Applied Optimization at SINTEF

Chief Scientist, Dr. scient. Geir Hasle SINTEF ICT, Oslo, Norway

Invited talk

University of Jyväskylä October 9 2008

Outline

SINTEF and SINTEF ICT

- Applied mathematics at SINTEF
- Applied optimization at SINTEF
- Transportation logistics

Technology for a better society

- An Independent Multi-Disciplinary Contract R&D Organisation
- Established in 1950
- Among the Largest CRO in Europe

Vision:

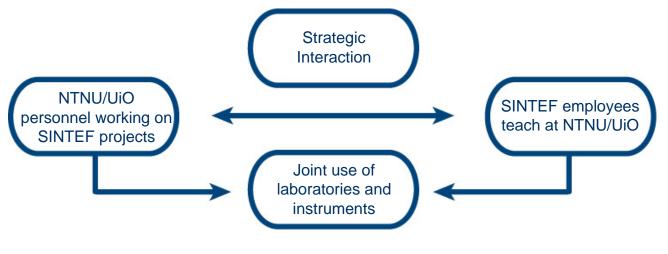
Technology for a better Society

Business Concept:

To meet the needs for **Research-Based Innovation** and Development for the **Private and Public Sectors**

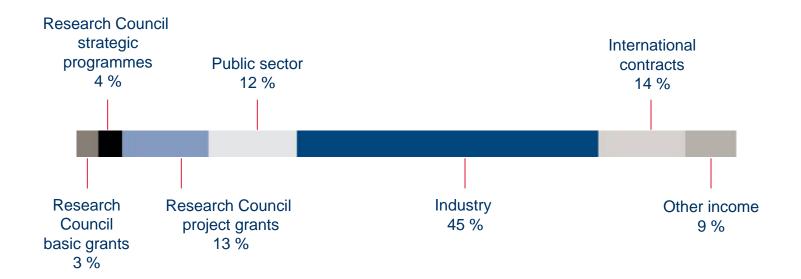
Oslo

SINTEF


- A Norwegian contract research institute
- More than 2000 employees
- Science and engineering social sciences, health care
- Strategic, long term, basic research
- Contract Research
- Consultancy
- Commercialization
- Spin-offs

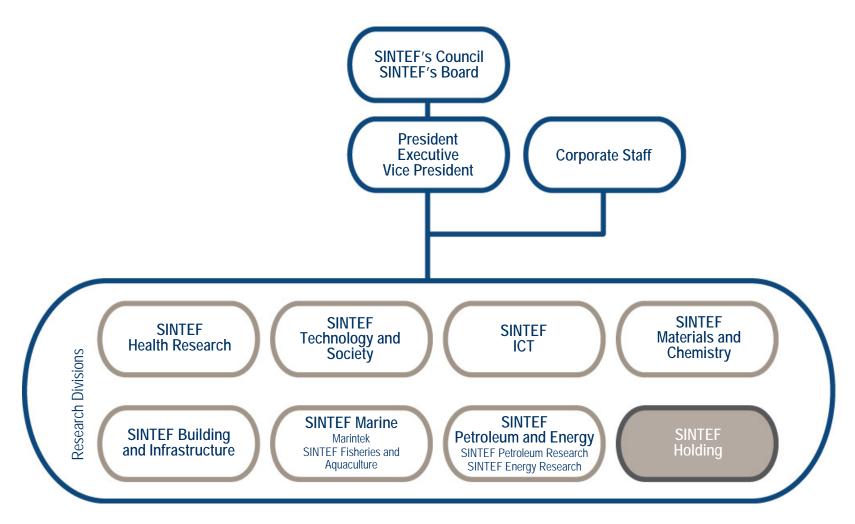
Our strategic partners

- The Norwegian University of Science and Technology, NTNU NTNU is a centre for technological education and research in Norway, with a solid foundation in the natural sciences.
- The University of Oslo, UiO


The University of Oslo is Norway's largest and oldest institution of higher education.

NTNU/UiO and SINTEF Collaboration in R&D

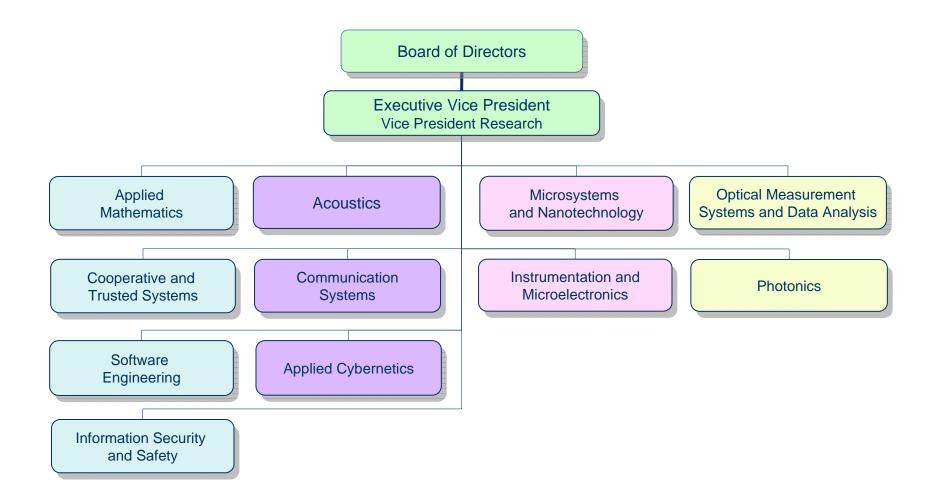
SINTEF revenues


The SINTEF Group turnover in 2007: NOK 2.3 billion

ICT

.

SINTEF



.

. . . .

