
Survival by Deception

Martin Gilje Jaatun1, Åsmund Ahlmann Nyre1, and Jan Tore Sørensen2

1 SINTEF ICT, NO-7465 Trondheim, Norway
Martin.G.Jaatun@sintef.no,

WWW home page: http://www.sintef.com/ses
2 Norwegian University of Science and Technology, NO-7491 Trondheim, Norway

Abstract. A system with a high degree of availability and survivabil-
ity can be created via service duplication on disparate server platforms,
where a compromise via a previously unknown attack is detected by
a voting mechanism. However, shutting down the compromised compo-
nent will inform the attacker that the subversion attempt was unsuccess-
ful, and might lead her to explore other avenues of attack. This paper
presents a better solution by transforming the compromised component
to a state of honeypot; removing it from duty, while providing the at-
tacker with bogus data. This provides the administrator of the target
system with extra time to implement adequate security measures while
the attacker is busy “exploiting” the honeypot. As long as the majority
of components remain uncompromised, the system continues to deliver
service to legitimate users.

1 Introduction

The history of the Internet shows that it is not possible to develop a system
that is both impervious to attack and useful (i.e., provides anything more than
rudimentary functionality) – no matter how carefully crafted the armor may be,
the vandals3 always seem to be able to find a chink in it.

Attacks on e-commerce installations and general web sites frequently em-
ploy platform-specific exploits based on known vulnerabilities. In later years,
the “patch window” has been steadily decreasing, to the point where we now
face “zero-day exploits” that are being wielded even before a patch for the spe-
cific vulnerability is generally available. Clearly, new mechanisms are required
to combat this threat. Our contribution to the cause is a system for Increasing
Survivability by dynamic deployment of Honeypots (ISH). In the following, we
will discuss the theoretical backgound and describe our prototype ISH imple-
mentation.

2 Background

Protagonists of honeypots have by many been considered the lunatic fringe of the
computer security community, but Lance Spitzner [2] and the Honeynet Project
3 We agree with Marcus J. Ranum [1] that this may be a more descriptive term for

what is usually referred to as a “hacker”.

2

[3] have contributed to get more mainstream attention (if not general accep-
tance) for honeypot ideas. Recent publications such as [4] and [5] at recognized
conferences, and others listed on the Honeynet homepage [6] lends academic
credibility to the honeypot as an information security resource.

To quote [6], the raison d’etre for the honeynet project (and thus, a honeypot)
is

To learn the tools, tactics and motives involved in computer and net-
work attacks, and share the lessons learned.

Indeed, the idea of “peering over the shoulder” of an active hacker has been
pursued by many, and classic papers such as [7] and [8] describe how pioneering
defenders in an ad-hoc fashion have thrown together what in reality were the
first (after-the-fact) honeypot systems4.

The idea of dynamically transforming a compromised system to a state of
honeypot was introduced in [9], but the authors did not describe in detail how
this might be accomplished. Disparity and redundancy are classic tenets of de-
pendability [10] and (by extension) survivability. We have employed the defini-
tion of survivability given in [11], but with added emphasis on malicious activity
rather than accidental incidents.

2.1 Related work

– SITAR [12] is an architecture that aims to provide a system invulnerable to
attack, using replication, software diversity and a voting mechanism.

– Bait and Switch Honeypot [13] is an open source project that is in many
ways similar to our own. The main difference is that Bait and Switch uses a
firewall proxy to direct malicious traffic to a (permanent) honeypot server,
and relies solely on an Intrusion Detection System (Snort [14]) to differentiate
legitimate from malicious activity.

– Shadow Honeypots [15] also employ a proxy-like mechanism to classify traf-
fic, routing suspicious traffic to a special shadow server that makes a final
decision.

– MPITS [16] is a relatively simple system that employs disparity and redun-
dancy to offer a basis for intrusion tolerance. We have employed MPITS as
an important component in the prototype implementation of ISH; MPITS is
described further in section 2.2. Note that ISH depends on service replication
on disparate software platforms, but not directly on MPTIS.

2.2 Minimal Proxy for Intrusion Tolerant Systems

MPITS was developed by Broen [16] to provide a less complex basis for intrusion
tolerant systems, that additionally would serve as a reference system when com-
paring existing, more complex systems. Although existing intrusion tolerance
4 That these early efforts did not develop further, can partly be ascribed to the fact

that this kind of activity quickly proved too time-consuming – a point we will return
to later.

