benefits of using temperature loops for 
controlling the composition: 

1. Stabilizes the column composition profile along the column 
2. Gives indirect level control: Reduces the disturbances on level control loops 
3. Gives indirect composition control: Strongly reduces disturbance sensitivity 
4. Makes the remaining composition problem less interactive and thus makes it possible to 

have good two-point composition control 
5. Makes the column behave more linearly   
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In multi-component system, the observed temperature at a stage is not uniquely related to the 
composition since different compositions may give the same temperature. So, this is the 
motivation to use several temperature measurements for composition estimation and then use 
the estimated value as setpoint for controllers. Mejdell and Skogestad [1] have suggested the 
Partial Least Square (PLS) method for estimating the product compositions by measuring 
temperatures of all trays. Figure 1 shows the process schematically. 
 

ABCD

ABCD

ABCD

1
2
3
4
.
.
.

36

Estimator

PID

PID

 
Figure 1. Schematic of the distillation process with estimator 

 
For a specified feed component recovery, we will have a certain temperature profile in a 
specified feed condition. The idea is to use information from several locations in order to 
estimate the recovery of product composition, also for some variation in feed composition. 
In this work, we propose an alternative approach for designing estimator which is to use the 
self optimizing control strategy (we call it “Loss method” here). This work is a continuation 
of the work done by Hori et al. [2]. In this work we will include noise. The number of 
measurements which result in one control variable depends on the number of temperature 
sensor locations which are put in the column during construction. This approach will be 
compared with the Partial Least Square (PLS) approach proposed previously ([1]).  
 
 
Process Description 
 
The Kaibel column, which is a 4-product DWC, is shown in Figure 2. The two lightest and 
the two heaviest products are supposed to be separated in the prefractionator and the products 
are separated further and drained in the main column.  
 
The model has six degrees of freedom: boilup rate (V), reflux (L), side stream flows (S1, S2), 
liquid split (Rl) and vapour split (Rv), from which four will be used to keep the product 
compositions constant. There will remain two manipulated variables which are used as 
optimization variables which are used for economical purposes.  



 
 
 
 
 
 
 
 

 

Figure 2. Schematic of a 4-product dividing wall column 
 
 

The model used for this study is simulated in UNISIM. The feed stream is an equimolal 
mixture of Methanol, Ethanol, 1-Propanol, 1-butanol and saturated liquid. All the optimal 
operating points for different sets of the disturbances are found by applying an optimisation 
solver in MATLAB with the full non-linear model in UNISIM. 
The right figure in Figure 2 shows the composition profiles in different sections of the 
dividing-wall column. As it is obvious, the most difficult separation is taking place in the 
prefractionator and the other sections are performing close to binary separation with small 
light or heavy impurity. Because of this, the focus of our study is on the prefractionator part.  
 
 
Partial Least Square (PLS) Method 
In chemometrics, partial least squares (PLS) regression has become an established tool for 
modelling linear relations between multivariate measurements (Martens and Næs 1989). This 
biased regression method is used to compress the predictor data matrix 1 2, ,..., pX x x x =   , 
that contains the values of p predictors for n samples, into a set of A latent variable or factor 
scores 1 2[ , ,..., ]AT t t t= , where A p≤ . The factors at , 1,2,...,a A= , are determined 
sequentially using the nonlinear iterative partial least squares (NIPALS) algorithm [2]. The 
orthogonal factor scores are used to fit a set of n observations to m dependent variables 

1 2[ , ,..., ]mY y y y= . The main attraction of the method is that it finds a parsimonious model 
even when the predictors are highly collinear or linearly dependent. So, the final fitting 
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equation will be as below, with B and 0B  as optimization variables. 0B  is close to zero 
because of centering the data.  
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Loss Method 
The idea behind self-optimising control is to find a variable which characterize operation at 
the optimum, and the value of this variable at the optimum should be less sensitive to 
variations in disturbances than the optimal value of the remaining degrees of freedom. Thus if 
we close a feedback loop with this candidate variable controlled to a setpoint, we should 
expect that the operation will be kept closer to optimum when a disturbance occur. 
 
Self-optimizing control is when we can achieve an acceptable loss L with constant setpoint 
values c, for the controlled variables (Skogestad 2000). 

 
The optimal closed-loop estimator H  is a matrix which follows the linear relationship 
 1ˆ my Hy=  (1) 
that minimizes the average and the worst case prediction error, 1 1ˆz y y= − , where 1y is the 
vector of real values for product compositions and 1ŷ is the vector of estimated values for the 
product compositions. Note that the number of possible specifications is two for a two-
product column, and is related to the number of available manipulative inputs, here reflux and 
boilup. The minimisation is done for the expected sets of disturbances ( d ) – namely feed 
flow rate, quality and compositions, and pressures of the feed and condenser –, measurement 
noise ( yn ) and the specified product compositions. The normalized values of disturbances and 
noise are used in the calculations. dW  and nW  are the expected magnitudes of disturbances 
noise in the measurement system respectively. These come from engineering wisdom. The 
matrix H  is the optimization variable in our method, which is equivalent to B  in the PLS 
method.  
 