SINTEF ICT Organization

ICT

Key figures for SINTEF ICT

Number of employees	269				
Scientists	227				
Engineers and technicians	22				
Administrative staff	20				

Annual Turnover

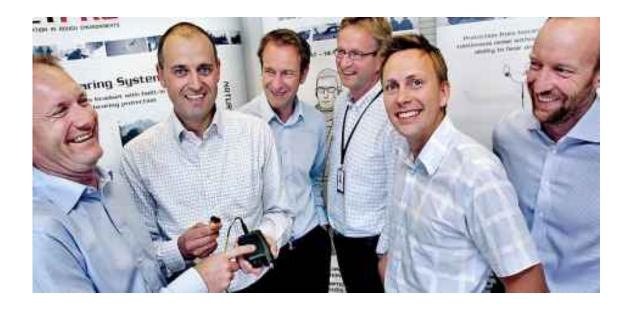
NOK 267 million

ICT

.

Research at SINTEF ICT

Atle jobber ikke i NASA


Men det gjør forskningsresultatene hans

Høyt over oss suser romstasjonen ISS avgårde. Den har hjertebarnet til SINTEF-forsker Atle Honne om bord: gassmåleutstyr som skal hindre at astronauter puster i seg helsefarlige stoffer på jobben.

Måleteknikken er velegnet også på jorda. Der kan den overvåke alt fra industriprosesser til inneklimaet i ubåter og andre utsatte miljøer.

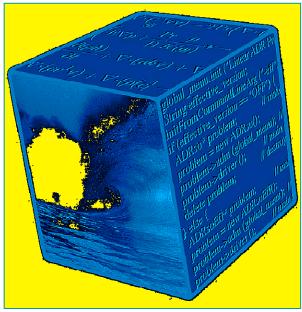
NACRE AS – A SINTEF spin-off

Noise protection communication headset - QUIETPRO Company sold for ³/₄ billion NOK in 2007

Jakten på milliardbedriften

Utlendingene kjøper bedrifter for milliarder i Trondheim.Hva er det som skjer i byen?Publisert 13.06.2007

SINTEF ICT Applied Mathematics


SINTEF ICT

provides research-based expertise, services and products ranging from microtechnology, communication and software technology, computational software, information systems, and security and safety.

The Department of Applied Mathematics consists of 38 employees

- Researchers
- Postdocs
- PhDs
- Software engineers, programmers

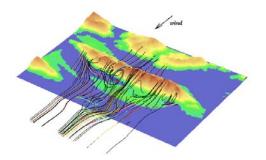
Five research groups

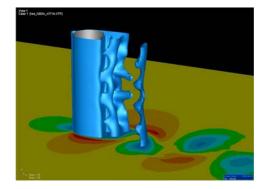
SINTEF ICT Applied Mathematics

- Utilizes modelling and software engineering to solve industrial problems
- Geometry
 - Algebraic geometry, approximation theory, multiresolution methods, spline technology
- Simulation
 - Computational fluid dynamics, PDE-based image processing, high-performance computing, wave modeling, optimal control and shape design

Optimization

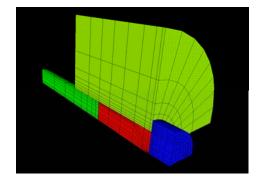
Inear and nonlinear programming, discrete optimization, heuristics and metaheuristics, constraint programming

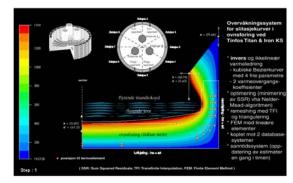



The research groups

- The Geometry group (Oslo) focuses on computational geometry, visualization, and development of 3D technology for the IT industry.
- The Simulation group in Trondheim focuses on developing robust and efficient numerical methods for computational mechanics and geophysical flows.
- The Simulation group in Oslo develops robust and efficient computational methods for subsurface flow (petroleum, CO2, groundwater).
- The Optimization group (Oslo) develops optimization methods for applications within, among others; transportation, (maritime) logistics, and planning health sector.
- The Heterogeneous computing group (Oslo) performs research on multicore and data-stream processing.
- Active partner in the Centre of Mathematics for Applications, a national centre of excellence at the University of Oslo.
- Contributes to the Centre for Integrated Operations in the Petroleum Industry, a national centre for research-based innovation at NTNU. Key strategic research areas include multiscale simulation and isogeometric analysis.

Simulation group (Trondheim)




 \bigcirc

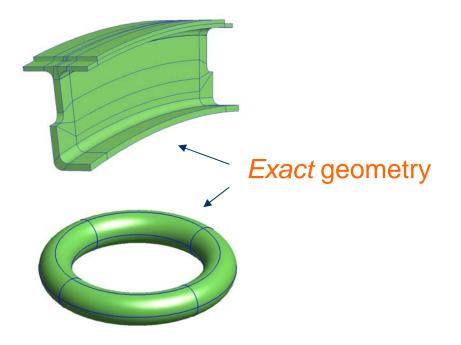
SINTEF

Methods in focus

- Mathematical modeling
- Geometrical modeling
- Finite element methods
- Adaptive methods
- Parallel algorithms
- Coupled problem
- Inverse problems
- Turbulence

ICT

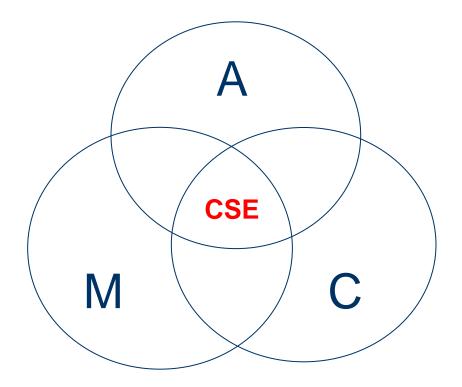
16


ICADA: Integrated Computer Aided Design and Analysis

Main objectives

Build competence in Norway for taking advantages of Integrated Aided Design and Analysis (ICADA) based on coherent representation for geometry and analysis

Partial objectives

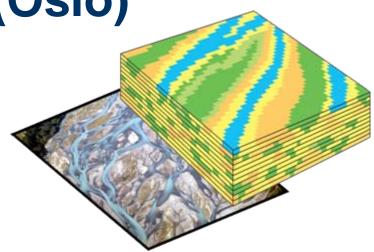

- 1. Make transfer of models between design and analysis more robust and efficient
- 2. Build competence in Norway for utilizing spline finite elements in industry
- 3. Make adaptive spline finite element methods suitable for practical use in industry