3

systems have a relatively high level of complexity, they are still vulnerable to
single point of failure. Acknowledging that the connection point to the external
network always will be a single point of failure, MPITS seeks to minimize the
likelihood of compromising the unit by limiting the functionality and complex-
ity of the system. The low complexity yields better understanding and enables
a more thorough inspection of the source code to eliminate vulnerabilities.

MPITS utilizes replication of services on disparate software platforms to
achieve survivability. The system consists of two types of components; a number
of application servers and a proxy server (see figure 1). The application servers
are the servers containing the actual service the system is providing, while the
proxy server works as the connection point to the outside world and manages
all inbound and outbound traffic.

The proxy will forward all incoming requests to the application servers, and
process the responses. In theory, all well-formed requests should generate the
same resonse if the various application servers are functionally equivalent. In
practice, there may be minor differences, which is why MPITS groups replies in
equivalence classes, based on a configurable notion of what is “close enough”.
To determine whether two responses belong to the same equivalence class, the
responses are compared byte for byte, and all discrepancies counted. If the error
ratio is below a configurable threshould, the responses are considered equivalent.
Special characters may be weighted to indicate their increased or decreased rela-
tive importance, such that numbers may be labeled more crucial than letters in
a banking transaction. The equivalence algorithm of Broen is rather simplistic,
and requires further development. Once the responses in the different equivalence
classes have been tallied, MPITS performs a voting process to determine which
is the majority response. For the configuration depicted in Fig. 1, the following
possibilities exist:

– All three responses are put in the same equivalence class; the request is con-
sidered benign, and the response is forwarded to the external client. (Voting:
3-0)

Internet

Linux / Apache 1.3

FreeBSD / Apache 2.0

Windows / IISProxy

Client

Fig. 1. An overview of the MPITS architecture

4

– Two responses are put in one equivalence class, and the last in another; the
odd man out is considered compromised, and the response from the majority
equivalence class is forwarded to the external client. (Voting: 2-1)

– All three responses are put in different equivalence classes; no determina-
tion can be made regarding which response is valid, and the system cannot
generate a response. (Voting: 1-1-1; “Hung jury”)

MPITS thus only provides a means for determining that something is amiss,
but makes no attempt do do anything about the situation. It is therefore con-
sidered a basis or framwork for intrusion tolerance, rather than an intrusion
tolerant system.

3 System Idea

The main goals of the ISH system are to deliver critical services to legitimate
users even when under attack, detect and detain the attacker without alerting
same, and provide bogus data to the attacker. This is illustrated in Fig. 2.

The idea is that if a server unit is exposed to an exploit specific to that
particular platform, the response will be different than the one generated by the
two other units. All well-formed requests, on the other hand, should result in
the same response or output. Once it is determined which unit is the odd man
out, this unit can be isolated and removed from further voting.

Fig. 2. A compromised component stringing an attacker along

5

4 System Overview

Fig. 3. Conceptual system overview

A logical description of the ISH system is given in Fig. 3. The fundamental
components are as follows:

– Voter
– Router/Switch
– Logging unit
– Proxy
– Server units

In the following, we briefly describe each component.

Voter: The voter component is taken from MPITS, as described earlier. The
voter is responsible for detecting attacks based on response discrepancies,
and taking appropriate response.

Router/Switch: For connectivity, and also hiding internal network structure.
This is a standard COTS component.

Logging Unit: A separate write-only loghost, for logging attacker activity. The
logging is only activated once an attack has been detected.

6

Fig. 4. Server unit

Proxy: The proxy forwards requests and responses between client and server(s).
Server Unit: In these days of rootkits [17], it is difficult to trust any system

that does not consist of pure hardware. Such systems, however, no longer
exist. To up the ante against the attackers, we have designed a prototype
server unit that allows us to verify the operating system files of an application
server while it is still running.
The server unit is composed of two computers: A file server and the actual
application server, as depicted in Fig. 4. The latter has no writeable file
system of its own, but mounts an exported file system from the former.
In addition to providing the application server with a file system, the file
server also performs integrity checking of important files [18] to detect a
compromise, and will report any anomalies to the voter.
Once a compromise is detected (either via the voter, or via the file integrity
check), the file server will replace all sensitve data on the unit with obfuscated
data prepared in advance. This is accomplished by maintaining a shadow
volume that is periodically updated to keep it roughly equivalent to the real
partition; the file server can then simply switch partitions – in all but the
most unfortunate circumstances5 this would be possible to achieve without
the attacker noticing.
The dedicated file server could in theory be replaced by a Storage Area
Network solution where an independent mechanism could verify the integrity
of the files.

