Real time Ray-Casting of Algebraic Surfaces

Martin Reimers Johan Seland

Center of Mathematics for Applications University of Oslo

Workshop on Computational Method for Algebraic Spline Surfaces Thursday 13. September

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Introduction

Raycasting

An algebraic surface is the zero set of a polynomial

$$f(x,y,z) = \sum_{0 \le i+j+k \le d} f_{ijk} x^i y^j z^k = 0.$$

Raycasting amounts to "shooting" rays inside a view frustum (VF) and determine if they intersect the surface.

- Can miss thin features
- Conceptually "easy"
- Embarrassingly parallel

Introduction

For a ray $\mathbf{r}_{pq}(t)$ raycasting amounts to finding the smallest $t \in [0,1]$ s. t.

$$f((1-t)\mathbf{n}_{pq}+t\mathbf{f}_{pq})=f(\mathbf{r}_{pq}(t))=0.$$

We would like to work on a univariate polynomial in Bernstein form,

$$f(\mathbf{r}_{pq}(t)) = \sum_{k=0}^{d} c_{pqk} B_k^d(t) = 0.$$

- ► Assume a screen resolution of (m+1) × (n+1) pixels.
- Pixel (p, q) corresponds to a ray through p and the pixel with coordinates (p/m, q/n).

Overview

Our algorithm thus consist of the following steps:

1. Compute ray coefficients $C = (c_{pqk})$

Introduction

Overview

Our algorithm thus consist of the following steps:

- 1. Compute ray coefficients $C = (c_{pqk})$
- 2. For each pixel (p, q)
 - 2.1 Seek the smallest root $t \in [0, 1]$ of $f(\mathbf{r}_{pq}(t))$.
 - 2.2 Compute a color for pixel (p, q).

Introduction

Overview

Our algorithm thus consist of the following steps:

- 1. Compute ray coefficients $C = (c_{pqk})$
- 2. For each pixel (p, q)
 - 2.1 Seek the smallest root $t \in [0, 1]$ of $f(\mathbf{r}_{pq}(t))$.
 - 2.2 Compute a color for pixel (p, q).
- 3. Optionally, perform postprocessing
 - 3.1 Detect singularities
 - 3.2 Antialias

The View Frustum Form

Idea: Parameterize the view frustum over the unit cube, s. t. (u, v, 0) and (u, v, 1) maps to points on the near and far plane.

A ray in the view frustum is given by: $\mathbf{r}_{pq}(w) = L(p/m, q/n, w)$. We define the View Frustum Form to be:

$$g = f \circ L : [0,1]^3 \to \mathbb{R}.$$

イロト イ団ト イヨト イヨト

Ray coefficient computation

Using the composition $g = f \circ L$,

$$f(L(\frac{p}{m}, \frac{q}{n}, w)) = g(\frac{p}{m}, \frac{q}{n}, w) = \sum_{i,j,k=0}^{d,d,d} g_{ijk} B_i^d(\frac{p}{m}) B_j^d(\frac{q}{n}) B_k^d(w)$$
$$= \sum_{k=0}^d \underbrace{\left(\sum_{i,j=0}^{d,d} g_{ijk} B_i^d(\frac{p}{m}) B_j^d(\frac{q}{n})\right)}_{C_{pqk}} B_k^d(w).$$

Yielding univariate ray equations of degree d,

$$f(\mathbf{r}_{pq}(t)) = \sum_{k=0}^{d} c_{pqk} B_{k}^{d}(t).$$

Centre of Mathematics for

Ray coefficient computation

Computing VFF Coefficients

The VFF coefficients $G = (g_{ijk})$ can be found in a number of ways:

- Blossoming [DeRose et.al. 1993].
- ▶ Recursion [Sederberg/Zundel 1989].
- Interpolation (our preferred approach).
 - Choose $(d + 1)^3$ distinct interpolation points (u_p, v_q, w_r) on a grid.
 - Solve

$$\sum_{i,j,k=0}^{d,d,d} g_{ijk} \underbrace{B_i^d(u_p)}_{\Omega_p} \underbrace{B_j^d(u_q)}_{\Omega_p} \underbrace{B_j^d(u_r)}_{\Omega_r} = f(L(u_p, v_q, w_r))$$

イロン 不通 と 不通 と 不通 と 一道

• Needs inverse of Bernstein collocation matrices $\Omega_p = (B_i^d(u_p))$.

