
hetcomp.com

Johan Seland

1

SINTEF Petroleum Development Workshop – Session 3

Trondheim - 9. December 2010

Multi-Core Programming

hetcomp.com

• Multi-Core Architectures

• Memory Hierarchies

• OpenMP

• Alternatives:

• C++0X, TBB and Java

• Intel Parallel Studio

• Discussion

2

Overview

hetcomp.com 3

Multi-Core Architectures

hetcomp.com

• All desktops, most laptops and some mobile phones are now multi-core

• Desktops can also-be multi-socket

• Follows Moores law by duplicating functionality on die

• Memory (RAM) is addressable by all cores

• Shared memory

• NUMA on the horizon

• All cores shares disks, network, GPUs etc.

• Programs must be explicitly written to use more than one core

• Equally suited for data or task parallelism

4

Multi-Cores

hetcomp.com

• To be released January 2011

• 32 nm process

• 2-4 Cores at launch. (6 and 8 later)

• 2.2 GHz – 3.4 GHz

• Theoretical performance :128 GFlops (double precision)

• Hyper-threading

• Each core has:

• 64KiB L1 cache (3 clocks)

• 256KiB l2 cache

• 8 MiB shared L3 cache

5

Example: Intel Sandy Bridge

hetcomp.com

• Optimizing compilers reorder instructions to hide latency

• Compilers can make no assumptions on data values

• Processors know data values and can dynamically reorder instructions at runtime

• Out of order execution

• Branch prediction

• Greatly increases the complexity of chip designs

• GPUs and simple mobile CPUs execute their instructions in-order

• Happens automatically

6

Instruction Level Parallelism (ILP)

hetcomp.com

• 3DNow, MMX, SSE{1,2,3,4}, AVX, AltiVec (PowerPC)

• Single Instruction, Multiple Data (SIMD)

• Sandy Bridge: 32 GFlops x87, 128 GFlops AVX

• Compiler tries to detect possibilities

• Remember to activate this!

• Breaks backward compatability

• Can also be activated directly (compiler intrinsics)

• “Tiny vector” libraries for small vectors and matrices (up to 4x4)

• Fast Fourier transform

7

Vector Units

hetcomp.com

• Registers and Instruction Pointer (IP) require few transistors compared to ALUs

• Duplicate these

• Up to 30% performance increase for 5% increase in die area

• One core appears as two “logical cores”

• Only on high-performance CPUs

• Morale: Expose as many threads as possible

8

Hyper-Threading

hetcomp.com 9

Memory Hierarchies

hetcomp.com

Definition of CACHE

• 1

• a : a hiding place especially for concealing and preserving provisions or implements

• b : a secure place of storage

• 2 : something hidden or stored in a cache

• 3 : a computer memory with very short access time used for storage of frequently or

recently used instructions or data —called also cache memory

Merriam-Webster

10

Memory Hierarchies

hetcomp.com 11

Why caches

hetcomp.com 12

• Layers of faster (and more expensive) memory that hides latency

• Highly effective

• Often implements read-ahead policy

• When to write back?

• Snooping bus

• Works transparently

• But you should ensure that traversals follow the read-ahead policy (example)

• Blocking/chunking should fit in cache

• Autotuning

• Web and disk caches operate similarly

Memory caches

hetcomp.com

Cache Level Access Time Size

Register 0 16++

L1 3 cycles 32KiB + 32KiB

L2 8 cycles 256KiB

L3 25 cycles 8 MiB

RAM 0.1 ns – 5 ns 2GiB – 1 TiB

Disk 20 ns – 70 ns 128GiB – 10 PiB

Network 10ms - ∞ ∞

13

Memory access times and sizes

hetcomp.com

• Parallel Studio memory example

14

Demo

hetcomp.com 15

hetcomp.com

• An implementation of shared-memory multithreading

• Version 1.0 released in 1997, version 3.0 in 2008

• Fortran and C/C++

• Open standard (backed by Intel, AMD, Microsoft, Oracle++)

• Broad compiler support

• Implemented as compiler pragmas + small library

• Can preserve serial program!

• Procedural

• Can gradually be bolted on existing code

• Specification is surprisingly readable (openmp.org)

16

OpenMP

hetcomp.com

• Mostly for Data Parallelism

• Only for regular structures

• Only for built in datatypes

• OpenMP 3.0 remedies this a bit

• Extends the language

• Only subset of language allowed in constructs

• Mix algorithm code and threading code

• No datastructures

• No support for objects

17

OpenMP – Whats it not to like?

hetcomp.com

• Visual Studio

• GCC (including gfortran)

• -fopenmp on command line

• Intel Fortran

• -openmp (Linux)

• -Qopenmp (Windows)

18

Enabling compiler support

hetcomp.com 19

Example: OpenMP Dot Product

double dot_product(vector<double>& a, vector<double>& b) {

double sum = 0;

const int n = a.size();

#pragma omp parallel for reduction(+:sum)

for (int i = 0; i < n; ++i) {

sum += a[i]*b[i];

}

return sum;

}

Add compiler pragma

hetcomp.com

• C/C++

• #pragma omp directive-name [clause,...]