5 In the case of a web server with dynamic content, such an unfortunate circumstance
could be that some information has significantly changed or been added just prior
to the attack; the attacker might then notice that the information is different or
missing on the “compromised” unit. This only applies to information that would
be available to all clients, and not to information that first requires a breach of the
access control mechanisms of the service.

7

5 Implementation

For practical reasons we had to scale down our ambitions for the initial pro-
toype implementation; while the original plan had called for three separate hard-
ware/software platforms, e.g. Solaris on Sun, Windows on Intel and Linux on
PowerPC, we had to settle for identical Intel PCs running FreeBSD and Linux,
and two different versions of the Apache web server. The prototype ISH imple-
mentation is illustrated in Fig. 5.

The proxy unit is based on MPITS, extended with an attacker handling fea-
ture. Most importantly, when the voter detects a 2-1 voting anomaly, we no
longer forward the majority response to the client; in this situation the client is
assumed to be an attacker, and thus the minority response (from the compro-
mised unit) is returned.

5.1 Identifying and Detaining the Attacker

Based on our description above, detecting that an attack has taken place based
either on a voting discrepancy or on file integrity violation detection is fairly
manageable (but see also section 5.2). However, new challenges arise when faced
with the problem of identifying the attacker.

If we operated a single-user system, it would have been trivial: The current
user would have been the culprit. With several concurrent users, it is more
difficult – we have settled for labeling the first request causing a discrepancy in
the voter as an attack, and using the originating IP address of this request as
the address of the attacker. We acknowledge that this approach has its obvious
downsides due to the common usage of VPNs, NATs and the fact that attackers
may control several IP-addresses through bot-nets or the like. If the server utilizes
a login feature, a user profile may be utilized, but for servers with open access
such as web servers, this approach is not feasible.

Once the attacker has been identified, traffic originating from this source is
no longer distributed to all the units; only to the compromised unit (now acting
as honeypot). Responses from the honeypot is naturally not voted on, but passed
on directly. In this sense, the user (i.e. attacker) interacting with the honeypot
actually experiences improved efficiency with respect to an uncompromised sys-
tem; this “spare capacity” may be used e.g. for extended logging of attacker
activity.

5.2 False Positives and Negatives

The success of the voter relies on the assumption that well-formed input will
result in the same output, regardless of which platform the service is implemented
on. Unfortunately, practical tests have shown that this is not necessarily true,
in rare cases causing the voting unit to detect a discrepancy based on legitimate
input. This implies that careful configuration is required on each platform, and
special modifications (e.g. suppresion of platform-specific staus messages) may be

8

Fig. 5. Prototype System

9

necessary to prevent spurious discrepancies. This of course also has implications
for the specification of equivalence classes, as mentioned earlier.

Furthermore, it is possible that a given exploit would generate innocuous
output, but have side-effects that causes a compromise further down the line.
Since the voter is based on the generated output, such an attack would not be
detected.

6 Discussion

Strictly speaking, dynamically transforming a system into a honeypot only makes
sense as long as you are dealing with a human attacker; i.e. if you are concerned
with detecting “dumb”, indiscriminate network worms, a few ordinary honeypots
sprinkeled around your domain would probably have served nicely. However, even
in such cases the service duplication of our system will ensure that the adverse
effects of the worm will be mitigated.

Another objection to ISH might be that it represents “security through ob-
scurity” – one could argue that once it is known that a given installation is
implemented by ISH, its value is nil. However, if ISH were to be deployed in
the spirit of “Defense in depth” we claim that this does represent at least two
additional lines of defense; no single-platform exploits would be applicable to
our system, and any attack that does succeed, but changes one of the files in our
“integrity check set” will still be flagged and cause the unit to be removed from
service.