Computational Science and Engineering (CSE)

Interplay between: Mathematics – Applications – Computer science

- Applications: Biology, chemistry, marine technology, materials, mechanics, medicine, nanotechnology, petroleum, physics, engineering, operations research
- Mathematics: Models, analysis and numerical methods

ICT


Computer science: Algorithms, software development and hardware

CSE represents the development and use of computational methods for solving scientific and engineering problems

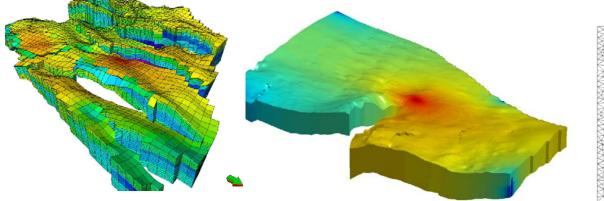
Simulation Group (Oslo)

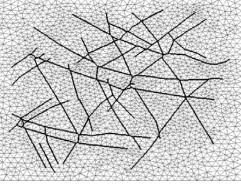
- 4 researchers
- 3 postdocs
- 1 PhD student
- 3 software engineers

ICT

Collaboration with national and international partners in industry and academia

Research vision:


Direct simulation of flow on complex grid models of highly heterogeneous and fractured porous media


- bypassing the need for upscaling

Applications

- Validation during development of geological models
- Fast simulation of flow on industry grids
- Optimization of production, well placement, etc.
- History matching
- Geological storage of CO2 (CCS)

Selected projects

Research projects partly funded by the RCN

- GeoScale II– Reservoir simulation on a geological scale
 - Strategic institute program, 2008-2010
 - Partners: NTNU, UoB, UoO, Schlumberger, StatoilHydro
- Multiscale simulation of highly heterogeneous and fractured reservoirs:
 - KMB project, 2006-2009, 9 MNOK
 - Partners: NTNU, Shell
 - 1 PhD
 - Geological storage of C02: mathematical modelling and risk assessment
 - KMB project at UoB, 2007-2011, 21 MNOK
 - Other partners: CIPR, Princeton, Stuttgart, Shell, StatoilHydro
 - 1 postdoc

Industry projects

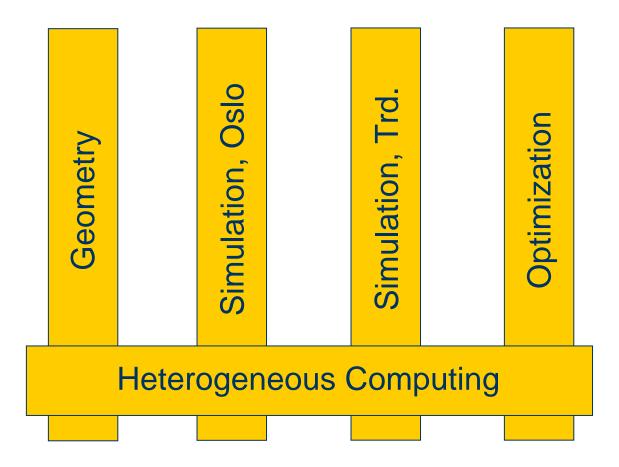
- Multiscale-streamline simulation of highly heterogeneous and fractured reservoirs:
 - BIP project, 2006-2008
 - Project management: Schlumberger IS
 - 1 postdoc
- New two-phase solver in xModel/SBED/ SBEDStudio
 - StatoilHydro
 - Geomodelling (Canada)
- Fast evaluation of flow patterns
 - Confidential client (USA)
- Near wellbore and completion hydraulics

ICT

Confidential client

Heterogeneous Computing Group

- Heterogeneous computing is the strategy of using multiple types of processing elements within a single workflow, and allowing each to perform the tasks to which it is best suited.
- hybrid computing
- accelerated computing
- General-Purpose Computing using GPUs (GPGPU)
- GPU computing


Moore's law (1965) and The Beach law (Gottbrath et al. 1999)

- "The number of transistors on an integrated circuit for minimum component cost doubles every 24 months"
 - Seems to hold true still
 - Transistor density roughly proportional to processor performance
- Growth in core clock frequency stagnated
 - Until recently (2004) increases in processor performance relied heavily on the increase of core clock frequency
- Stagnation of growth in performance of sequential code
 - Until now industry has experienced increasing value from their existing code base, with relatively little effort.
 - The Beach law* now obsolete your sequential code will probably not run faster next year
- Demand for parallelization of software

*Until recently one way of doubling the performance of your code was to wait 2 years (go to the beach) and then buy a new computer.

SINTEF ICT, Dep. of Applied Mathematics

ICT

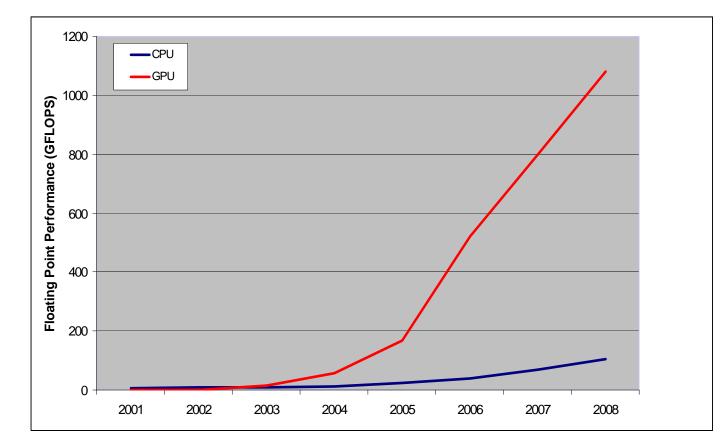
Heterogeneous Computing Group

- HC group: 10 scientists and Ph.D. students
- Started with GPU computing in 2003
- What we do:
 - Develop new heterogeneous methods with special focus on geometry, simulation and visualization.
 - Refactoring code for optimal performance on a HC.
 - Work in cross-disciplinary teams with domain specialists to create the most effective algorithms.

