
An architectural foundation for security model sharing and reuse

Per Håkon Meland∗, Shanai Ardi†, Jostein Jensen∗, Erkuden Rios‡,
Txus Sanchez‡ , Nahid Shahmehri† and Inger Anne Tøndel∗

∗SINTEF ICT, Software Engineering, Safety and Security, NO-7465 Trondheim, Norway

Email: {per.h.meland,jostein.jensen,inger.a.tondel}@sintef.no
†Department of computer and information science, Linköpings universitet, SE-58183 Linköping, Sweden

Email: {shaar,nahsh}@ida.liu.se
‡European Software Institute, Corporacion Tecnológica Tecnalia, E-48170 Zamudio, Spain

Email: {erkuden.rios,jesus.sanchez}@esi.es

Abstract

Within the field of software security we have yet to

find efficient ways on how to learn from past mistakes

and integrate security as a natural part of software de-

velopment. This situation can be improved by using an

online repository, the SHIELDS SVRS, that facilitates fast

and easy interchange of security artefacts between security

experts, software developers and their assisting tools. Such

security artefacts are embedded in or represented as security

models containing the needed information to detect, remove

and prevent vulnerabilities in software, independent of the

applied development process. The purpose of this paper is

to explain the main reference architecture description of the

repository and the more general tool stereotypes that can

communicate with it.

1. Introduction

As our society’s reliance on software increases, so does

the importance of information and software security [1]. A

recent report by ENISA [2] states “The direct cost to Europe

of protective measures and electronic fraud is measured

in billions of euros; and growing public concerns about

information security hinder the development of both markets

and public services, giving rise to even greater indirect

costs.”

Within the field of software security we have yet to

find efficient ways to learn from past mistakes. As stated

by Noopur Davis [3]:“...over 90 % of software security

vulnerabilities are caused by known software defect types.

[...] the top ten causes account for about 75 % of all

vulnerabilities.” This is further supported by OWASP Top

10 [4] that describe the main security problems of web

applications. We believe that for most systems it is possible

to improve security substantially by focusing on common

security problems that can be solved in similar ways in

most, or maybe all, software. However, software developers

are usually not security experts, and thus rarely have the

required knowledge of and focus on security issues [1].

Information on known vulnerabilities is available in several

online repositories, but in general they are more directed

towards system administrators than developers [5].

The EU project SHIELDS [6] seeks to increase software

security by: 1) bridging the gap between security experts

and software developers by providing means for sharing

software security expertise, and 2) providing this expertice

in a reusable form that can be effectively used by developers

and the tools they use. The heart of SHIELDS is a Security

Vulnerability Repository Service (SVRS) and its contents.

Security expertise is embedded in or represented as security

models containing the needed information to detect, remove

and prevent known vulnerabilities in software, indepen-

dent of the applied development process. Security experts

collaborate on creating these models, which can contain

information to be read and used by humans, but also tool

specific input. The SVRS is intended to allow a variety

of tools to take advantage of and contribute to the content

through open interfaces, either by creating new or modifying

existing tools.

The purpose of this paper is to explain the main reference

architecture description of the SVRS and the accompanying

tool stereotypes. We explain the method that has been

used to create the architecture description, followed by a

description of the main components, information objects and

stakeholders. Then we exemplify utilisation of the SVRS,

before we discuss our contribution compared to related work.

Finally the paper is concluded with remarks on further work.

2. Method

SHIELDS is a collaborative research and development

project with eight partners from all across Europe, varying

from academic institutions to software industry. Because of a

diversity in background and expertise, the initial activity was

for all partners to create a set of practical use case scenarios

or user stories describing how they envisioned the SVRS to

improve secure software development. This process resulted

in 56 initial scenarios, which were refined and combined into

13 final scenarios describing functional aspect. The scenarios

2009 International Conference on Availability, Reliability and Security

978-0-7695-3564-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ARES.2009.110

823

were used to establish a common understanding of concepts,

behavior and to extract functional requirements. Further-

more, relevant actors, workflows, security requirements and

interaction outcomes could be deduced.

The architectural description of the SVRS is developed

according to the recommended practices from MAFIIA

framework [7] and the IEEE standard 1471-2000 [8]. Differ-

ent views [9] are used to describe structural and behavioral

properties, as well as possible configurations and guidelines

relevant when making detailed design and implementation

decisions. A view consists of one or more models that

describe and present different aspects related to structure

and behavior.

In the next section we show central excerpts from the

views related to the context and components of the SVRS

architecture description. More comprehensive information is

to be found in the D1.X and D3.X reports at the SHIELDS

Website [6].

3. The SHIELDS SVRS

The SVRS architecture is built on the concept published

by Ardi et al. [5], that is a centralised repository that enables

people and several types of tools to exchange security

information in order to stay up-to-date.

