Heuristic Strategies for Solving Large-Scale Vehicle Routing Problems

Geir Hasle Department of Applied Mathematics SINTEF ICT, Oslo, Norway <u>http://www.sintef.no/</u>

TRANSPORT OPTIMIZATION CHALLENGES IN CONTEMPORARY PRACTISE Jyväskylä, Finland, May 12-14, 2009

Outline

Transport Optimization Challenges in Contemporary Practice

- Challenges for Routing Technology
- Heuristic Strategies for Large-Scale VRPs
- Newspaper distribution
- The Node Edge Arc Routing Problem (NEARP)
- Conclusions

Messages

- Many challenges for routing technology
- Computational complexity is one of them
- Several strategies for containing complexity
- The VRP research community should be careful
 - Solving the right problem
 - Speedup tricks are useful for world records and maximizing #publications
 - They may break down for real life problems

Challenges for Routing Technology

- Industrial awareness
- Information accessibility
- User interfaces
- Model adequacy and flexibility
- Software engineering
- Robustness
- Solution quality for large-size and complex problems
- Computational complexity

- Newspaper distribution
- City of Oslo
- 500k inhabitants
- 200k households
- 34.554 modules

Outline

- Challenges for Routing Technology
- Heuristic Strategies for Large-Scale VRPs
 - Olli Bräysy, Wout Dullaert, Pasi Porkka, Geir Hasle
- Newspaper and Media Product Distribution
- The Node Edge Arc Routing Problem
- Conclusions

How to contain complexity?

- High performance algorithms
- Decomposition
- Abstraction
- Parallel computing
- Search Reduction

Decomposition

- Top-down strategy
- Split the problem into manageable pieces
- Solve the subproblems
- Patch the solutions together
- You will typically lose optimality
- Basis for further improvement

VRP Decomposition

- Geographical
- Organizational
- Temporal
- Product
- Vehicle
- Assignment / Sequencing
- Location / Routing, Period / Routing
- Column Generation
- Cluster-first-route-second and vice versa
- Clustering methods useful for splitting

Some 40 papers in the literature

Geographical decomposition 35.000 orders – 100 sub-areas

Abstraction

- Ignoring detail, bottom-up
- Always done, modelling
 - Euclidean distances
 - Cost is distance
 - Constant speeds
 - Identical vehicles
 - Triangle inequality
 - Linearization
 - **—**
 - May reduce industrial relevance ...
- Aggregation

Aggregation of demand

- Collection of transportation demand
- Use of road topology
- Capacity threshold
- Other constraints
- De-aggregation and further improvement
 Multi-level aggregation / refinement

< 10 papers in the literature</p>

Demand aggregation based on road topology, proximity

- Oppen & Løkketangen [C&OR 2006]
- Distance/time, capacity may stop aggregation
- Issues on traversal possibilities, constraints
- Typical reduction factor of 5-20
- Needs extention to arc model (Node Edge Arc Routing Problem, NEARP)
- More comprehensive aggregation (Joni Brigatti's talk)

Aftenposten 33.200 orders -> 5600 aggregates

. .

Parallel computing

- Idea very old, Charles Babbage
- "The Beach Law" (Gottbrath et al. 1999) does not hold these days
- Moore's law still does
 - reduced clock speed
 - increasing # multiple cores
- Sequential programs run slower on multi-core computers
- Graphics Processing Unit
 - data parallelism, stream computing
 - rapid performance increase
 - general purpose programmability
- Hybrid computing

Parallel computing

- Some tasks in EA and LS are embarassingly parallel
- "Simple" parallelization through multi-threading
 - fine-grained to medium level granularity
 - very interesting for routing technology
 - not so interesting for VRP research, no literature
- More interesting parallelization
 - Coarse-grained, asynchronous
 - Multi-search
 - Collaborative search
 - Parallel multi-level
- Recent review by Crainic, 80 references
- Additional 30 papers
- Hybrid computing not really investigated

Search speedup

- Local search: Delta evaluation
- Interesting LS neighborhoods do not scale well
- Restricted neighborhoods
 - Candidate list strategies (Glover)
 - Granular tabu search (Toth & Vigo)
 - Fast Local Search in Guided Local Search (Voudouris et al.)
- Restructuring of neighborhood exploration
 - First accept
 - Sequential search, decomposition of moves with pruning (old idea, Christofides & Eilon, Lin & Kernighan, revived by Irnich et al.)

Some 15 VRP papers

Search speedup

Fast propagation of constraints, important

- May be very effective, but use with care ...
- Real-life aspects, time-varying speeds?