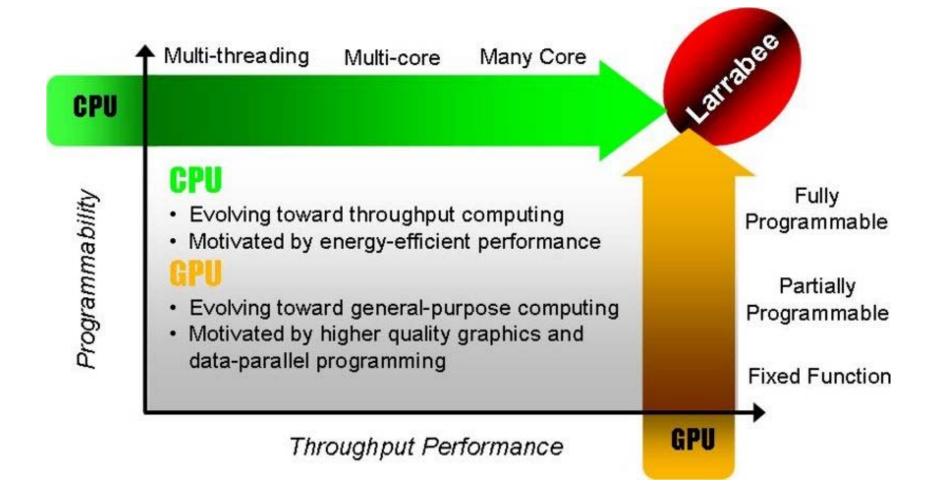
ICT

Architectures:

- Data-parallel
- Shared memory, multi-core
- Cluster, HPC



Target Architectures – Graphic Processing Units (GPUs)


Massive parallel architecture. Data-parallel processing
 Typically 10-100 times speedup

Graphics card

Target Architectures – Intel Larrabee

Target Architectures – AMD Fusion

- A computer will include general and specialized processors.
- A processor will be chosen to handle a given task based on its ability to provide optimal performance

1985	1990	2000	2008				
	Generation One: Frequency and Architecture	Generation Two: Homogeneous Multicores	Generation Three: Heterogeneous Multicores				
	Higher frequency = better performance	Improved throughput = better performance	Best hardware for the task = better performance, energy efficiency, and lower cost				

Heterogeneous Computing Group - Partners

Industrial users

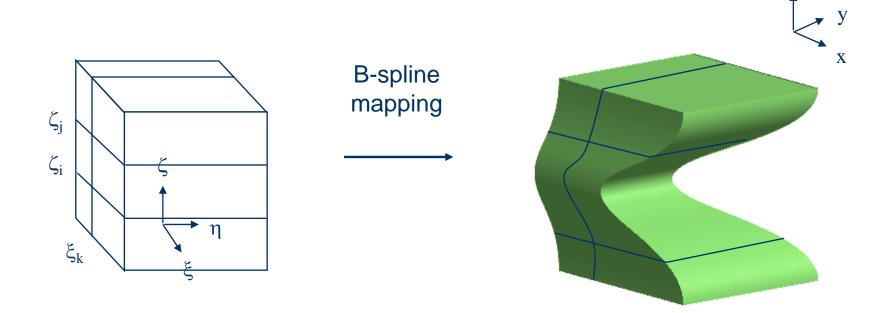
- StatoilHydro: seismic processing
- General Electric: GPU processing
- Detec: image processing
- Roxar: visualization
- Funding agencies
 - Research Council of Norway: computational methods within simulation, geometry and visualization.
 - EC: Collaborative Project, Security program, Picture analysis, surveillance

- Hardware vendors
 - Nvidia
 - AMD
 - Intel
 - IBM

Geometry Group

5 research scientists

- SAGA Shape Algebra and Geometry. Marie-Curie Initial training network. 2008-2012. SINTEF coordinator <u>http://www.saga-network.eu/</u>. PhD and Post. Doc. Fellowships.
- Focus K3D Coordination Action within Shape and Knowledge Technology (semantics) 2008-2010. <u>http://www.focusk3d.eu/</u>
- Industrial project on CAD-technology for CoCreate (Parametric Technology)
- Large activity on isogeometry



Isogeometric representation and analysis

- Current representation of geometric models in CAD (Computer Aided Design) is based on ideas from 1980s.
- Current representation of models within FEM (Finite Element Analysis) is based on ideas from 1970s
- Extremely expensive for industry to transfer models between CAD and FEM processes
 - CAD-representation is a patchwork of high quality surface pieces where adjacent patches match within predefined tolerances.
 - FEM-representation is made from volumes where adjacent volumes match exactly. The outer surfaces of the volumes not of same geometry quality as CAD-models
- High potential for improvements in industry
 - Blocked until now by CAD-companies and the legacy of models using exiting technology

Iso-geometric representation

Parametric volume representation using B-splines both for CAD and FEM

ICT

Ζ

Large SINTEF Activity with isogeometric representation and analysis

- Isogeometry. Norwegian project for improving the mathematics used in the processes between CAD and FEM. (2008-2011)
- ICADA. Norwegian project looking at the use of splines elements (mathematics of CAD) in FEM.(2008-2013)
- Exciting. EU-project looking at the use of isogeometric analysis within the transport sector. (2008-2011)
- Total SINTEF activity 2008-2013 4 million EURO.

Group of Optimization

- 8 scientists, 1 software engineer
- Development of optimization models and algorithms
- Research, Development, ...
 - Planning, scheduling, routing, location, network optimization
 - Logistics, Transportation, Finance, Oil and Gas, Health, Forestry, Sports
 - Prototypes
 - Products, Components, Services
 - Decision Support Tools
 - Support and Maintenance
- Consultancy
 - Requirements
 - Quantitative Assessment of Improvement potential
 - Specifications, Tender
 - Surveys
 - Assessment of products, benchmark definition
 - Analysis based on optimization models
- Spin-offs

ICT

.

