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• Multi-Core Architectures

• Memory Hierarchies

• OpenMP

• Alternatives:

• C++0X, TBB and Java

• Intel Parallel Studio 

• Discussion
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Overview
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Multi-Core Architectures
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• All desktops, most laptops and some mobile phones are now multi-core

• Desktops can also-be multi-socket

• Follows Moores law by duplicating functionality on die

• Memory (RAM) is addressable by all cores

• Shared memory

• NUMA on the horizon

• All cores shares disks, network, GPUs etc.

• Programs must be explicitly written to use more than one core

• Equally suited for data or task parallelism
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Multi-Cores
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• To be released January 2011

• 32 nm process

• 2-4 Cores at launch. (6 and 8 later)

• 2.2  GHz – 3.4 GHz

• Theoretical performance :128 GFlops (double precision)

• Hyper-threading

• Each core has:

• 64KiB L1 cache (3 clocks)

• 256KiB l2 cache

• 8 MiB shared L3 cache
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Example: Intel Sandy Bridge
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• Optimizing compilers reorder instructions to hide latency

• Compilers can make no assumptions on data values

• Processors know data values and can dynamically reorder instructions at runtime

• Out of order execution

• Branch prediction

• Greatly increases the complexity of chip designs

• GPUs and simple mobile CPUs execute their instructions in-order

• Happens automatically
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Instruction Level Parallelism (ILP)
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• 3DNow, MMX, SSE{1,2,3,4}, AVX, AltiVec (PowerPC)

• Single Instruction, Multiple Data (SIMD)

• Sandy Bridge: 32 GFlops x87, 128 GFlops AVX

• Compiler tries to detect possibilities

• Remember to activate  this! 

• Breaks backward compatability

• Can also be activated directly (compiler intrinsics)

• “Tiny vector” libraries for small vectors and matrices (up to 4x4) 

• Fast Fourier transform
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Vector Units
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• Registers and Instruction Pointer (IP) require few transistors compared to ALUs

• Duplicate these

• Up to 30% performance increase for 5% increase in die area

• One core appears as two “logical cores”

• Only on high-performance CPUs

• Morale: Expose as many threads as possible
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Hyper-Threading
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Memory Hierarchies
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Definition of CACHE

• 1 

• a : a hiding place especially for concealing and preserving provisions or implements

• b : a secure place of storage

• 2 : something hidden or stored in a cache

• 3 : a computer memory with very short access time used for storage of frequently or 

recently used instructions or data —called also cache memory

Merriam-Webster
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Memory Hierarchies
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Why caches
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• Layers of faster (and more expensive) memory that hides latency

• Highly effective

• Often implements read-ahead policy

• When to write back?

• Snooping bus

• Works transparently

• But you should ensure that traversals follow the read-ahead policy (example)

• Blocking/chunking should fit in cache

• Autotuning

• Web and disk caches operate similarly

Memory caches
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Cache Level Access Time Size

Register 0 16++

L1 3 cycles 32KiB + 32KiB

L2 8 cycles 256KiB

L3 25 cycles 8 MiB

RAM 0.1 ns – 5 ns 2GiB – 1 TiB

Disk 20 ns – 70 ns 128GiB – 10 PiB

Network 10ms - ∞ ∞
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Memory access times and sizes
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• Parallel Studio memory example

14

Demo
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• An implementation of shared-memory multithreading

• Version 1.0 released in 1997,  version 3.0 in 2008

• Fortran and C/C++

• Open standard (backed by Intel, AMD, Microsoft, Oracle++)

• Broad compiler support

• Implemented as compiler pragmas + small library

• Can preserve serial program!

• Procedural 

• Can gradually be bolted on existing code

• Specification is surprisingly readable (openmp.org)
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OpenMP
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• Mostly for Data Parallelism

• Only for regular structures

• Only for built in datatypes

• OpenMP 3.0 remedies this a bit

• Extends the language

• Only subset of language allowed in constructs

• Mix algorithm code and threading code

• No datastructures

• No support for objects
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OpenMP – Whats it not to like?
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• Visual Studio

• GCC  (including gfortran)

• -fopenmp on command line

• Intel Fortran 

• -openmp (Linux)

• -Qopenmp (Windows)
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Enabling compiler support
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Example: OpenMP Dot Product

double dot_product( vector<double>& a, vector<double>& b ) {

double sum = 0;

const int n = a.size();

#pragma omp parallel for reduction(+:sum)

for ( int i = 0; i < n; ++i ) {

sum += a[i]*b[i];

}

return sum;

}

Add compiler pragma
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• C/C++

• #pragma omp directive-name [clause,...]