To focus on our idea of dynamic heneypot deployment, we have in our presen-
tation intentionally omitted discussing other network intrusion detection mech-
anisms (e.g. [19], [20]), but we acknowledge that to the extent that ISH is an
intrusion detection tool, it may be augmented by employing additional (tra-
ditional) IDS mechanisms, either before the traffic reaches ISH, or as part of
ISH.

6.1 Determining the optimal number of units

The use of three server units in our prototype means that once a single unit is
transformed into a honeypot, a subsequent compromise of one of the two other
units can be detected but not localised. This could be remedied by increasing
the number of units6 , but there will none the less be a point at which additional
intrusions will mean that the entire system must be taken down. However, as
long as systems are diligently updated with the latest patches (and otherwise
protected against known attacks), such an occurence will be rare – zero-day
exploits aren’t that prolific. Also note that as long as the server units are on
disparate platforms, repeat infections from automatic “bots” will be avoided, as
only the unit that already is compromised will be vulnerable to a given exploit7.
6 or by using virutal machines
7 To be fair, this would ultimately require all the software to be devoloped according

to “true” n-version programming [21].

10

Also note that in contrast to a traditional honeypot, the goals of ISH do not
include being penetrated by known exploits – we assume that in a production
system, other measures will be in place that will be able to block known attacks.
Thus, only new, otherwise undetected, and successful8 attacks will cause ISH to
transform a unit to honeypot state.

6.2 Application Areas

ISH would be applicable to business-critical services with high availability and
security requirements. However, we realize that network administrators already
have their hands full with managing the current crop of firewalls and intrusion
detection systems. Furthermore, the ISH system also represents added cost for
hardware (in the worst case multiplying the initial procurement costs by seven),
software development (at least three-fold) and maintenance.

Thus, we presume that ISH would be of greatest interest to managed se-
curity providers for customers who offer such business-critical services to their
customers. The managed security provider could deploy ISH to provide the ser-
vice in question, but would additionally use it as a complement to their existing
efforts in detecting new attacks/exploits. This would be of benefit not only to the
current customer, but also to other customers of the managed service provider
and to the community in general.

For the managed security provider, ISH would represent an improvement over
a conventional honeypot or honeynet, in that the deployed ISH system would be
a “real” system until it is successfully attacked.

7 Further work

Our prototype ISH implementation is a very simple web server; a logical exten-
sion would be to implement a system for a generic service. There are also ample
opportunities for less trivial extensions.

7.1 Code Integrity

Even though we practice defense in depth to detect intruders who do not trigger
a voting anomaly, there still remains the challenge of detecting intrusions that
do not alter the file system of the affected unit.

In a very interesting approach presented by Wang and Dasgupta [22], it is
possible to verify the correctness of all static parts of a Linux kernel by employing
a special autonomus “co-computer” (a single-board computer with access to
the system bus). We believe this solution could be adapted to ISH to increase
protection against arracks that leave the file system intact.

8 Attacks that are unsuccessful, either due to blocking by other mechanisms, or because
the underlying system is not vulnerable to the particular attack, will not trigger
honeypot deployment.

11

7.2 Attacker Separation

It would have been preferable to identify the attacker based solely on the session
generating the exploit traffic, and used dynamically configured switches to route
traffic from/to the attacker along a separate path. This would also allow us to
separate an attacker from legitimate traffic originating from the attacker’s IP
address.

7.3 Darkhost Voter

Although we have strived to keep the proxy/voting unit simple, it still has an
uncomfortable level of complexity when considering that it represents a single
point of failure with respect to security.

If we can put the voting mechanism on an “invisible” (i.e. dark) host without
an IP address, we leave only a very simple proxy and query replicator on the
publicly available host, while at the same time ensuring that the vital (and
much more complex) voting unit cannot be adressed directly from the internet.
The darkhost would have to craft packets with the proxy unit as originating
address; this would require some fancy footwork with respect to ensuring that
TCP sequence numbers etc. are properly maintained.

8 Conclusion

We have presented ISH, a prototype system that through duplication of server
units detects new platform-specific attacks, and enhances the survivability of the
system as a whole by transforming the compromised unit to a state of honeypot,
while the uncompromised units continue to deliver service to legitimate users.

