
1ICT

Heterogeneous Spline Surface
Intersections

Sverre Briseid (sbr@sintef.no)

Trond Hagen (trr@sintef.no)

Geometric and Physical Modeling 2009, San Francisco

2ICT

Outline

 Heterogeneous architectures

 OpenMP & CUDA

 Spline surface intersection/self-intersection

 Multi-core approach

 Results

 Conclusions

3ICT

Heterogeneous architectures

 More than one type of architecture in a system
 Multi-core CPU
 Specialized accelerated cores

 Different programming models
 Sequential algorithms a bottleneck
 Split problem into independent task, run in parallel
 Utilize the strengths of the different architectures

4ICT

Multi-core CPU & OpenMP

int i, m=10, N=1000
double A[N], B[N], C[N];
#pragma omp parallel for
for (i=0; i<N; i++) {
A[i] = B[i] + m*C[i];
}

 2-4 cores in modern desktop computers
 Requires parallel algorithms
 OpenMP

 API for shared memory parallel programming
 C/C++
 Compiler pragmas
 Easy syntax

5ICT

GPU & CUDA

 GPU (Graphics Processing Unit)
All modern computers has one
Massively parallel – Up to 500 cores
Computational power: Up to 2 teraflops
32-bit precision at full speed – 64-bit precision at half speed

 CUDA
API for using NVIDIA graphics cards
GPU computing for the masses
Syntax based on C/C++
Computational kernels

6ICT

Spline surface

 Parametric
 Controlled by a regular

polygon mesh

7ICT

Self-intersection - Singularities

8ICT

Transversal and tangential
intersections

9ICT

Multi-core approach
 Zoom in on problematic areas using parallel resources, analyze

 Let the CPU trace out the intersection curves in a sequential manner

 Overlap-test

 Massive uniform subdivision down to Bezier level. Level n => 2^n
Bezier segments in each parameter direction

 Create axis aligned bounding boxes

 Box-box overlap-test

10ICT

 Intersection-analysis
 Subdivide normal surface to the same level as the surface
 Check if sub-patches contain the origin
 Create direction cones for the bezier normal patches
 Check if cone span is less than pi => no self-intersection
 Check all pairs of normal cones whether they overlap =>

possibly a tangential intersection, given that bounding boxes
overlap

11ICT

The intersection-test modules
1.Spline surface refinement

 Localize the possible intersections

2.Bounding box generation
 Axis aligned boxes containing the Bezier subpatches

3.Box-box overlap-test
 See if two Bezier subpatches may overlap

4.Normal surface refinement
 Refine to the same level as the spline surface

5.Degeneracy-test
 Check if bounding boxes of refined normal surface contain the origin

6.Normal cone generation
 Compute the span of the normals for each Bezier subpatch

7.Cone-cone overlap-test
 Check if we may have a tangential intersection

12ICT

Speedups for subdivision levels 5-8
Input: Cubic Bezier surface &

corresponding quintic normal surface

0

1

2

3

4

5

6

7

8

0 cores 1 core 2 cores 3 cores 4 cores GPU

Level 5

Level 6

Level 7

Level 8

13ICT

Kernel speedups – subdivision level 8

Kernel 1 – Surface refinement

14ICT

Kernel speedups – subdivision level 8

Kernel 2 – Bounding box generation

15ICT

Kernel speedups – subdivision level 8

Kernel 3 – Box-box overlap test

16ICT

Kernel speedups – subdivision level 8

Kernel 4 – Normal surface refinement

17ICT

Kernel speedups – subdivision level 8

Kernel 5 – Normal surface degeneracy test

18ICT

Kernel speedups – subdivision level 8

Kernel 6 – Normal cone generation

19ICT

Kernel speedups – subdivision level 8

Kernel 7 – Cone-cone overlap test

20ICT

Pipeline – Heterogeneous
parallelization

Surface

Surface
refinement

Bounding box
generation

Normal
surface

Normal surface
refinement

Degeneracy test Normal cone
generation

Cone-cone
overlap test

1

Box-box
overlap test

2

3

4

5 6

7

21ICT

Conclusions

 Heterogeneous intersections a good idea?
 It does seems like it

 What about the algorithmic approach?
 Well suited for difficult cases
 Scales well on the CPU for most of the kernels
 Good speedup on the GPU
 Parallel pipeline allows load balancing between CPU & GPU

 Is the algorithm futureproof?
 Future processors will get even more parallel
 Faster CPU-GPU inter-communication reduces overhead
 Heterogeneous algorithms will get even more important

22ICT

Thank you for your attention!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