- Use Chebyshev interpolation points for stability.
- Not dependent on the representation of *f*.

Ray coefficient computation

Benefits of the View Frustum Form

▶ For fixed *m*, *n*, *d* − precompute basis functions

•
$$C_k = MG_kN^T$$
, $M = (B_i^d(p/m)), N = (B_j^d(q/n)).$

- Can pre-evaluate inverse of collocation matrix Ω^{-1} .
- Reduce algorithmic complexity
 - Evaluation of c_{pqk} requires $(d + 1)^2$ muls/adds.
 - Evaluation of f requires (d+1)(d+2)(d+3)/6 muls/adds.

Univariate ray equations for root finding.

$$f(\mathbf{r}_{pq}(t)) = \sum_{k=0}^{d} c_{pqk} B_k^d(t)$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

B-Spline Based Root Finding

The univariate ray equations can be expressed as B-Splines.

Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

B-Spline Based Root Finding

The univariate ray equations can be expressed as B-Splines.

Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

B-Spline Based Root Finding

The univariate ray equations can be expressed as B-Splines.

Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

B-Spline Based Root Finding

The univariate ray equations can be expressed as B-Splines.

Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

B-Spline Based Root Finding

The univariate ray equations can be expressed as B-Splines.

Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

B-Spline Based Root Finding

The univariate ray equations can be expressed as B-Splines.

Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

B-Spline Based Root Finding

The univariate ray equations can be expressed as B-Splines.

Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

B-Spline Based Root Finding

The univariate ray equations can be expressed as B-Splines.

Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

Properites of rootfinder

- Stable computations (convex combinations)
- Similar to Newtons, but unconditionally convergent to smallest zero (no guessing)
- Quadratic convergence rate to simple zeros
- Recent extension [Mørken/Reimers] converge quadratically to multiple zeros
- Similar method [Reimers] for computing e.g. $\max f(x)$ or $\min |f(x)|$

イロン 不問と 不同と 不同と

Root finding variations

The knot insertion framework is very flexible, and allow for variations:

- Can emulate Bézier subdivision by inserting d knots at a time. (Lane/Risenfeld, Rockwood, Schneider).
- "Preconditioning", insert knots from neighboring rays.
- Estimate root multiplicity and detect roots of n'th derivative. (Strictly alternating control polygon.)
- Detect critical points, use as start value to search for singularities.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ト ・

Singularity detection

- 1. For misses, find smallest absolute value along ray, w_0 .
- 2. Flag as singularity if:

 $\begin{aligned} |g(p/m,q/n,w_0)| + \\ & \parallel \nabla g(p/m,q/n,w_0) \parallel \\ & < \epsilon. \end{aligned}$

- ► How to determine *e*?
- Vulnerable to scaling.

Antialiasing

Due to discrete sampling, aliasing effects will occur.

- Suppose neighboring pixels p₁, p₂ differ.
 - I.e. $\nabla \mathbf{p}_1 \cdot \nabla \mathbf{p}_2 < \epsilon$.
- ► We seek a point s on the separating curve between p₁ and p₂.
- $color(\mathbf{p}_1) :=$ $(1.0 - \alpha) color(\mathbf{p}_1) + \alpha color(\mathbf{p}_2)$

イロト イヨト イヨト イヨト

Antialiasing II

At silhouettes

$$g(\mathbf{s}) = 0$$
 and $g_w(\mathbf{s}) = 0$.

Use Newton methods on

$$m{h}(v,w) := \ (g(m{s}),g_w(m{s})) = (0,0).$$

- Restrict to plane between $\mathbf{p}_1, \mathbf{p}_2$.
- ► If leaving domain, search for g(s) = 0.

Gallery and performance

・ロト・日本・日本・日本・日本・今日・

Future work

- Interval spline methods:
 - Topological correctness.
 - Empty-space skipping.
- Bounding box calculations
- Efficient data structures for splines

Thank you for listening

Questions?