This first level architectural decomposition of the SVRS is

shown in Figure 1, which also shows what we consider to be

the environment of the system. This component view of the

SVRS is actually loosely based on the Flickr architecture,

which is a successful photo and video management and

sharing application [10], [11]. Flickr does belong to another

domain, but shares much of the same functionality with

SHIELDS, also being a centralised, but highly scalable

repository offering content access through a Web interface

as well as interfaces for third party applications (submit and

download functionality).

The Application Logic is where most of the actual

functionality is realised, and it can access three types of

information sources: 1) The Repository storage, which is

optimised for security models and associated information.

2) A general purpose Database for storing information

about users, statistics, session information, etc. 3) External

information sources found in the environment, that typically

need an Adapter to convert their data before use.

The API and Endpoints components make it possible

for the Modelling and Development tools found in the

environment to access the application logic. The API only

provides a relevant subset of the total functionality of the

application logic to the environment tools. The endpoints

are interface libraries. We can add more endpoints to support

more tools, or tools can adapt to the existing endpoints. So,

there is one API, but many endpoints.

The Page Logic, Templates and Web User Interface form

the direct Web entrance for the Users. The page logic gen-

Figure 1. SHIELDS and its environment

erates the dynamic content, realised by a Web programming

language. Templates are more static information related to

the layout and appearance of the Web pages, such as CSS

and image files. The Web user interface is what the human

users interact with (note that we have not explicitly modelled

a Web browser component, as this is considered to be

something that only displays the Web User interface).

In the environment we find users that either write (pro-

vide) or read (subscribe to) content. In addition to the already

mentioned Web user interface, this is done through tools that

belong to the Modelling tools or Development tools category.

While the SVRS is a unique system, these tools found in the

environment are more of a generic type. In the next section

we present a set of stereotypes that specific tools can realise

824

in order to interact with the SVRS.

3.1. Tool stereotypes

Modelling tools help SVRS content providers analyse

and model formalised security models, such as software

vulnerability information and how to mitigate them using

security activities. This is largely a manual task requiring

human expertise. Modelling tools aid the generation and

submission of content to the SVRS, but should also be able

to find and retrieve models from the SVRS in order to view,

modify or reuse existing work.

The upper part of Figure 2 shows a stereotype variation

where the modelling tool uses a local model storage. The

reason for having this is that the security expert is not yet

ready to upload the model (i.e. work in progress), or that

some of the models are regarded as confidential and should

therefore only be kept within the organisation. In order to

synchronise with the SVRS, a dedicated component, Remote

sync is controlled by the user interface and accesses the local

storage.

Figure 2. Modelling tool stereotypes for SHIELDS.

The lower part of Figure 2 shows another variation where

the modelling logic accesses the SVRS directly (no local

storage). Here it is important to avoid conflicts between

tools, and we have to impose transaction (ACID1) properties.

Development tools connect and retrieve content from the

SVRS, thereby staying constantly up-to-date with the latest

security knowledge and providing developers and quality

assurance staff with the latest information at their fingertips.

These are general development tools used for design and

implementation, or more specialised stand-alone security

tools or IDE-extensions that in one way or another are

able to utilise content from the SVRS. Development tools

are mainly subscriber tools, but they might also provide

information back to the SVRS, such as informing about

the effectiveness of security activities and real statistics

on vulnerability occurrences (in a controlled and protected

manner). The upper part of Figure 3 shows a variation with

direct access to the SVRS through the development logic.

The middle part of Figure 3 shows a special case where

the development tool needs an adapter between the develop-

ment logic and the endpoint interface. This is relevant when

the provided interface is not fully compliant or when the

content itself needs some kind of local conversion before it

can be used. Gamma et al. [12] defines an adapter pattern

that is suited for this purpose.

The lower-most option of Figure 3 is another special case

where the development tool can use SVRS content through

a dedicated plugin. This plugin is typically invoked from

the user interface. Many development tools already support

some kind of plugin technology as a way to extend their

functionality.

3.2. Concepts and information model

The information in the SVRS is tied together through a set

of central concepts that we need to explain: A Vulnerability

can be modelled either as a general Vulnerability Class or

a specific Vulnerability Instance (an instance is a realisation

of a class). A vulnerability can lead to a Security Breach

Incident (modelled as threats or attacks), and vulnerabilities

might prevent Security Goals from being achieved, while

Security Activities help us fulfill the security goals. Vulnera-

bilities, security goals and security activities can be modelled

by respectively Vulnerability Models, Security Goal Models,

and Security Activity Models. In a security activity model

we can indicate Security Activity Artefacts, which can either

be of the type Security Tool (using a security tool or usable

input to a tool) or Security Instruction (documents to be read

and used by humans in order to perform a certain security

activity).