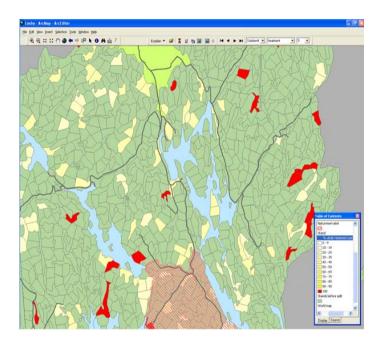
Example : Finance

- Clearing system, VPS owned by Oslo Børs
- Clearing of all trades at Oslo Stock Exchange, twice a day
 - Clearing at 2008-08-19: 153 501 transactions, total value of NOK 145 billion
- Rather critical ...
- Advanced mathematical model that maximizes total value of all trades
- Constraints and regulations
- SINTEF responsible for maintenance and development of optimization kernel
- Strategic relationship

Example : Health sector

- SINTEF has developed a roster optimizer that is integrated in the crew scheduling software tool GAT-Turnus of GAT-Soft AS
- Generates rosters that satisfy health and safety requirements
- Possibility for manual planning before / after optimization

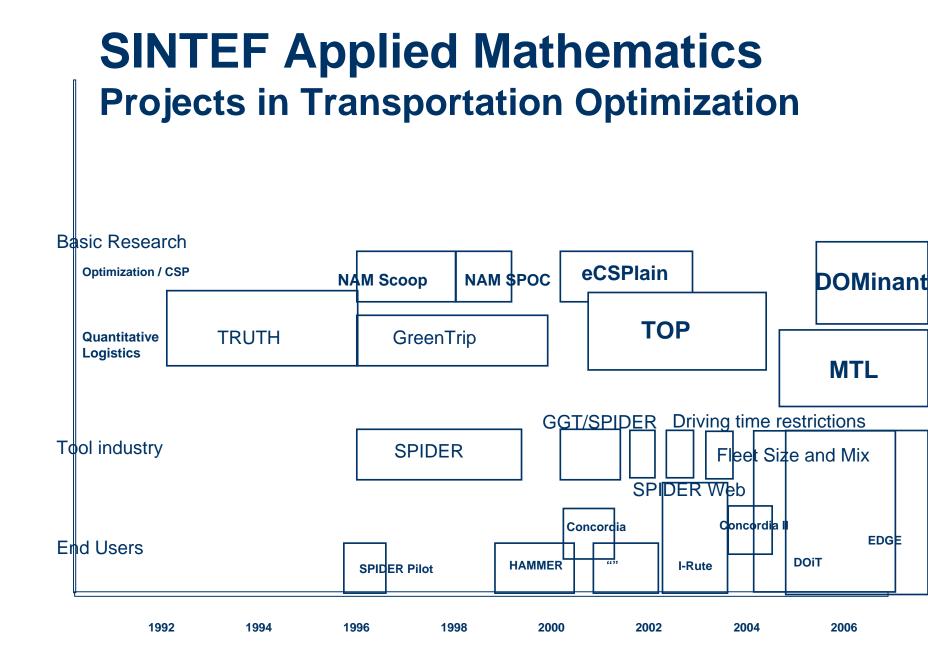
Further work


- Better optimization
- General wishes
- Individual wishes
- Temporal wishes

Vaktbok EFO Turnuspl			20	Aris	asi 1	Avs	ione i	912	29/1	oust	79.0		× 10 5		Z	1
Critic	Nav	0	-	-	1	Jke 1		-		_	_		Jke		via r	icig.
Nr. 9		lavn	Ma	Ma Ti On To F				1 a	Sa	Ma	TI				10	le Se
14		en, Asbjørn	D	D	A	A	D		F1		A	D1		4	D	A
2	Horgen,	Beidun	-	-		F1	A	D	A	D		A	D	D	-	
2	Nes, Ro		D	D		A	D	-			D	D	D			
4	Vakant.		-				F1	A	D	D						
5	Vindheir		-											F1	A	D
5	Alvik, 0		D	F2	A	A										
7	Vakant,			A	D	A					A	A	D			
8	SPL 8		D		D	D				D		D	D	D		
9	SPL 9		1000	A	A						D	D		D		
10	SFL 10		-									A	A			
11	SPL 11			N	N											
12	SPL 12		A	10	A	A	A								N	N
13	SPL 13		-									A				
14	SPL 14				AI							A		N		
15	SPL 15					N	N	N				N	N			
16	Bossen		N							N	N	1.1.2				
		N	T	1	1	4	4	4		4	1	1	1	1	1	1
		A	1	2	4	5	2	Ť.	1		2	5	1	1	1	i i
		AL		2	1	1		144	164	1	199					1
		A12	-													
		D	4	2	2	1	2	1	1	3	2	3	4	3	1	1
		D1										1				
		D2														
		L														
		F1.	1			1	1		1				1	1		
		F2		1				1								
		F3	-													
		F4														
		F5														

Example : Forestry

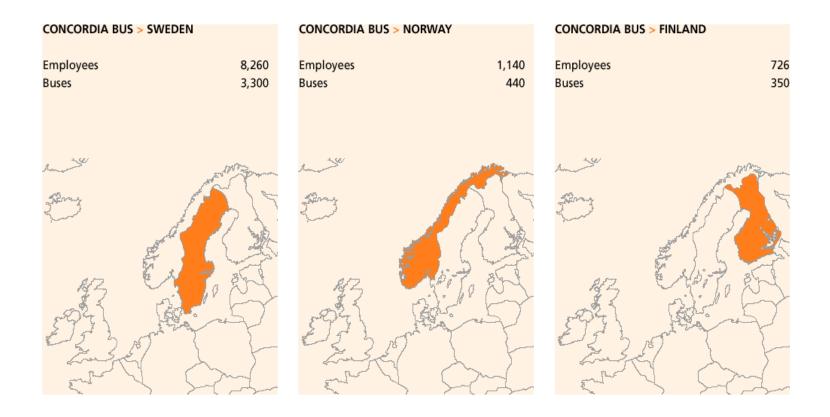
- Creating treatment plans for all stands for the next 100 years
- The objective is to maximise the income to the forest owner
- Must satisfy several constraints
 - Given harvest profile
 - Maximum area of clear cut patches
 - Greenup-constraints
 - Visual restrictions
 - Minimum share of old and young forest



