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Introduction

Raycasting
An algebraic surface is the zero set of a polynomial

f (x , y , z) =
∑

0≤i+j+k≤d

fijkx iy jzk = 0.

Raycasting amounts to “shooting” rays inside a view frustum (VF) and
determine if they intersect the surface.

I Can miss thin features

I Conceptually “easy”

I Embarrassingly parallel



Introduction

For a ray rpq(t) raycasting amounts to finding the smallest t ∈ [0, 1] s. t.

f ((1− t)npq + tfpq) = f (rpq(t)) = 0.

We would like to work on a univariate polynomial in Bernstein form,

f (rpq(t)) =
d∑

k=0

cpqkBd
k (t) = 0.

I Assume a screen resolution of
(m + 1)× (n + 1) pixels.

I Pixel (p, q) corresponds to a ray
through p and the pixel with
coordinates (p/m, q/n).
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Introduction

Overview

Our algorithm thus consist of the following steps:

1. Compute ray coefficients C = (cpqk)

2. For each pixel (p, q)

2.1 Seek the smallest root t ∈ [0, 1] of
f (rpq(t)).

2.2 Compute a color for pixel (p, q).

3. Optionally, perform postprocessing

3.1 Detect singularities
3.2 Antialias
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Ray coefficient computation

The View Frustum Form
Idea: Parameterize the view frustum over the unit cube, s. t. (u, v , 0) and
(u, v , 1) maps to points on the near and far plane.
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A ray in the view frustum is given by: rpq(w) = L(p/m, q/n,w).
We define the View Frustum Form to be:

g = f ◦ L : [0, 1]3 → R.



Ray coefficient computation

Using the composition g = f ◦ L,

f (L(
p

m
,
q

n
,w)) = g(

p

m
,
q

n
,w) =

d ,d ,d∑
i ,j ,k=0

gijkBd
i (

p

m
)Bd

j (
q

n
)Bd

k (w)

=
d∑

k=0

 d ,d∑
i ,j=0

gijkBd
i (

p

m
)Bd

j (
q

n
)


︸ ︷︷ ︸

cpqk

Bd
k (w).

Yielding univariate ray equations of degree d ,

f (rpq(t)) =
d∑

k=0

cpqkBd
k (t).



Ray coefficient computation

Computing VFF Coefficients

The VFF coefficients G = (gijk) can be found in a number of ways:

I Blossoming [DeRose et.al. 1993].

I Recursion [Sederberg/Zundel 1989].
I Interpolation (our preferred approach).

I Choose (d + 1)3 distinct interpolation points (up, vq,wr ) on a grid.
I Solve

d,d,d∑
i,j,k=0

gijkB
d
i (up)︸ ︷︷ ︸
Ωp

Ωq︷ ︸︸ ︷
Bd

j (uq)B
d
j (ur )︸ ︷︷ ︸
Ωr

= f (L(up, vq,wr ))

I Needs inverse of Bernstein collocation matrices Ωp = (Bd
i (up)).

I Use Chebyshev interpolation points for stability.
I Not dependent on the representation of f .



Ray coefficient computation

Benefits of the View Frustum Form

I For fixed m, n, d – precompute basis functions
I Ck = MGkN

T , M = (Bd
i (p/m)),N = (Bd

j (q/n)).
I Can pre-evaluate inverse of collocation matrix Ω−1.

I Reduce algorithmic complexity
I Evaluation of cpqk requires (d + 1)2 muls/adds.
I Evaluation of f requires (d + 1)(d + 2)(d + 3)/6 muls/adds.

I Univariate ray equations for root finding.

f (rpq(t)) =
d∑

k=0

cpqkBd
k (t)



Root finding

B-Spline Based Root Finding
The univariate ray equations can be expressed as B-Splines.
Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.
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Second order convergence for simple roots [Mørken and Reimers, 2006].
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Root finding

Properites of rootfinder

I Stable computations (convex combinations)

I Similar to Newtons, but unconditionally convergent to smallest zero
(no guessing)

I Quadratic convergence rate to simple zeros

I Recent extension [Mørken/Reimers] converge quadratically to
multiple zeros

I Similar method [Reimers] for computing e.g. max f (x) or min |f (x)|



Root finding

Root finding variations

The knot insertion framework is very flexible, and allow for variations:

I Can emulate Bézier subdivision by inserting d knots at a time.
(Lane/Risenfeld, Rockwood, Schneider).

I “Preconditioning”, insert knots from neighboring rays.

I Estimate root multiplicity and detect roots of n’th derivative.
(Strictly alternating control polygon.)

I Detect critical points, use as start value to search for singularities.



Postprocessing

Singularity detection

1. For misses, find smallest
absolute value along ray, w0.

2. Flag as singularity if:

|g(p/m, q/n,w0)|+
‖ ∇g(p/m, q/n,w0) ‖

< ε.

I How to determine ε?

I Vulnerable to scaling.

x2 − y3 = 0.



Postprocessing

Antialiasing

Due to discrete sampling, aliasing effects will occur.

I Suppose neighboring pixels p1, p2

differ.
I I.e. ∇p1 · ∇p2 < ε.

I We seek a point s on the separating
curve between p1 and p2.

I color(p1) :=
(1.0− α) color(p1) + α color(p2)

silhouette

p1

p2

s = (u, v)

u

v

n2

α



Postprocessing

Antialiasing II

At silhouettes

g(s) = 0 and gw (s) = 0.

I Use Newton methods on

h(v ,w) :=

(g(s), gw (s)) = (0, 0).

I Restrict to plane between p1,p2.

I If leaving domain, search for
g(s) = 0.



Postprocessing

Gallery and performance



Postprocessing

Future work

I Interval spline methods:
I Topological correctness.
I Empty-space skipping.

I Bounding box calculations

I Efficient data structures for splines



Postprocessing

Thank you for listening

Questions?

Contact info

I Johan S. Seland

I <johan.seland@sintef.no>

I Tel: +47 97 18 16 14



Postprocessing

Mørken and Reimers
An unconditionally convergent method for computing zeros of splines
and polynomials
Math. of Comp. 76, 2006



Postprocessing

Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of Ft

Repeat for j = 0, 1, · · · until convergence or Ftj has no zeros

1. Find the smallest value xj+1 such that Ftj (xj+1) = 0 or stop

2. Let tj+1 = tj ∪ {xj+1} and form Ftj+1
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Error |xj − z|: 1.41e-1

3.48e-2 1.31e-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8 1.61e-12 2.30e-16 2.08e-24
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