Figure 3 shows the block-diagram of the estimation model. We need to know the linear model 
from inputs and disturbances to measurements and primary variables (which are product 
compositions). They are defined as below: 
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We also need to obtain the optimal sensitivity matrix F  which is defined as  
optdy

F
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 
=  
 

 

which is simply obtained numerically by re-optimising the model for different disturbances. 
 



The final task is to minimize the Frobenius norm of yd n
H FW W    with 1yHG G=  as 

constraint. We will not go further into the mathematical details in this paper. The proof of this 
theorem is included in the coming paper.  
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Figure 3. Block-diagram of the estimation model   
 
 
Results 
 
We assume first that we use a controller to set the manipulated variables that brings the real 
product compositions 1y  to the specified values 1,sy . In the steady state model this can be 
obtained simply by specifying prodcut compositions. The manipulated variables, here reflux 
and boilup, do normally not enter the estimation scheme, but these may actually be treated as 
measurement along with temperatures and possibly column pressure. In stead, the resulting 
product compositions are used. When the estimation matrix H has been calculated, the 
intention is to control the estimated product compositions to the specified values. Then if the 
estimation error is small, the real product composition will be close to the estimated ones. 
 
 Figure 3 shows a general structure for loss minimization. We can consider u to be any two 
variables from the process. For the sake of simplicity and because we can use the close-loop 
information of the system, we select the inputs to the estimation model to be equal to the 
product compositions, in our case 

3 21 C inD C inBu y x x 
 = =  

 
The matrices will be as below: 
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Note the trivial 1G  and 1
dG  since we have chosen 1u y= . 

We use exactly the same information for PLS method as in our own method. X and Y in PLS 
method are the first and second row of allY  matrix respectively.  
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We need to know the expected “optimal variation” in x as given by the matrix optY X= . Here 
“optimal” means that 1y  is constant (see the second column in allY ). In addition, we also need 
to obtain yG  and 1G  from the data, which means that the data must contain “non-optimal” 
variations in u , and not only contain optimal data where ( )optu u d= - see the first column in 

allY . 
 
As mentioned previously, the task of the column is to perform the sharp split of the second 
and third components in the feed. There will be a very small operation range for the 
prefractionator. This is because if we do not perform the sharp split, the impurities will end up 
in the side streams and the purity specifications of the side streams will be violated. So, we 
want to ensure to get sharp split separation in prefractionator. We need to adjust the profiles to 
get the split. It can be done with 1-point control, but if we want to handle feed condition 
changes, we will probably need to have 2-point control to be able to stay close to minimum 
energy consumption. In this study, we have presented the results for both cases. 
Figure 4 shows the results for the case that two temperature controllers are closed and 
considering all the measurements. We have assumed 0.1ºC as the expected noise. The results 
for 1 temperature control loop are shown in Figure 5. The location of the temperature 
controller is found by sensitivity analysis. It was found on a tray close to the bottom end. That 
is why it takes more time for the top composition to stabilize. However, it can be seen that the 
estimated compositions follow the compositions from the model pretty well. 
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Figure 4. Estimated and model Composition values for the case with two temperature controls and 

with the consideration of all measurements 
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Figure 5. Estimated and model Composition values for the case with one temperature control and with 

the consideration of all measurements 
 
In practical implementation, we need to consider that we do not have measurements from all 
the trays in the column. The more realistic case is to have temperature sensors in every 3rd or 
4th tray in the column. So, Figure 6 shows the results of the estimation for two methods using 
data from every 4th tray in the column. The matrices in the following are the result of the 
calculations for PLS and Loss method. It can be seen that both matrices have the same trend 
in their values. It is an interesting result knowing that they have come up from two different 
approaches.  
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Figure 6. Estimated and model Composition values for the case with two temperature controls and 

with the consideration of few measurements 
 

 
 
 



Conclusions and furhter work 
 
The results show that the new loss method and PLS method give similar results. This is 
interesting since the approaches are different, but the objectives are of course similar. It is 
important to note that the column profile should always be stabilized by a feedback. This 
ensures that the profiles always will be converging to a steady state, so even though a static 
estimator like this may be somewhat wrong in a transient it will converge to a reasonable 
value when approaching the steady state. This is important when the estimate shall be used as 
a feedback variable.  
 
We would like to mention that this is an ongoing study, and the focus here has been on the 
Kaibel-column prefractionator. Our next step is to extend the procedure for the whole Kaibel 
column 
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