Acknowledgements

The research for this paper was partly carried out as part of Mr. Nyre’s MSc
thesis at NTNU, with subsequent additional testing by Mr. Sørensen. Further
information is available at http://www.sislab.no/survive.html.

We are very grateful to Torgeir Broen for being allowed to use the MPITS
code base as a starting point for our own efforts.

References

1. M. J. Ranum, “Thinking about firewalls,” in Proceedings of Second International
Conference on Systems and Network Security and Management (SANS-II), April
1994.

2. L. Spitzner, Honeypots – Tracking Hackers. Addison-Wesley, 2003, ISBN 0-321-
10895-7.

12

3. The Honeynet Project, Know Your Enemy – Revealing the Security Tools, Tactics
and Motives of the Blachat Community. Addison-Wesley, 2002, ISBN 0-201-74613-
1.

4. P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling, “The nepenthes
platform: An efficient approach to collect malware,” in Recent Advances in Intru-
sion Detection, Proceedings, ser. Lecture Notes in Computer Science, 2006, vol.
4219, pp. 165–184.

5. F. Pouget and T. Holz, “A pointillist approach for comparing honeypots,” in De-
tection of Intrusions and Malware, and Vulnerability Assessment, Proceedings, ser.
Lecture Notes in Computer Science, 2005, vol. 3548, pp. 51–68.

6. “The HoneyNet Project.” [Online]. Available: http://www.honeynet.org
7. B. Cheswick, “An evening with Berferd in which a cracker is lured, endured, and

studied,” in USENIX Conference Proceedings. USENIX, 1992, pp. 163 – 174.
8. C. Stoll, “Stalking the wily hacker,” Communications of the ACM, vol. 31, no. 5,

pp. 484–497, May 1988.
9. M. G. Jaatun and G. Hallingstad, “Techniques for increasing survivability in NATO

CIS,” in proceedings of the 1st European Survivability Workshop, Köln-Wahn, Ger-
many, Feb. 2002.

10. J.-C. Laprie, “Dependable computing and fault-tolerance : Concepts and terminol-
ogy,” in proceedings of the 15th International Symposium on Fault-Tolerant Com-
puting (FTCS-15), 1985, pp. 2–11.

11. R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson, T. Longstaff, and N. R.
Mead, “Survivable network systems: An emerging discipline,” Sofware Engineer-
ing Institute (SEI), Carnegie Mellon University, Tech. Rep. CMU/SEI-97-TR-013,
1997-1999.

12. F. Wang, F. Gong, C. Sargor, Goseva-Popstojana, K. Trivedi, and F. Jou, “SITAR -
a Scalable Intrusion-Tolerant Architecture for Distributed Services,” in proceedings
of the 2001 IEEE Workshop on Information Assurance and Security, United States
Military Academy, West Point, NY, June 2001, pp. 38–45.

13. “Bait and Switch Honeypot.” [Online]. Available: http://baitnswitch.sourceforge.
net/

14. “Snort - a network intrusion detection system.” [Online]. Available: http:
//www.snort.org

15. K. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and
A. Keromytis, “Detecting targeted attacks using shadow honeypots,” ICS-FORTH,
Crete, Greece, Tech. Rep. TR-348, Jan. 2005.

16. T. Broen, “Innbruddstolerante systemer: En eksperimentell utprøving og vurder-
ing,” Master’s thesis, University of Oslo, Norway, May 2005.

17. G. Hoglund and J. Butler, Rootkits, 1st ed. Addison-Wesley, 2006.
18. Samhain Labs, “The Samhain file integrity system user manual,” available from

http://la-samhna.de/samhain/manual.
19. R. G. Bace, Intrusion Detection. Macmillian Technical Publishing, 2000.
20. S. Northcutt and J. Novak, Network Intrusion Detection, 3rd ed. New Riders

Publishing, 2002.
21. N. Ashrafi, O. Berman, and M. Cutler, “Optimal-design of large software-systems

using n-version programming,” IEEE Transactions on Reliability, vol. 43, no. 2,
pp. 344–350, 1994.

22. L. Wang and P. Dasgupta, “Kernel and Application Integrity Assurance: Ensuring
Freedom from Rootkits and Malware in a Computer System,” in Proceedings of
the Third IEEE International Symposium on Security in Networks and Distributed
Systems (to appear), 2007.