Contact info

- Johan S. Seland
- <johan.seland@sintef.no>
- ▶ Tel: +47 97 18 16 14

An unconditionally convergent method for computing zeros of splines and polynomials

Math. of Comp. 76, 2006

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F_t

Repeat for $j = 0, 1, \cdots$ until convergence or $F_{\mathbf{t}^j}$ has no zeros

1. Find the smallest value x_{j+1} such that $F_{t^j}(x_{j+1}) = 0$ or stop

2. Let $\mathbf{t}^{j+1} = \mathbf{t}^j \cup \{x_{j+1}\}$ and form $F_{\mathbf{t}^{j+1}}$

イロン 不問と 不同と 不同と

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F_t

Repeat for $j = 0, 1, \cdots$ until convergence or $F_{\mathbf{t}^j}$ has no zeros

1. Find the smallest value x_{j+1} such that $F_{t^j}(x_{j+1}) = 0$ or stop

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F_t

Repeat for $j = 0, 1, \cdots$ until convergence or $F_{\mathbf{t}^j}$ has no zeros

1. Find the smallest value x_{j+1} such that $F_{t^j}(x_{j+1}) = 0$ or stop

2. Let $\mathbf{t}^{j+1} = \mathbf{t}^j \cup \{x_{j+1}\}$ and form $F_{\mathbf{t}^{j+1}}$

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F_t

Repeat for $j = 0, 1, \cdots$ until convergence or $F_{\mathbf{t}^j}$ has no zeros

1. Find the smallest value x_{j+1} such that $F_{t^j}(x_{j+1}) = 0$ or stop

2. Let $\mathbf{t}^{j+1} = \mathbf{t}^j \cup \{x_{j+1}\}$ and form $F_{\mathbf{t}^{j+1}}$

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F_t

Repeat for $j = 0, 1, \cdots$ until convergence or $F_{\mathbf{t}^j}$ has no zeros

1. Find the smallest value x_{j+1} such that $F_{t^j}(x_{j+1}) = 0$ or stop

2. Let $\mathbf{t}^{j+1} = \mathbf{t}^j \cup \{x_{j+1}\}$ and form $F_{\mathbf{t}^{j+1}}$

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F_t

Repeat for $j = 0, 1, \cdots$ until convergence or $F_{\mathbf{t}^j}$ has no zeros

1. Find the smallest value x_{j+1} such that $F_{t^j}(x_{j+1}) = 0$ or stop

2. Let $\mathbf{t}^{j+1} = \mathbf{t}^j \cup \{x_{j+1}\}$ and form $F_{\mathbf{t}^{j+1}}$

・ロト・日本・日本・日本・日本・今日・

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F_t

Repeat for $j = 0, 1, \cdots$ until convergence or $F_{\mathbf{t}^j}$ has no zeros

1. Find the smallest value x_{j+1} such that $F_{t^j}(x_{j+1}) = 0$ or stop

2. Let $\mathbf{t}^{j+1} = \mathbf{t}^j \cup \{x_{j+1}\}$ and form $F_{\mathbf{t}^{j+1}}$

・ロト・西ト・ヨト・ヨー うへの

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F_t

Repeat for $j = 0, 1, \cdots$ until convergence or $F_{\mathbf{t}^j}$ has no zeros

1. Find the smallest value x_{j+1} such that $F_{t^j}(x_{j+1}) = 0$ or stop

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F_t

Repeat for $j = 0, 1, \cdots$ until convergence or $F_{\mathbf{t}^j}$ has no zeros

1. Find the smallest value x_{j+1} such that $F_{t^j}(x_{j+1}) = 0$ or stop

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F_t

Repeat for $j = 0, 1, \cdots$ until convergence or $F_{\mathbf{t}^j}$ has no zeros

1. Find the smallest value x_{j+1} such that $F_{t^j}(x_{j+1}) = 0$ or stop

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F_t

Repeat for $j = 0, 1, \cdots$ until convergence or $F_{\mathbf{t}^j}$ has no zeros

1. Find the smallest value x_{j+1} such that $F_{t^j}(x_{j+1}) = 0$ or stop

