
Real time Ray-Casting of Algebraic Surfaces

Martin Reimers Johan Seland

Center of Mathematics for Applications
University of Oslo

Workshop on Computational Method for Algebraic Spline Surfaces
Thursday 13. September

Introduction

Raycasting
An algebraic surface is the zero set of a polynomial

f (x , y , z) =
∑

0≤i+j+k≤d

fijkx iy jzk = 0.

Raycasting amounts to “shooting” rays inside a view frustum (VF) and
determine if they intersect the surface.

I Can miss thin features

I Conceptually “easy”

I Embarrassingly parallel

Introduction

For a ray rpq(t) raycasting amounts to finding the smallest t ∈ [0, 1] s. t.

f ((1− t)npq + tfpq) = f (rpq(t)) = 0.

We would like to work on a univariate polynomial in Bernstein form,

f (rpq(t)) =
d∑

k=0

cpqkBd
k (t) = 0.

I Assume a screen resolution of
(m + 1)× (n + 1) pixels.

I Pixel (p, q) corresponds to a ray
through p and the pixel with
coordinates (p/m, q/n).

p
rpq(t)

fa
r p

la
ne

ne
ar

pl
an

e

Introduction

Overview

Our algorithm thus consist of the following steps:

1. Compute ray coefficients C = (cpqk)

2. For each pixel (p, q)

2.1 Seek the smallest root t ∈ [0, 1] of
f (rpq(t)).

2.2 Compute a color for pixel (p, q).

3. Optionally, perform postprocessing

3.1 Detect singularities
3.2 Antialias

Introduction

Overview

Our algorithm thus consist of the following steps:

1. Compute ray coefficients C = (cpqk)

2. For each pixel (p, q)

2.1 Seek the smallest root t ∈ [0, 1] of
f (rpq(t)).

2.2 Compute a color for pixel (p, q).

3. Optionally, perform postprocessing

3.1 Detect singularities
3.2 Antialias

Introduction

Overview

Our algorithm thus consist of the following steps:

1. Compute ray coefficients C = (cpqk)

2. For each pixel (p, q)

2.1 Seek the smallest root t ∈ [0, 1] of
f (rpq(t)).

2.2 Compute a color for pixel (p, q).

3. Optionally, perform postprocessing

3.1 Detect singularities
3.2 Antialias

Ray coefficient computation

The View Frustum Form
Idea: Parameterize the view frustum over the unit cube, s. t. (u, v , 0) and
(u, v , 1) maps to points on the near and far plane.

p

fa
r p

la
ne

ne
ar

pl
an

e

u

v

w

L

A ray in the view frustum is given by: rpq(w) = L(p/m, q/n,w).
We define the View Frustum Form to be:

g = f ◦ L : [0, 1]3 → R.

Ray coefficient computation

Using the composition g = f ◦ L,

f (L(
p

m
,
q

n
,w)) = g(

p

m
,
q

n
,w) =

d ,d ,d∑
i ,j ,k=0

gijkBd
i (

p

m
)Bd

j (
q

n
)Bd

k (w)

=
d∑

k=0

 d ,d∑
i ,j=0

gijkBd
i (

p

m
)Bd

j (
q

n
)


︸ ︷︷ ︸

cpqk

Bd
k (w).

Yielding univariate ray equations of degree d ,

f (rpq(t)) =
d∑

k=0

cpqkBd
k (t).

Ray coefficient computation

Computing VFF Coefficients

The VFF coefficients G = (gijk) can be found in a number of ways:

I Blossoming [DeRose et.al. 1993].

I Recursion [Sederberg/Zundel 1989].
I Interpolation (our preferred approach).

I Choose (d + 1)3 distinct interpolation points (up, vq,wr) on a grid.
I Solve

d,d,d∑
i,j,k=0

gijkB
d
i (up)︸ ︷︷ ︸
Ωp

Ωq︷ ︸︸ ︷
Bd

j (uq)B
d
j (ur)︸ ︷︷ ︸
Ωr

= f (L(up, vq,wr))

I Needs inverse of Bernstein collocation matrices Ωp = (Bd
i (up)).

I Use Chebyshev interpolation points for stability.
I Not dependent on the representation of f .

Ray coefficient computation

Benefits of the View Frustum Form

I For fixed m, n, d – precompute basis functions
I Ck = MGkN

T , M = (Bd
i (p/m)),N = (Bd

j (q/n)).
I Can pre-evaluate inverse of collocation matrix Ω−1.

I Reduce algorithmic complexity
I Evaluation of cpqk requires (d + 1)2 muls/adds.
I Evaluation of f requires (d + 1)(d + 2)(d + 3)/6 muls/adds.