Example : Sports

- SINTEF made the schedule for the Norwegian premier division (football) 2008 season
- Two-stage process where the pattern is constructed first
 - No "break" between round 1 and 2, nor between 25 and 26 (last round)
 - Minimum number of breaks
 - Minimum distance between "same" match type (home and away)
 - Anti-teams
- Allocation of the teams to placeholder
 - Specific matches on specific days
 - Specific home or away start and finish

Round	1	2	3	4	5	6	7	8	9	10	11	12	10
Team 1	2	3	4	5	6	7	8	9	10	11	12	13	14
Team 2	1	14	3	4	5	6	7	8	9	10	11	12	1:
Team 3	13	1	2	14	4	5	6	7	8	9	10	11	12
Team 4	12	13	1	2	3	14	5	6	7	8	9	10	11
Team 5	11	12	13	1	2	3	4	14	6	7	8	9	1(
	10	11	10	12	1	C	2	Л	Б	1/	7	0	0



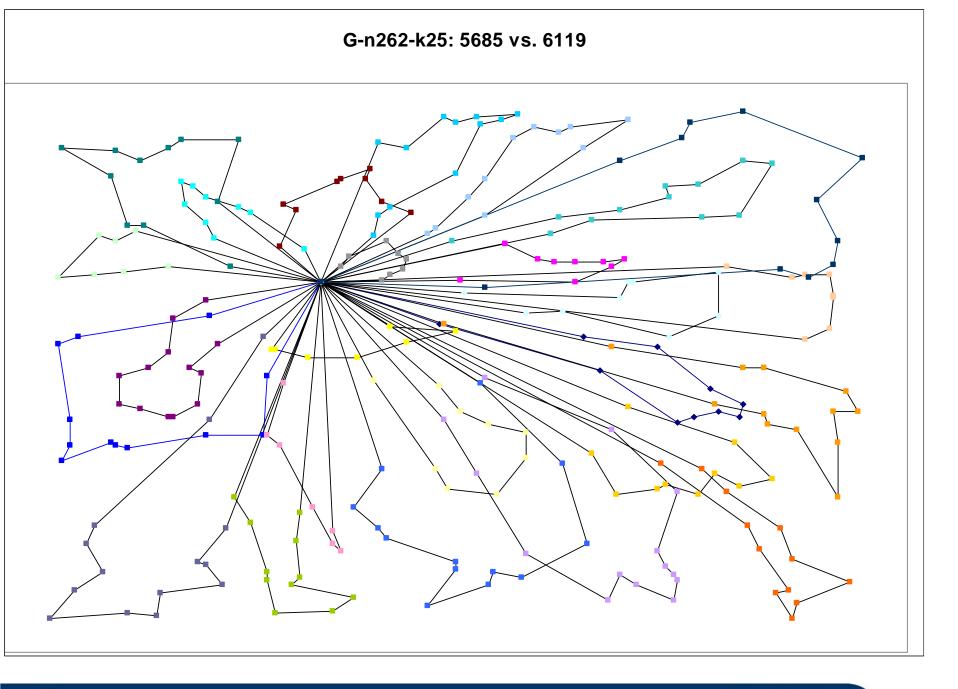
ICT

CONCORDIA > BUS

One of the largest bus companies in Europe 4100 buses in Norway, Sweden and Finland

Concordia - Shift and vehicle rotation planning

- Integrated optimization problem
- Very rich model, local search and metaheuristics
- Bespoke planning kernel
- 2-5% reduction of costs (2-3 mill. SEK pr. region, 3 regions)
- 20-30% reduction of costs (driver preferences)
- Comparison: "Industry standard" commercial tool Hastus
- 3 projects 2000-2004
- new project on driver rostering Nov'08



The Vehicle Routing Problem (VRP)

Given a fleet of vehicles and a set of transportation orders, find a minimum cost routing plan. That is: allocate each order to a vehicle, and for each vehicle, sequence the stops.

- The VRP central to efficient transportation management
- Applications
 - Distribution or pick-up of goods
 - Dial-a-ride
 - Municipal services
 - Repairman problem
 - Newspaper distribution
 - Waste management
 - Gritting, snow clearing
 - Tramp shipping, Industrial shipping, Liner shipping
- Very hard, discrete optimization problem

ICT

.

Mathematical formulation of VRPTW (vehicle flow formulation)

minimize

\sum	\sum	$c_{ij} x_{ij}^k$
$\overline{k \in V}$ ($(i,j) \in A$	

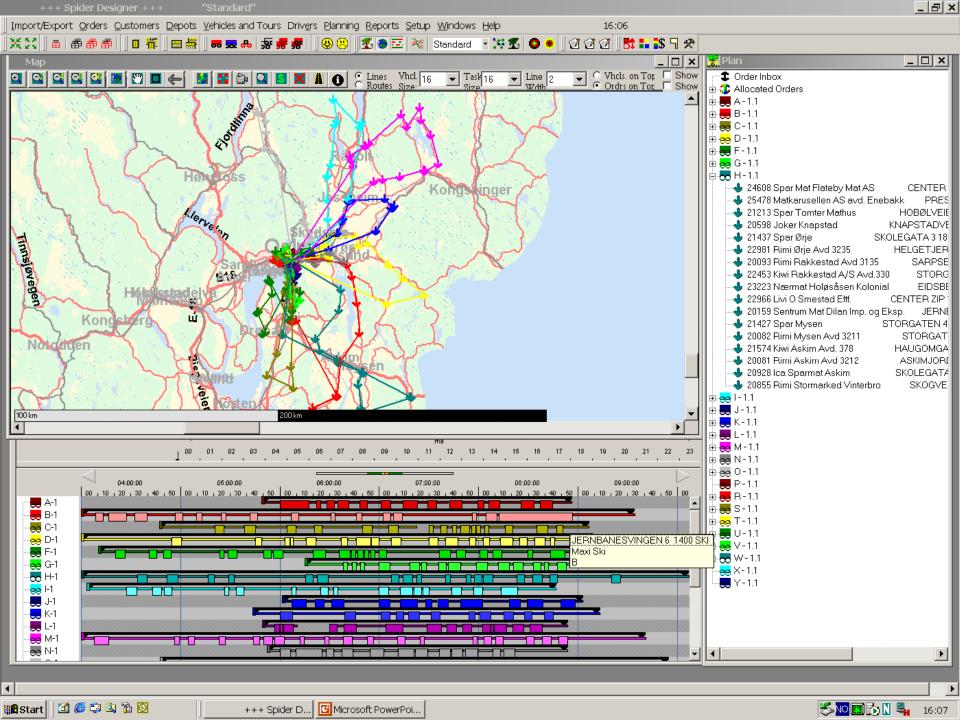
subject to:

