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Introduction

Raycasting
An algebraic surface is the zero set of a polynomial
fly,2)= Y  fux'y/z¥=0.
0<i+j+k<d

Raycasting amounts to “shooting” rays inside a view frustum (VF) and
determine if they intersect the surface.

» Can miss thin features

» Conceptually “easy”

» Embarrassingly parallel
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Introduction

For a ray rpq(t) raycasting amounts to finding the smallest t € [0,1] s. t.
F((1 = t)npg + tfpg) = f(rpg(t)) = 0.

We would like to work on a univariate polynomial in Bernstein form,

F(rpq(t Z coak B (t) = 0.
2 2
\'bo \’bo
] R
@ &P
» Assume a screen resolution of N
(m+1) x (n+ 1) pixels. ¥pq(E
» Pixel (p, q) corresponds to a ray R — — P

through p and the pixel with %3{
coordinates (p/m, q/n). e
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Introduction

Overview

Our algorithm thus consist of the following steps:

1. Compute ray coefficients C = (cpqk) o o
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Introduction

Overview

Our algorithm thus consist of the following steps:

1. Compute ray coefficients C = (cpqk)
2. For each pixel (p, q)
2.1 Seek the smallest root t € [0,1] of

f(rpq(t))-

2.2 Compute a color for pixel (p, q). o
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Introduction

Overview

Our algorithm thus consist of the following steps:

1. Compute ray coefficients C = (cpq«)
2. For each pixel (p, q)
2.1 Seek the smallest root t € [0, 1] of

f(rpg(t)).

2.2 Compute a color for pixel (p, q).
3. Optionally, perform postprocessing

3.1 Detect singularities
3.2 Antialias
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Ray coefficient computation

The View Frustum Form

|dea: Parameterize the view frustum over the unit cube, s. t. (u,v,0) and
(u,v,1) maps to points on the near and far plane.

> <

w <t

A ray in the view frustum is given by: rpq(w) = L(p/m, q/n, w).
We define the View Frustum Form to be:

g=fol:[0,1® = R.
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Ray coefficient computation

Using the composition g = f o L,

d,d,d

P q q
A T wy =g 9wy = Y aubt(2)87(%)BY(w)
ij,k=0
d
3 (3 e 2ED) ) st
k=0 \ij=0
Coak

Yielding univariate ray equations of degree d,

f(rpq(t Z Cpqk Bk
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Ray coefficient computation

Computing VFF Coefficients

The VFF coefficients G = (gjjx) can be found in a number of ways:
» Blossoming [DeRose et.al. 1993].
» Recursion [Sederberg/Zundel 1989].

» Interpolation (our preferred approach).
» Choose (d + 1)3 distinct interpolation points (up, v4, w;) on a grid.

» Solve o
d,d,d N
D B (up) B (ua) B (1) = F(L(up, vay 1))
ij,k=0 H/—/
= QP Qr

» Needs inverse of Bernstein collocation matrices Q, = (B (u,)).
» Use Chebyshev interpolation points for stability.
» Not dependent on the representation of f.
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Ray coefficient computation

Benefits of the View Frustum Form

» For fixed m, n, d — precompute basis functions
~ Go= MGNT, M= (BY(p/m)).N = (B!(a/n)).
» Can pre-evaluate inverse of collocation matrix Q1.
» Reduce algorithmic complexity
» Evaluation of c,qk requires (d + 1)? muls/adds.
» Evaluation of f requires (d + 1)(d + 2)(d + 3)/6 muls/adds.

» Univariate ray equations for root finding.

f(rpq(t Z Cpqk Bk
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Root finding

B-Spline Based Root Finding

The univariate ray equations can be expressed as B-Splines.
Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

Second order convergence for simple roots [Mgrken and Reimers, 2006].
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B-Spline Based Root Finding
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Root finding

B-Spline Based Root Finding

The univariate ray equations can be expressed as B-Splines.
Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

Second order convergence for simple roots [Mgrken and Reimers, 2006].
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Root finding

Properites of rootfinder

v

Stable computations (convex combinations)

v

Similar to Newtons, but unconditionally convergent to smallest zero
(no guessing)

v

Quadratic convergence rate to simple zeros

v

Recent extension [Mgrken/Reimers] converge quadratically to
multiple zeros

v

Similar method [Reimers] for computing e.g. max f(x) or min |f(x)|
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Root finding

Root finding variations

The knot insertion framework is very flexible, and allow for variations:
» Can emulate Bézier subdivision by inserting d knots at a time.
(Lane/Risenfeld, Rockwood, Schneider).
> “Preconditioning”, insert knots from neighboring rays.
» Estimate root multiplicity and detect roots of n'th derivative.
(Strictly alternating control polygon.)
» Detect critical points, use as start value to search for singularities.
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Postprocessing

Singularity detection

1. For misses, find smallest
absolute value along ray, wy.

2. Flag as singularity if:

lg(p/m;q/n, wo)| +
| Ve(p/m,q/n, wo) ||
< €.

» How to determine €?

» Vulnerable to scaling.

x> —y3=0.
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Postprocessing

Antialiasing

Due to discrete sampling, aliasing effects will occur.