More aggressiveness / opportunism in Local Search?Better understanding of what is going on

- search landscapes
- design of operators

Outline

Transport Optimization Challenges in Contemporary Practice

- Challenges for Routing Technology
- Heuristic Strategies for Large-Scale VRPs
- Newspaper and Media Product Distribution
- The Node Edge Arc Routing Problem
 - Truls Flatberg, Oddvar Kloster, Eivind J. Nilssen, Morten Smedsrud, Geir Hasle
- Conclusions

A: PASSPORT - Session1 File Edit Transfer Options Session Macro Help

=>PF2=TILBAKE,PF5=ENDRE,PF	6=SLETT.PF	10=BLANKER, PL	F11=RUTEKONS.PE	12=TILLEGGS(IPP
AFTENPOSTEN D	ISTRIBUSJO	INSSYSTEM K	OSTNADS- OG TIC	SBEREGNING	
Rute: 21509 Utg.: M Ukedad	1: 0 Pr. da	to: 221105	E	etjenes med:	G
Ant.l0nn: 265 -Ant. abo	og andre,	ant.	pressede Sone	: 3 0/U: U	
265 * 0 = 265 a kr.	23,76 •	O Spes.abo	a kr. 0,00	= Kr 6296	5,40
Avstandsl0nn: 3,3 km a	kr. 52,8	30		= Kr 174	,24
Vintertillegg: 5 mnd. a	kr. 291,0	0 :12		= kr 121	, 25
Sum l0nn			*MIN*	= kr 6892	2,17
26,00 % tillegg for feri	epenger og	g arb.avgift		= kr 1791	, 96
Sykkelgodtgj.				= kr (,00
Transp.godtgj. 3,3 km	x 26,00 da	ager x kr.:	0,00	= kr	,00
Transp.strekn. 0,0 km	x 25,00 da	ager x kr.:	0,00	= kr 0	, 00
Sum l0nn, sos.kostn. og 1	ransp.godi	tgj.	*MIN*	= Kr 8684	, 13
Kostnad pr. abonnement pr	. mÄned		A second and a second as a	= kr 32	2,77
 KlargjØring fØr start 		15 min	Dekn.%: 44,6	9	
2. Avstand 3,3 km a	12,00 =	39,60 min	Beregnet tid	128,13 min.	
 Oppg. uten n0kkel a 	0,35 =	0,00 min	Reell tid	128,13 min.	
4. 53 oppg. med n0kkel a	0,50 =	26,50 min	Beregn, dagl@	nn 248,87 k	(F
5. 206 etasjer a	0,35 =	72,10 min	Reell dagle	nn 260,42 k	r
0 lev. i enebolig a	0,15 =	0,00 min	Beregn, timel	0nn 116,54	KL
7. 63 lev, i rekkehus a	0,20 =	12,60 min	Reell timel	0nn 121,95	KL
8. 4 lev. i FK lute) a	0,15 =	0,60 min	Timetillegg o	/18	kr
9. 0 fellesleveringer a	0,00 =	0,00 min	Antall hussta	nder 593	
lotalt	=	165,40 min		0.00	
18	H2	Session1 R	4 6 1	3:22p 22/1	.1/05

🦉 Rutemåltall - Wii	ndows Internet Ex	qlorer						
🕒 🗸 🖉 http	o://app.di.no/app/Rou	teMeasures.do?menu)	Id=62					
File Edit View Fa	avorites Tools Hel	þ						
🚖 🍄 🌈 Rutemå	İtall							
Distributio Innovatio	n Routes Ad	dress Reports						
Search Route	Module Pendir	ng Routemeas	ures Optin	nization				
Ruteutvalg Distribusjon	M1-6 💌							
Velg geografi	<u>.</u>							
Region	Vola							
Område	-veig-		×					
Forfall	02 Oslo N	Nord - RNO#300:	FBVN gr1 🗙					
Velg måltall / ti Måltall Tidsmodus	dsmodus LE Li Snitt Ma	T OM RL an Tirs Ons	TB D%	LEV A OM A RL		Søk		
Oversikt Produ	uksjon Forfall							_
	Lev.eff.	Lev.tett.	Omb.tid	Rutelengde	Tidsbuff.	Dekn.grad	Lev.	
Production (5)	3,12	34,3	70 Σ:348	7,8 Σ:39,2	106	22,7	240,8	
Optimized (5)	<mark>3,8</mark> 5	133,2	49 Σ:247	2,3 Σ:11,4		23,3	224,2	

Node and Arc Routing

- For "Household routing problems" demand is located in a node
 - mail delivery
 - newspaper and other media products
 - waste collection
 - typically modelled as CARP in the literature
- Arc routing
 - snow removal, cleaning
 - gritting, salting, ...
- Abstraction, aggregation of demand
 - mix of nodes, arcs, edges
 - travel cost (deadheading), service cost
- Node Edge Arc Routing Problem (NEARP)
 - Christian Prins and Samir Bouchenoua 2004
 - Generalization of the CVRP, CARP, General Routing Problem
 - Definition, test problems, memetic algorithm

Aftenposten 33.200 orders -> 5600 aggregates

VRP solver - Spider

Rich model

- Basically a single algorithmic machinery
 - construction phase
 - tour depletion phase(s)
 - iterative improvement
 - VND
 - destroy and rebuild

Good results on benchmarks from the literatureMore computing time

.