$\sum_{k \in V} \sum_{j \in N} x_{ij}^k = 1,$	$\forall i \in C$	(2)	each customer once
$\sum_{i\in C} d_i \sum_{j\in N} x_{ij}^k \le q,$	$\forall k \in V$	(3)	capacity
$\sum_{j\in N} x_{0j}^k = 1,$	$\forall k \in V$	(4)	k routes out of depot
$\sum_{i\in N} x_{ih}^k - \sum_{j\in N} x_{hj}^k = 0,$	$\forall h \in C, \ \forall k \in V$	(5)	flow balance for each customer
$\sum_{i\in\mathbb{N}} x_{i,n+1}^k = 1,$	$\forall k \in V$	(6)	k routes into depot (redundant)
$x_{ij}^{k}(s_{i}^{k}+t_{ij}-s_{j}^{k}) \leq 0,$	$\forall (i,j) \in A, \ \forall k \in V$	(7)	start of service and driving time
$a_i \le s_i^k \le b_i,$ $x_{ii}^k \in \{0,1\},$	$\forall i \in N, \ \forall k \in V$ $\forall (i, j) \in A, \ \forall k \in V$	(8) (9)	start of service within TW
$x_{ij} \subset [0,1],$	$(i,j) \in \mathbb{N}$, $(k \in V)$	(\mathbf{Y})	arc (i,j) driven by k

(1)

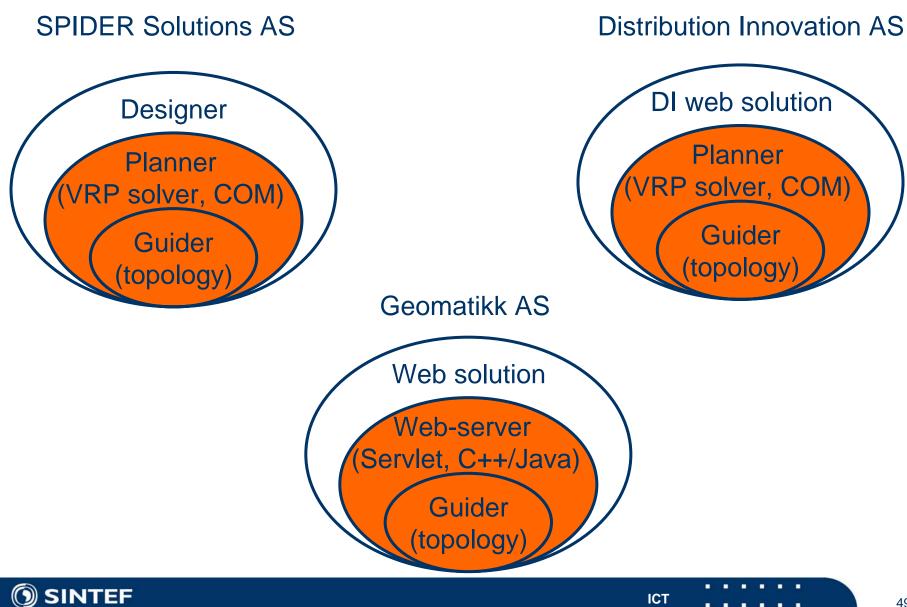
minimize cost

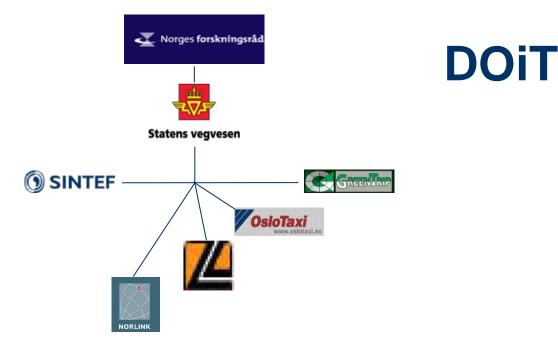
ICT


.