• Case-sensitive

• Fortran (free-form)

• !$omp directive-name [clause,...]

• Case-insensitive

20

OpenMP Directive Clause

hetcomp.com

• Specify computations that should be executed in parallel”foo”

21

The parallel construct

#pragma omp parallel

{

const int threadId = omp_get_thread_num();

cout << “I am thread: “ << threadId << “\n”;

if (threadId == 2) {

cout << “Only thread 2 goes here\n”;

}

}

hetcomp.com

• Can not branch into or out of parallel region

• Do not depend on ordering

• Can not throw exceptions out of parallel region

• Exceptions must be thrown and caught in the same region

22

Restrictions

hetcomp.com

Functionality C/C Syntax Fortran Syntax

Distribute iteration over

threads

#pragma omp for !$omp do

Distribute independent work

units

#pragma omp sections !$omp sections

Only one thread executes

code block (critical section)

#pragma omp single !$omp single

Parallelize array-syntex NA !$omp workshare

23

Work-sharing constructs

hetcomp.com

Clause Effect Notes

shared(…) Variables that will be shared by threads

(implies memory fence)

private(…) Variables which are replicated to every

thread

Loop counter is implied

firstprivate(…) Variables are pre-initialized by the value

before the construct

lastprivate(…) Varibable after the construct has the

value of the “last” thread.

schedule(…) Control how loop iterations are

distributed over threads

Reduction(op:variable) Identify variable that will hold result of

reduction

Order of operations is

not guaranteed

24

Data-sharing clauses

hetcomp.com 25

Example – data sharing clauses

!$OMP PARALLEL SHARED(a,b) PRIVATE(i)

!$OMP DO

do i=1, 1000

a(i,j) = 3.14*b(j,i)

Enddo

!$OMP END DO

!$OMP END PARALLEL

hetcomp.com

Clause Syntax Notes

Barrier #pragma omp barrier Threads may no proceed barrier until all

threads are at this point

Ordered #pragma omp ordered Enforce order within parallel construct

Critical #pragma omp critical Only one thread may enter critical region at a

time

Atomic #prgama omp atomic

statement

One-line critical section. Useful for

assignments. Effective on some HW.

Locks omp_func_lock(*lck) Get, free, test lock.

Master #pragma omp master Executed by the master thread only

26

Synchronization Constructs

hetcomp.com

• Easy to get started on existing codes

• Small syntax – easy to learn

• Don’t try to be too fancy

27

OpenMP discussion

hetcomp.com

• Next version of C++ standard

• Draft expected to be completed in March 2011

• Visual Studio 2010 and GCC 4.x has support for much of it

• Lots of nice stuff:

• Auto variables

• Lambda functions

• Initializer lists

• Smart pointers

• Hash tables

• Tuples

• Regular Expressions

• THREADS

• ++

28

C++0X

hetcomp.com

• New std::thread class

• std::mutex and friends

• Condition variables

• thread_local keyword

29

Brief overview of C++0X threads

void do_work() {...};

std::thread t(do_work);

// do other stuff

t.join() // wait for t to finish

std::mutex m;

void foo() {

std::lock_guard<std::mutex> lock(m);

process(data);

} // mutex unlocked in d’tor (RAII)

hetcomp.com

• STL inspired thread library

• Originally developed by Intel

• Commercial and Open Source (GPL)

• http://www.threadingbuildingblocks.org/

• At version 3.0

• Parallel Algorithhms

• for, while, reduce, scan, pipeline

• Concurrent containers

• queue, vector, hashmap

• Mutexes and atomic operations

• Advanced task scheduling

30

Threading Building Blocks

http://www.threadingbuildingblocks.org/

hetcomp.com

• Java classes can implement the “Runnable” interface

• One method: run()

• Concurrent containers

• Class monitors: synchronized keyword

• Java 7 (mid 2011): Fork-join

• Java 8 (late 2012): Lambdas and closures

31

Java

class PrimeRun implements Runnable {

void run() {…}

}

PrimeRun p = new PrimeRun();

new Thread(p).start();

hetcomp.com

• MPI

• Posix Threads (Pthreads)

• C-style API, verbose

• QThread - thread abstraction in Qt

• Cilk

• Intel owned, C extension (spawn, sync, inlet, abort)

• OpenCL

• CUDA

• Haskell

32

Other languages/libraries

hetcomp.com

The age of multi-core is NOW!

(It has been here for 5+ years)

• For HPC you can not afford to ignore this

• Much easier for business/web developers

• Pick your abstraction level

• Existing codes can “easily” be extended with some OpenMP

• For new projects:

• Thoroughly evaluate performance, people and business value before choosing tool

33

Conclusion

hetcomp.com 34

Reading list

