
IKT

Signalbehandling med ekstreme rater i FPGA

FPGA-forum 2008

Helge Rustad
SINTEF IKT

SINTEF har utviklet en satellitt-demodulator for Kongsberg Spacetec. Denne arbeider
med en innkommende sampelrate fra AD-konverter på 1,4 gigasampler/s og datarater
opp til flere hundre Mbit/s. Med dette FPGA-designet som eksempel vil vi se på
utfordringer og løsninger for implementasjon av filtre og andre signalbehandlings-
elementer for meget høye datarater. Vi vil også se på løsninger som er brukt for testing
av designet.

IKT

Project for Kongsberg Spacetec, 2005-2008

Kongsberg Spacetec

Provider of Satellite Ground station systems for Earth observation
satellites.
Kongsberg Spacetec is the world leading provider of turnkey satellite
ground stations. Our systems include solutions for the most known
SAR and optical satellite sensors. We are also providing specialized
solutions to the meteorological community.

Down conversion Demodu-
lation Decoding

Storage &
transmission

Today’s
theme

SINTEF-
project

AD
1.4Gsps

Customer

IKT

Introduction

Very high rate filter design

General experiences and solutions

Test and verification

IKT

Very simplified block diagram

Filtering and
decimation

Timing
interpolation

Decision
and output

Timing
acquisition
and tracking

Frequency
acquisition
and tracking

1.4 Gsamples/s
350 MHz
10 bit x 4

1.4 Gsamples/s
350 MHz
18 bit x 4

500 Msamples/s
250 MHz
4 bit x 2

IKT

What is the difference between very high rate DSP
design and other designs?

High data rate (>1 sample per clock)
Parallelization, more hardware
Discard data (work on every n-th sample)
Modify algorithms

High clock frequencies
Limits “freedom of design”

High power consumption
Cooling becomes important

IKT

What are the design challenges

Large and complex design with many different modules
operating together
Extreme data rates for signal processing

Four AD samples per clock cycle (1.4 Gs/s, 350 MHz)
Wide data buses

High clock rates
Stressing the FPGA

Large design and “slow” synchronization loops
VHDL simulation of real scenarios not realistic

“Non-standard” design
Core-generator and IP modules not easy to use

IKT

FIR filter basics (Finite Impulse Response filter)

Figures and examples adapted from:

DSP Implementation Techniques,
Virtex-4 and Xtreme DSP Slice,
Niall Battson, www.xilinx.com/dsp

Filter impulse response

IKT

FIR filters for very low data rates

15 0 15 0 15 0 15 0Sequential filter
implementation

Optimal for low rates (<<= 1 bit per clock)

IKT

Medium data rates - Single Multiplier FIR filter

• Parallel data, many clocks per sample.

• Fits well with FPGA architectures with RAMs,
ROMs and built-in multipliers and accumulators.

Reuse of multiplier and adder
(Xilinx DSP module)

IKT

High data rates - Parallel FIR filter - “systolic”

• Parallel data, one clock per sample.

• Fits well with FPGA architectures with fast
built-in multipliers and accumulators.

IKT

Very high data rates
Example: Complex FIR filter at 4 x clock rate

I (real branch)

Odd samples

Even samples
FIR
filter

FIR
filter

FIR
filter

FIR
filter

Even samples

Odd samples

Even coefficients

Odd coefficients

Odd coefficients

Even coefficients

Q (imaginary branch)
…

IKT

Complex interpolating FIR filter at 4 x clock rate

I
One RAM of coefficients for
each multiplier each filter.

Q

128x16
bit RAM

128x16
bit RAM

128x16
bit RAM

…

…

12 coefficients

IKT

Instantiation, inference and core generator

RAMs and ROMs, single and dual port are generally
easy to describe in VHDL and have the tools infer them.

Only fully synchronous RAMs were fast enough.

All our filter coefficient RAMs are dual port.
Slow clock port (44 MHz) for coefficient loading.

Fast clock port (350 MHz) for coefficient use.

IKT

Instantiation, inference and core generator

Our FIR filters were outside the core generator range.
Describing DSP algorithms in VHDL so that the tools
infer use of Xilinx DSP modules was (became) possible
with limitations.
Using the most advanced features of modules like the
Xilinx DSPs generally requires instantiation.
We designed generic
solutions from
scratch using
instantiation of
Xilinx DSP
modules.

IKT

Manual pipelining and replication required

Turn off automatic removal of equivalent signals and registers

Do manual replication of clock enables and similar control signals

Registers are abundant in modern FPGAs, better to replicate generously than
to have routing problems all the time.

Simple rule: At least two pipelining registers between modules.

…
clock

enable in

clock
enables
to loads

The problem is not fan-out but
physical distance

between loads
between source and loads

… …data in

Be careful when using register chains
like this for timing reasons. The tools
like to convert them to shift registers
and then the effect is lost. Use the
necessary constraints / attributes.

IKT

Simulation

Synchronization algorithms can be slow:
0,1s == 35 000 000 clock periods.
VHDL simulation of real scenarios unrealistic.
Bit-correct Matlab simulation unrealistic.

Solution
Algorithms were verified in shortened Matlab simulations.
Modules- and subsystems were verified in VHDL.
Integrated system was verified in target with data from built-in test
transmitter.

Alternative solution
Use of behavioural modules for simulation speedup.

IKT

Design verification with built-in tester

Filtering and
decimation

Timing
interpolation

Decision
and output

Timing
acquisition
and tracking

Frequency
adjustment
and tracking

Test
transmitter

Bit error
counter

IKT

How to avoid large test benches

Large modules with many inputs and outputs
Test benches become large.
Small modifications are often introduced without full retesting.
Test benches tend to be out of date after a while out of use.

Solution
Modules are tested within the full design.
Normal routines for configuration can be used.
Internal test data generation in each module activated by local
compile-time switch.
VHDL logging to file from code in each module being tested.

IKT

Total system

Test bench within each module

Module x

Module x
function

Test data
generator

Data
logging

Configuration

Activated by compile-time switch
Behavioural or synthesizable

Logging to file
during simulation

IKT

Avoid using high clock rate when possible

The data clock is 350 MHz
350 MHz stresses placement and routing and should not be used
unless necessary
All our data buses, many 4 x 18 bit run at 350 MHz

Solution
We used a 350/8=~44 MHz clock for less time critical functions

Configuration data paths – more than 100 addressable RAM blocks
Control signals
Parts of the frequency and timing acquisition loops

The two clocks are generated from the same clock manager
The tools guarantee low skew between them.
The tools constrain signals passing between the domain correctly.
Signals can pass between the two clock domains without bothering
with the normal procedures for clock domain crossing.

IKT

Clock domain crossings with aligned clocks

Clock generator
(DCM)

350 MHz ~44 MHz

350 MHz

350 MHz

No special actions are necessary

IKT

Environment was missing - motherboard emulation

Register
IO

Data, address
& control

Motherboard
(not available)

HW serial port
command
interface

b6db08w
(data, address, ‘w’)

The motherboard was
not available during
development.

Script file interpreter
program on PC emulates
configuration program.

Simple register
read write protocol
over serial port.

FPGA

IKT

Data logging

Demodulator
step 1

Demodulator
step 2

Demodulator
step 3

Serial port
interface

Processering
in Matlab

and Excel

Realtime scatter plots

Interface
program

Serial port

FPGA

8K x 64 bit FIFO

IKT

Conclusion

Successful project.

Made possible by large FPGAs with built-in DSP
functionality like high speed multipliers and accumulators.

Some frustrations and tool problems on the way, but none
serious.