Previous situation

- Every task (pickup, delivery, tour start/end...) has a location
- Topology Module (Guider) provides distance, cost and time services:
 - $\blacksquare d(l_1, l_2), c(l_1, l_2), t(l_1, l_2)$
 - Possibly time dependent
 - Not necessarily symmetric
 - Triangle inequality holds
- Special location Anywhere
- Tasks may have alternative locations
- One is selected in plan

Extending locations

Previously: Only Node Locations

- New type of locations: Edge Locations
- From: Node location
- **To:** Node location
- Reversible: bool

Impact on topology

 $= d(I_1, I_2), c(I_1, I_2), t(I_1, I_2)$

When I_1 is edge, use I_1 :To

When I_2 is edge, use I_2 :From

Triangle inequality may not hold

Impact on operators

When reversing subtours (2-opt, 3-opt), we reverse all reversible edge locations

Edge locations

- Aggregation along road segments
- Modelling Arc Routing Problems, mixed problems
- All model extensions may be used
 - Non-homogenous fleet
 - Linked tours with precedences
 - Mixture of order types: Deliveries, Pickups, Direct, Single Visits
 - Multiple time windows, soft time windows
 - Capacity in multiple dimensions, soft capacity
 - Alternative locations on tours and orders
 - Periodic orders, alternative time periods
 - Non-Euclidean, asymmetric, dynamic travel times
 - A variety of constraint types and cost components ...
 - Same algorithmic machinery, no ARP operators
- Performance?

CARP / NEARP experiments

- Intel Core2 Duo T7800 2.6 GHz, 3.5 Gb memory, MS XP Professional version 2002 Service Pack 2
- Insert, Relocate, 2-opt, Cross, Cross-exchange (2 variants), 3-opt, ruin and recreate
- 900 seconds timeout

Computational tests - CARP

Benavent et al. (34 instances)

- LB error 1.02%
- UB error 0.60%
- 16 best known solutions (13 optimal)
- 176 seconds
- Golden et al. (23 instances)
 - LB error 0.83%
 - UB error 0.70%
 - 14 best known solutions (14 optimal)
 - 1 incomplete ...
 - 58 seconds
- Eglese et al. (24 instances)
 - LB error 3.63%
 - UB error 1.25%
 - 3 best known solutions (1 new)
 - 3 incomplete ...
 - 421 seconds

Computational tests - NEARP

- Prins & Bouchenoua CBMix (23 instances)
- No lower bounds, no proven optima
- Only one competitor
- UB error 0.94%
- 8 best known solutions (6 new), 0 incomplete ...
- 519 seconds

Improvements needed, ARP-structure

Conclusions

Transport Optimization Challenges in Contemporary Practice

- More attention to rich, large-size problems
- More work on how to deal with computational complexity
- Combination of strategies
- More aggressive search
- More research on search
- The NEARP is an interesting model
- More attention should be devoted to it
- Algorithms for node-routing may work well

We will not be out of work in a while

Messages

- Many challenges for routing technology
- Computational complexity is one of them
- Several strategies for containing complexity
- The VRP research community
 - should investigate them more
 - should be industrially relevant
- Clever speedup tricks are useful for breaking world records (minimizing travel cost and maximizing #publications)
- They may hinge on assumptions that make them break down for real life problems

Heuristic Strategies for Solving Large-Scale Vehicle Routing Problems

Geir Hasle Department of Applied Mathematics SINTEF ICT, Oslo, Norway <u>http://www.sintef.no/</u>

TRANSPORT OPTIMIZATION CHALLENGES IN CONTEMPORARY PRACTISE Jyväskylä, Finland, May 12-14, 2009

The conference where the sun never se

Hope to see you at

Tromsø, Norway - 20.-25. June 2010 http://www.tristan7.org

- Seventh Triennial Symposium on Transportation Analysis
- Tromsø, Norway, June 20.-25., 2010
- http://www.tristan7.org/
- Deadline for abstract submission: October 31, 2009
- Email to <u>tristan@sintef.no</u> with the following text in the Subject field: 'TRISTAN: your surname, your given name'

The Collab project

- High-performance transportation optimization through parallel and collaborative methods
- Rich VRP, Dynamic SPP
- 2009-2011
- Partners
 - Group of optimization, SINTEF ICT
 - Group of Heterogeneous Computing, SINTEF ICT
 - The Agora Innoroad Laboratory, University of Jyväskylä, Finland
 - ITMMA, University of Antwerp, Belgium
 - CIRRELT, Quebec, Canada
- Temporary researcher position at SINTEF
- Funded by the Research Council of Norway / SMARTRANS
- Extensions