• Case-sensitive

• Fortran (free-form)

• !$omp directive-name [clause,...]

• Case-insensitive
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OpenMP Directive Clause
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• Specify computations that should be executed in parallel”foo”
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The parallel construct

#pragma omp parallel

{

const int threadId = omp_get_thread_num();

cout << “I am thread: “ << threadId << “\n”;

if ( threadId == 2 ) {

cout << “Only thread 2 goes here\n”;

}

}
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• Can not branch into or out of parallel region

• Do not depend on ordering

• Can not throw exceptions out of parallel region

• Exceptions must be thrown and caught in the same region
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Restrictions
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Functionality C/C Syntax Fortran Syntax

Distribute iteration over 

threads

#pragma omp for !$omp do

Distribute independent work 

units

#pragma omp sections !$omp sections

Only one thread executes 

code block (critical section)

#pragma omp single !$omp single

Parallelize array-syntex NA !$omp workshare
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Work-sharing constructs
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Clause Effect Notes

shared(…) Variables that will be shared by threads 

(implies memory fence)

private(…) Variables which are replicated to every 

thread

Loop counter is implied

firstprivate(…) Variables are pre-initialized by the value  

before the construct

lastprivate(…) Varibable after the construct has the 

value of the “last” thread.

schedule(…) Control how loop iterations are 

distributed over threads

Reduction(op:variable) Identify variable that will hold result of 

reduction

Order of operations is 

not guaranteed
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Data-sharing clauses
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Example – data sharing clauses

!$OMP PARALLEL SHARED(a,b) PRIVATE(i)

!$OMP DO

do i=1, 1000

a(i,j) = 3.14*b(j,i)

Enddo

!$OMP END DO

!$OMP END PARALLEL
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Clause Syntax Notes

Barrier #pragma omp barrier Threads may no proceed barrier until all 

threads are at this point

Ordered #pragma omp ordered Enforce order within parallel construct

Critical #pragma omp critical Only one thread may enter critical region at a 

time

Atomic #prgama omp atomic

statement

One-line critical section. Useful for 

assignments. Effective on some HW.

Locks omp_func_lock(*lck) Get, free, test lock.

Master #pragma omp master Executed by the master thread only
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Synchronization Constructs
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• Easy to get started  on existing codes

• Small syntax – easy to learn

• Don’t try to be too fancy
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OpenMP discussion
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• Next version of C++ standard

• Draft expected to be completed in March 2011

• Visual Studio 2010 and GCC 4.x has support for much of it

• Lots of nice stuff:

• Auto variables

• Lambda functions

• Initializer lists

• Smart pointers

• Hash tables

• Tuples

• Regular Expressions

• THREADS

• ++
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C++0X
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• New std::thread class

• std::mutex and friends

• Condition variables

• thread_local keyword
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Brief overview of C++0X threads

void do_work() {...};

std::thread t(do_work);

// do other stuff

t.join() // wait for t to finish

std::mutex m;

void foo() {

std::lock_guard<std::mutex> lock( m );

process( data );

} // mutex unlocked in d’tor (RAII)
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• STL inspired thread library

• Originally developed by Intel

• Commercial and Open Source (GPL) 

• http://www.threadingbuildingblocks.org/

• At version 3.0 

• Parallel  Algorithhms

• for, while, reduce, scan, pipeline

• Concurrent containers

• queue, vector, hashmap

• Mutexes and atomic operations

• Advanced task scheduling
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Threading Building Blocks

http://www.threadingbuildingblocks.org/
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• Java classes can implement the “Runnable” interface

• One method: run()

• Concurrent containers

• Class monitors: synchronized keyword

• Java 7 (mid 2011): Fork-join

• Java 8 (late 2012): Lambdas and closures
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Java

class PrimeRun implements Runnable {

void run() {…}

}

PrimeRun p = new PrimeRun();

new Thread(p).start();
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• MPI

• Posix Threads (Pthreads)

• C-style API, verbose

• QThread - thread abstraction in Qt

• Cilk

• Intel owned, C extension (spawn, sync, inlet, abort)

• OpenCL

• CUDA

• Haskell
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Other languages/libraries
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The age of multi-core is NOW!

(It has been here for 5+ years)

• For HPC you can not afford to ignore this

• Much easier for business/web developers

• Pick your abstraction level

• Existing codes can “easily” be extended with some OpenMP

• For new projects:

• Thoroughly evaluate performance, people and business value before choosing tool
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Conclusion
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Reading list