» Suppose neighboring pixels p1, p2 Vo P>
differ. T
> le. Vpi-Vpy <e. S'/houett " s=(uv)
» We seek a point s on the separating C T
curve between p; and ps. «
> Co/or(pl) = S > DO u
P1

(1.0 — a) color(p1) + « color(p2)
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Postprocessing

Antialiasing Il
At silhouettes

g(s) =0and gy (s) = 0.

» Use Newton methods on

h(v,w) =
(g(s),gw(s)) = (0,0).

> Restrict to plane between p1, p2.

» If leaving domain, search for
g(s) =0.
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Postprocessing

Gallery and performance
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Postprocessing

Future work

» Interval spline methods:

» Topological correctness.
» Empty-space skipping.

» Bounding box calculations

» Efficient data structures for splines
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Postprocessing

Thank you for listening

Questions?

Contact info
» Johan S. Seland

» <johan.seland@sintef.no>
> Tel: +47 97 18 16 14
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Postprocessing

ﬁ Mgrken and Reimers
An unconditionally convergent method for computing zeros of splines

and polynomials
Math. of Comp. 76, 2006
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Postprocessing

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F;

Repeat for j = 0,1,--- until convergence or F,; has no zeros

1. Find the smallest value xj11 such that F(xj4+1) = 0 or stop
2. Let 1 =t/ U {x;411} and form Fyu

0.5
0% /X

-0.25

-05

-0.75

Error |x; — z|: 1.4le-1
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Postprocessing

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F;
Repeat for j = 0,1,--- until convergence or F,; has no zeros
1. Find the smallest value xj11 such that F(xj4+1) = 0 or stop

2. Let 1 =t/ U {x;411} and form Fyu

05

0.25

-0.25

-05

-0.75

Error |x; — z|: 1.4le-1 3.48e-2
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Postprocessing

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F;
Repeat for j = 0,1,--- until convergence or F,; has no zeros
1. Find the smallest value xj11 such that F(xj4+1) = 0 or stop

2. Let 1 =t/ U {x;411} and form Fyu

05

0.25

-0.25

-05

-0.75

Error |x; — z|: 1.4le-1 3.48e-2 1.3le-2
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Postprocessing

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F;
Repeat for j = 0,1,--- until convergence or F,; has no zeros
1. Find the smallest value xj11 such that F(xj4+1) = 0 or stop

2. Let 1 =t/ U {x;411} and form Fyu
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0.25

-0.25

-05

-0.75

Error \XJ- — z|: 1.4le-1l 3.48e-2 1.3le-2 1.26e-3
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Postprocessing

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F;
Repeat for j = 0,1,--- until convergence or F,; has no zeros
1. Find the smallest value xj11 such that F(xj4+1) = 0 or stop

2. Let 1 =t/ U {x;411} and form Fyu

05

0.25

-0.25

-05

-0.75

Error \XJ- — z|: 1.4le-1 3.48e-2 1.3le-2 1.26e-3 1.46e-4
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Postprocessing

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F;
Repeat for j = 0,1,--- until convergence or F,; has no zeros
1. Find the smallest value xj11 such that F(xj4+1) = 0 or stop

2. Let 1 =t/ U {x;411} and form Fyu

05

0.25

-0.25

-05

-0.75
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Postprocessing

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F;
Repeat for j = 0,1,--- until convergence or F,; has no zeros
1. Find the smallest value xj11 such that F(xj4+1) = 0 or stop

2. Let 1 =t/ U {x;411} and form Fyu

05

0.25

-0.25

-05

-0.75

Error \XJ- — z|: 1.4le-1 3.48e-2 1.3le-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8
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Postprocessing

Zero Algorithm [MrkenReimers 2007]

Idea: Repeated knot insertion at zeros of F;
Repeat for j = 0,1,--- until convergence or F,; has no zeros
1. Find the smallest value xj11 such that F(xj4+1) = 0 or stop

2. Let 1 =t/ U {x;411} and form Fyu

05

0.25

-0.25

-05

-0.75

Error \XJ- — z|: 1.4le-1 3.48e-2 1.3le-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8 1.61le-12
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Postprocessing
Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of F;
Repeat for j = 0,1,--- until convergence or F,; has no zeros

1. Find the smallest value xj11 such that F(xj4+1) = 0 or stop
2. Let 1 =t/ U {x;411} and form Fyu

05

0.25

-0.25

-05

-0.75

Error \XJ- — z|: 1.4le-1 3.48e-2 1.31e-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8 1.6le-12 2.30e:16

SR Centre of
UNIVERSITETET Mathematics for
s 1 0SLO -

s Applications




Postprocessing
Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of F;
Repeat for j = 0,1,--- until convergence or F,; has no zeros

1. Find the smallest value xj11 such that F(xj4+1) = 0 or stop
2. Let 1 =t/ U {x;411} and form Fyu

05

0.25

-0.25

-05

-0.75

Error \XJ- — z|: 1.4le-1 3.48e-2 1.3le-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8 1.6le-12 2.30e-16 2.08e-24
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Postprocessing
Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of F;
Repeat for j = 0,1,--- until convergence or F,; has no zeros

1. Find the smallest value xj11 such that F(xj4+1) = 0 or stop
2. Let 1 =t/ U {x;411} and form Fyu

05

0.25

-0.25

-05

-0.75

Error |x; — z|: 1.4le-1 3.48e-2 1.3le-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8 1.6le-12 2.30e-16 2.08e-24
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