The information model shown in Figure 4 gives a sim-

plified view on how we actually store this information. The

central object is the general Resource, which CoreElement,

1. ACID is a typical database abbreviation for Atomicity, Consistency,
Isolation, Durability.

825

Figure 3. Development tool stereotypes for SHIELDS.

Figure 4. High-level information model in SVRS

Model and Artefact inherit from. CoreElements are com-

mon concepts for all formalisms and models in SHIELDS,

and represent security knowlegde, such as vulnerabilities,

vulnerability causes, security activities and security goals.

A model consists of one or more ModelElements, which

can again contain other models. ModelElements are able

to refer to different types of Artefacts, which are resources

representing some kind of information stored within or

outside the SVRS. History and Status are used to support

versioning and endorsement of the content of the SVRS

respectively, and Comments are used for feedback. Users of

the SVRS are either individuals or organisations, and their

allowed Usage is governed by one or more Policies. Usage

Statistics provide valuable information on the popularity and

effect of the various resources. For concrete examples on

what relevant security models look like in practice, see the

already mentioned work by Ardi et al. [5].

826

3.3. Stakeholders

Based on the work of Landwehr et al. [13], the SVRS has

three main types of stakeholders:

1) A provider is typically a security expert who creates,

modifies, endorses or deletes SVRS content. We also have

commercial providers that creates content that requires some

kind of fee to be accessed.

2) A subscriber is typically a software developer, ei-

ther using the Web interface directly or tools that access

the SVRS. The SVRS also provides information aimed

towards security researchers, i.e. trends and statistics related

to vulnerability occurrences and effectiveness of security

activities.

3) In the SVRS management team there are several roles

related to the operation of the SVRS, e.g. quality assurance,

user management, maintenance and comment moderation.

Additional stakeholders are the tool developers, that create

or enable modelling/development tools to utilise the SVRS,

and the indirect software users who benefits from improved

software security.

4. Example of use

SQL Injection is a vulnerability class typically found

in Web applications. It allegedly caused exposure of 3000

records of a US online bank in October 2007, the UN Web

site to be defaced in August 2007, 18 million customer

records to be stolen from a Korean auction site in February

2008 and the loss of 226 000 client records uf a US financial

firm in February 2008, just to mention a few examples [14].

A lot of knowledge exists about the causes and threats

related to SQL Injections. For example, we know that proper

server-side input validation is a very efficient remedy, but

still this is considered to be one of the main threats to

Web applications because the same development mistakes

are made over and over again.

So, how does the SVRS architecture help us improve this

situation? We have modified two existing security modelling

tools according to the stereotype with a local repository

shown in Figure 2. Security experts are able to use these

tools to find and describe causes and relations between

causes, and then create intuitive models that systematically

describe different types and levels of mitigation activities.

As several security experts are able to cooperate on these

models through the SVRS, these models quickly get to a

mature and usable state.

One of the modelling tools can also be imported as a

plugin into the Eclipse IDE [15], hence realising the lower-

most development tool stereotype of Figure 3, and used by

the software developers to locate, retrieve and view relevant

models from the SVRS. In the SQL Injection case, these

models will typically contain information that educates the

developers on the causes to the problem (e.g. only client side

input validation), what are the possible misuse cases (e.g.

use of escape characters), how to perform manual inspection

(e.g. look for dynamic SQL queries), find a relevant design

pattern (e.g. InterceptingValidator [16]) and so on. The point

is to be as concrete and specific as possible, and make

the information easily available from tools developers are

already familiar with.

Similarly, we are working on modifying a static analysis

tool and three testing tools (both active and passive) so

that they realise the other two development tool stereotypes.

As analysis and testing rules are specialised and embedded

into the specific models for the relevant vulnerability, we

will suffer less from false positives, and the tools can be

specifically instructed to look for newly discovered threats.

5. Discussion

The architecture of the SVRS supports interaction with

security modelling tools, storing the models so that they

are openly available and related to each other, and letting

development tools take advantage of the content. It conforms

to the requirements proposed by Ardi et al. [5] for new

security improvement tools that aim to ”contribute to the

creation of more secure software and improve the security

awareness of software developers.”

Landwehr et al. [13] suggest three alternative architectures

for a vulnerability archive: centralised, federated, and dis-

tributed search-engine-controlled. The SVRS is a centralised

repository, but the tools can use a local repository that also

enables the federated approach. This is necessary because

some businesses might be very reluctant to share information

about vulnerabilities in their products, and are in some cases

not permitted to share certain information [5].

The tools we are currently using to interface the SVRS

according to the stereotypes are project internal and not

widely used in the industry. However, in order to obtain

a crucial mass of both content and users we need other

tools to interface the SVRS as well. A SHIELDS compliant

programme will therefore be developed to facilitate this.

Two of our major challenges are to further develop the

internal information structure so that the users easily find the

right information and tackling issues related to performance

when the content amount grows.