I Univariate ray equations for root finding.

f (rpq(t)) =
d∑

k=0

cpqkBd
k (t)

Root finding

B-Spline Based Root Finding
The univariate ray equations can be expressed as B-Splines.
Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

Second order convergence for simple roots [Mørken and Reimers, 2006].

Root finding

B-Spline Based Root Finding
The univariate ray equations can be expressed as B-Splines.
Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

Second order convergence for simple roots [Mørken and Reimers, 2006].

Root finding

B-Spline Based Root Finding
The univariate ray equations can be expressed as B-Splines.
Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

Second order convergence for simple roots [Mørken and Reimers, 2006].

Root finding

B-Spline Based Root Finding
The univariate ray equations can be expressed as B-Splines.
Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

Second order convergence for simple roots [Mørken and Reimers, 2006].

Root finding

B-Spline Based Root Finding
The univariate ray equations can be expressed as B-Splines.
Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

Second order convergence for simple roots [Mørken and Reimers, 2006].

Root finding

B-Spline Based Root Finding
The univariate ray equations can be expressed as B-Splines.
Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

Second order convergence for simple roots [Mørken and Reimers, 2006].

Root finding

B-Spline Based Root Finding
The univariate ray equations can be expressed as B-Splines.
Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

Second order convergence for simple roots [Mørken and Reimers, 2006].

Root finding

B-Spline Based Root Finding
The univariate ray equations can be expressed as B-Splines.
Idea: Insert knot(s) at the first intersection of the control polygon. Repeat.

0.2 0.4 0.6 0.8 1.0

-4

-2

2

4

Second order convergence for simple roots [Mørken and Reimers, 2006].

Root finding

Properites of rootfinder

I Stable computations (convex combinations)

I Similar to Newtons, but unconditionally convergent to smallest zero
(no guessing)

I Quadratic convergence rate to simple zeros

I Recent extension [Mørken/Reimers] converge quadratically to
multiple zeros

I Similar method [Reimers] for computing e.g. max f (x) or min |f (x)|

Root finding

Root finding variations

The knot insertion framework is very flexible, and allow for variations:

I Can emulate Bézier subdivision by inserting d knots at a time.
(Lane/Risenfeld, Rockwood, Schneider).

I “Preconditioning”, insert knots from neighboring rays.

I Estimate root multiplicity and detect roots of n’th derivative.
(Strictly alternating control polygon.)

I Detect critical points, use as start value to search for singularities.

Postprocessing

Singularity detection

1. For misses, find smallest
absolute value along ray, w0.

2. Flag as singularity if:

|g(p/m, q/n,w0)|+
‖ ∇g(p/m, q/n,w0) ‖

< ε.

I How to determine ε?

I Vulnerable to scaling.

x2 − y3 = 0.

Postprocessing

Antialiasing

Due to discrete sampling, aliasing effects will occur.

I Suppose neighboring pixels p1, p2

differ.
I I.e. ∇p1 · ∇p2 < ε.

I We seek a point s on the separating
curve between p1 and p2.

I color(p1) :=
(1.0− α) color(p1) + α color(p2)

silhouette

p1

p2

s = (u, v)

u

v

n2

α

Postprocessing

Antialiasing II

At silhouettes

g(s) = 0 and gw (s) = 0.

I Use Newton methods on

h(v ,w) :=

(g(s), gw (s)) = (0, 0).

I Restrict to plane between p1,p2.

I If leaving domain, search for
g(s) = 0.

Postprocessing

Gallery and performance

Postprocessing

Future work

I Interval spline methods:
I Topological correctness.
I Empty-space skipping.

I Bounding box calculations

I Efficient data structures for splines

Postprocessing

Thank you for listening

Questions?

Contact info

I Johan S. Seland

I <johan.seland@sintef.no>

I Tel: +47 97 18 16 14

Postprocessing

Mørken and Reimers
An unconditionally convergent method for computing zeros of splines
and polynomials
Math. of Comp. 76, 2006

Postprocessing

Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of Ft

Repeat for j = 0, 1, · · · until convergence or Ftj has no zeros

1. Find the smallest value xj+1 such that Ftj (xj+1) = 0 or stop

2. Let tj+1 = tj ∪ {xj+1} and form Ftj+1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

Error |xj − z|: 1.41e-1

3.48e-2 1.31e-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8 1.61e-12 2.30e-16 2.08e-24

Postprocessing

Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of Ft

Repeat for j = 0, 1, · · · until convergence or Ftj has no zeros

1. Find the smallest value xj+1 such that Ftj (xj+1) = 0 or stop

2. Let tj+1 = tj ∪ {xj+1} and form Ftj+1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

Error |xj − z|: 1.41e-1 3.48e-2

1.31e-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8 1.61e-12 2.30e-16 2.08e-24

Postprocessing

Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of Ft

Repeat for j = 0, 1, · · · until convergence or Ftj has no zeros

1. Find the smallest value xj+1 such that Ftj (xj+1) = 0 or stop

2. Let tj+1 = tj ∪ {xj+1} and form Ftj+1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

Error |xj − z|: 1.41e-1 3.48e-2 1.31e-2

1.26e-3 1.46e-4 1.42e-6 1.70e-8 1.61e-12 2.30e-16 2.08e-24

Postprocessing

Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of Ft

Repeat for j = 0, 1, · · · until convergence or Ftj has no zeros

1. Find the smallest value xj+1 such that Ftj (xj+1) = 0 or stop

2. Let tj+1 = tj ∪ {xj+1} and form Ftj+1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

Error |xj − z|: 1.41e-1 3.48e-2 1.31e-2 1.26e-3

1.46e-4 1.42e-6 1.70e-8 1.61e-12 2.30e-16 2.08e-24

Postprocessing

Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of Ft

Repeat for j = 0, 1, · · · until convergence or Ftj has no zeros

1. Find the smallest value xj+1 such that Ftj (xj+1) = 0 or stop

2. Let tj+1 = tj ∪ {xj+1} and form Ftj+1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

Error |xj − z|: 1.41e-1 3.48e-2 1.31e-2 1.26e-3 1.46e-4

1.42e-6 1.70e-8 1.61e-12 2.30e-16 2.08e-24

Postprocessing

Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of Ft

Repeat for j = 0, 1, · · · until convergence or Ftj has no zeros

1. Find the smallest value xj+1 such that Ftj (xj+1) = 0 or stop

2. Let tj+1 = tj ∪ {xj+1} and form Ftj+1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

Error |xj − z|: 1.41e-1 3.48e-2 1.31e-2 1.26e-3 1.46e-4 1.42e-6

1.70e-8 1.61e-12 2.30e-16 2.08e-24

Postprocessing

Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of Ft

Repeat for j = 0, 1, · · · until convergence or Ftj has no zeros

1. Find the smallest value xj+1 such that Ftj (xj+1) = 0 or stop

2. Let tj+1 = tj ∪ {xj+1} and form Ftj+1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

Error |xj − z|: 1.41e-1 3.48e-2 1.31e-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8

1.61e-12 2.30e-16 2.08e-24

Postprocessing

Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of Ft

Repeat for j = 0, 1, · · · until convergence or Ftj has no zeros

1. Find the smallest value xj+1 such that Ftj (xj+1) = 0 or stop

2. Let tj+1 = tj ∪ {xj+1} and form Ftj+1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

Error |xj − z|: 1.41e-1 3.48e-2 1.31e-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8 1.61e-12

2.30e-16 2.08e-24

Postprocessing

Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of Ft

Repeat for j = 0, 1, · · · until convergence or Ftj has no zeros

1. Find the smallest value xj+1 such that Ftj (xj+1) = 0 or stop

2. Let tj+1 = tj ∪ {xj+1} and form Ftj+1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

Error |xj − z|: 1.41e-1 3.48e-2 1.31e-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8 1.61e-12 2.30e-16

2.08e-24

Postprocessing

Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of Ft

Repeat for j = 0, 1, · · · until convergence or Ftj has no zeros

1. Find the smallest value xj+1 such that Ftj (xj+1) = 0 or stop

2. Let tj+1 = tj ∪ {xj+1} and form Ftj+1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

Error |xj − z|: 1.41e-1 3.48e-2 1.31e-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8 1.61e-12 2.30e-16 2.08e-24

Postprocessing

Zero Algorithm [MrkenReimers 2007]
Idea: Repeated knot insertion at zeros of Ft

Repeat for j = 0, 1, · · · until convergence or Ftj has no zeros

1. Find the smallest value xj+1 such that Ftj (xj+1) = 0 or stop

2. Let tj+1 = tj ∪ {xj+1} and form Ftj+1

0.2 0.4 0.6 0.8 1

-1

-0.75

-0.5

-0.25

0.25

0.5

Error |xj − z|: 1.41e-1 3.48e-2 1.31e-2 1.26e-3 1.46e-4 1.42e-6 1.70e-8 1.61e-12 2.30e-16 2.08e-24

	Introduction
	Ray coefficient computation
	Root finding
	Postprocessing