As Ardi et al. [5] already have described, there are several

existing security related repositories available on the Inter-

net, both commercial and open-content based. The initiative

that resembles SHIELDS the most is the Information Secu-

rity Automation Program (ISAP) together with the Security

Content Automation Protocol (SCAP) [17], sponsored by the

U.S. Department of Homeland Securitys Computer Security

Division and hosted as a part of the National Vulnerability

Database (NVD). We do not consider ISAP and SCAP to

be direct competitors to the SHIELDS SVRS as they mainly

seek to improve security monitoring and configuration of

827

software, not actual development. In contrast, we consider

these to be potential external information sources as they

provide complementary knowledge that the SVRS can either

provide links to or import information from (see Section 3).

Other related work is the Open Risk Model Repository

(ORI-MOR) [18], which similar to SHIELDS since it is

an open source repository of security information with an

accompanying security tool, but on a very different level.

SOMAP is focused on high-level risk management while

SHIELDS is focused on practical software development.

6. Conclusion and further work

We have presented a reference architecture for a Security

Vulnerability Repository Service (SVRS) that supports shar-

ing and reuse of security artefacts, and which will hopefully

help bridge the gap between security experts and software

developers. We are currently validating this approach by

modifying various tools to interact with the SVRS, and

gathering feedback from the software industry on the their

usability and perceived usefulness of the SVRS contents.

Aknowledgements

The research leading to these results has received funding

from the European Communitys Seventh Framework Pro-

gramme (FP7/2007-2013) under grant agreement no 215995.

We would also like to aknowledge the valuable help from

the rest of the SHIELDS Consortium.

References

[1] H. Mouratidis, P. Giorgini, and G. Manson, “When security
meets software engineering: a case of modelling secure in-
formation systems,” Information Systems, vol. 30, no. 8, pp.
609–629, 2005.

[2] R. Anderson, R. Bhme, R. Clayton, and T. Moore, “Security
economics and the internal market,” The European Network
and Information Security Agency (ENISA), Tech. Rep., Jan-
uary 31st. 2008.

[3] N. Davis, “Developing secure software,” Software Tech News,
vol. 8, no. 2, pp. 3–7, July 2005.

[4] OWASP Foundation, “Owasp top 10, the ten most critical web
application security vulnerabilities, 2007 update,” http://www.
owasp.org/index.php/Top 10 2007 (accessed November 1st
2008).

[5] S. Ardi, D. Byers, P. H. Meland, I. A. Tøndel, and N. Shah-
mehri, “How can the developer benefit from security model-
ing?” in The first international workshop on secure software
engineering (SecSE’07). Vienna, Austria: IEEE Computer
Society, 2007, pp. 1017–1025.

[6] SHIELDS Consortium, “SHIELDS - Detecting known se-
curity vulnerabilities from within design and development
tools,” http://www.shieldsproject.eu/ (accessed November 1st
2008).

[7] U. Johansen, E. Stav, and S. Walderhaug, “The mafiia hand-
book - an architectural description framework for informa-
tion integration systems,” SINTEF ICT, Tech. Rep. STF90
A05139, 2003.

[8] IEEE, “Recommended practices for architectural descriptions
of software-intensive systems,” IEEE, Tech. Rep. Std 1471-
2000, 2000.

[9] P. Kruchten, “The 4+1 view model of architecture,” IEEE
Software, vol. 12, no. 6, pp. 42 – 50, 1995.

[10] Yahoo! Inc, “Flickr - photo sharing,” http://www.flickr.com
(accessed April 18th 2008).

[11] Hoff, Todd, “Flickr architecture - high scalability,” http:
//highscalability.com/flickr-architecture (accessed April 18th
2008).

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, De-

sign patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

[13] C. E. Landwehr, B. C. Gabrielson, and J. D. Humphrey, “Re-
quirements and approaches for a computer vulnerability data
archive,” in Invitational Workshop on Computer Vulnerability

Data Sharing, Gaithersburg, MD, 1996.

[14] L. Clark, “Businesses must keep back door locked to hack-
ers,” ComputerWeekly, vol. 2008, no. March 20th, 2008.

[15] The Eclipse Foundation, “Eclipse.org home,” http://www.
eclipse.org/ (accessed November 1st 2008).

[16] C. Steel, R. Nagappan, and R. Lai, Core Security Patterns:
Best Practices and Strategies for J2EE, Web Services, and

Identity Management. Prentice Hall, 2005.

[17] NIST and OSD and DHS and NSA and DISA, “The infor-
mation security automation program and the security content
automation protocol,” http://nvd.nist.gov/scap.cfm (accessed
October 31st 2008).

[18] SOMAP.org, “Security officers management & analysis
project,” http://www.somap.org/ (accessed November 1st
2008).

828