Research on Rich VRPs & related problems at SINTEF

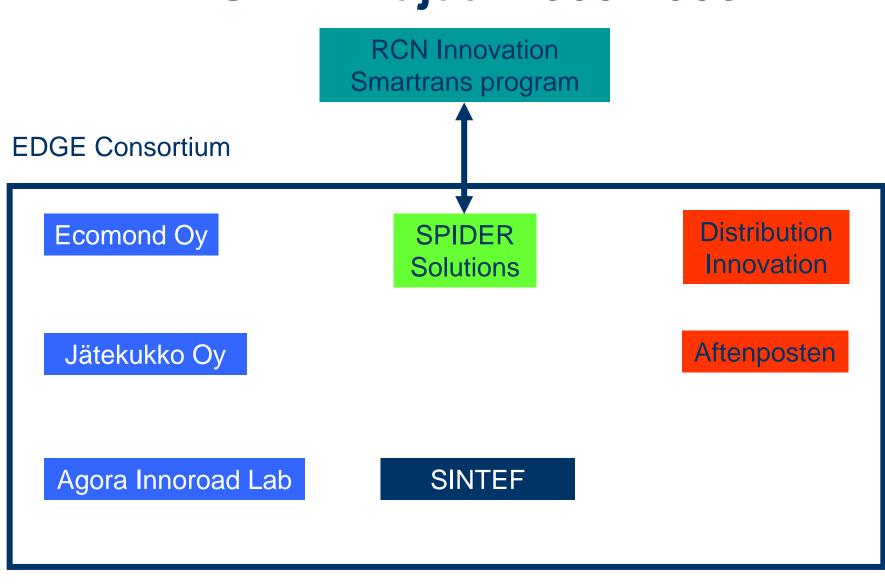
- Industrial Contracts since 1995
- Strategic Research
 - European Commission FP III, IV, V (e.g., GreenTrip 1996-1999)
 - Norwegian Research Council (RCN)
 - Internal Projects, students
- Generic VRP Solver SPIDER (1995 \rightarrow)
 - Commercialization from 1999
 - GreenTrip AS → SPIDER Solutions AS
- TOP Programme 2001-2004 (RCN) <u>http://www.top.sintef.no/</u>
 - Basic Research on Rich VRP and related problems
 - VRPTW
 - Shortest Path Problem in Dynamic Road Topologies
- Innovation Projects supported by Reserch Council of Norway
 - "I Rute" (2001 2004) Bulk transportation
 - "DOiT" (2004 2007) Stochastic and Dynamic Routing
 - "EDGE" (2005 2008) Huge Scale "Household" Routing
 - Effect (2008-2011) Distribution of media products
- Ship routing


SPIDER Designer - Applications

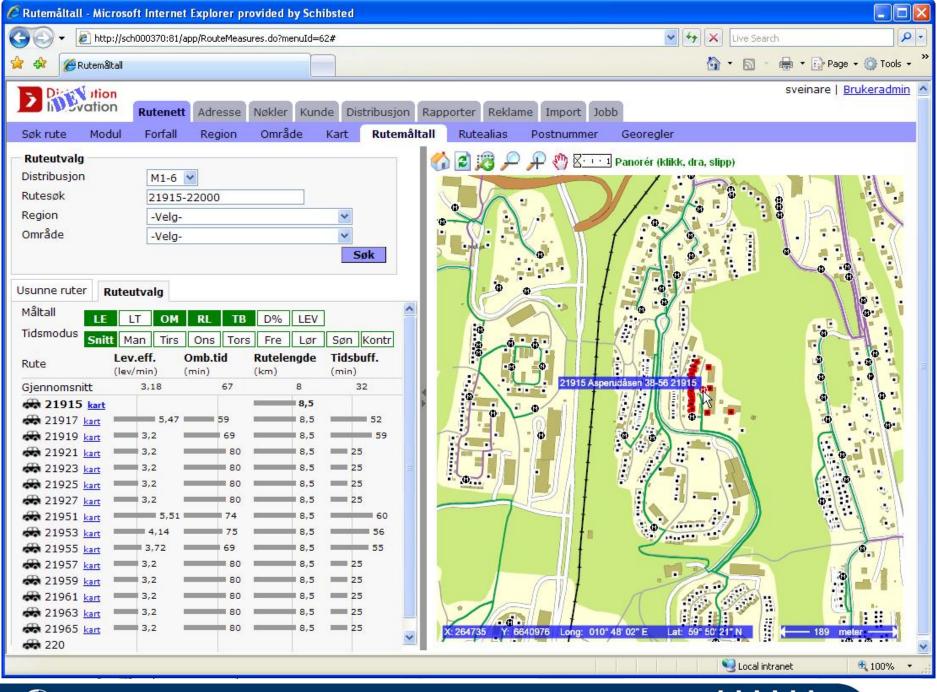

- Local pickup and delivery (Schenker)
- Mail collection and distribution (Posten Norge)
- Newspaper distribution, 1st tier (Aftenposten, Dagbladet)
- Newspaper distribution, last mile (Aftenposten, Stavanger Aftenblad)
- Distribution of magazines (Bladcentralen)
- Distribution of fodder to farms (Landbruksdistribusjon)
- Collection of milk from farms (TINE)
- Distribution of bread (Bakers)
- Distribution of groceries (REMA 1000)
- Distribution of ice cream (Diplom Is; Hennig Olsen)
- Distribution of fuel oil (Hydro Texaco)
- Location analyses, depot (obnoxious facility location, Norsk Gjenvinning AS)

- Distribution of blood (Ullevål sykehus)
- Dial-a-ride, elderly, hospital patients (Nor-Link)
- Savings 5-35%, depending on application

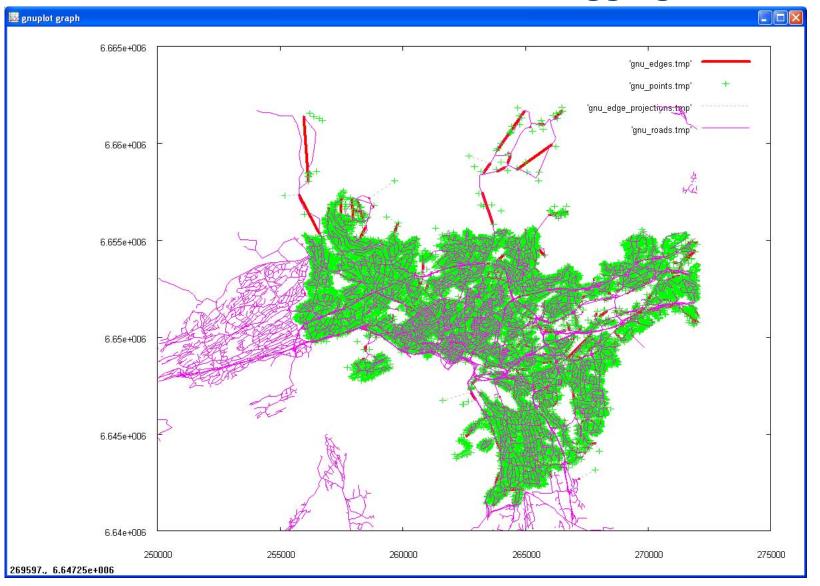
Products - architecture



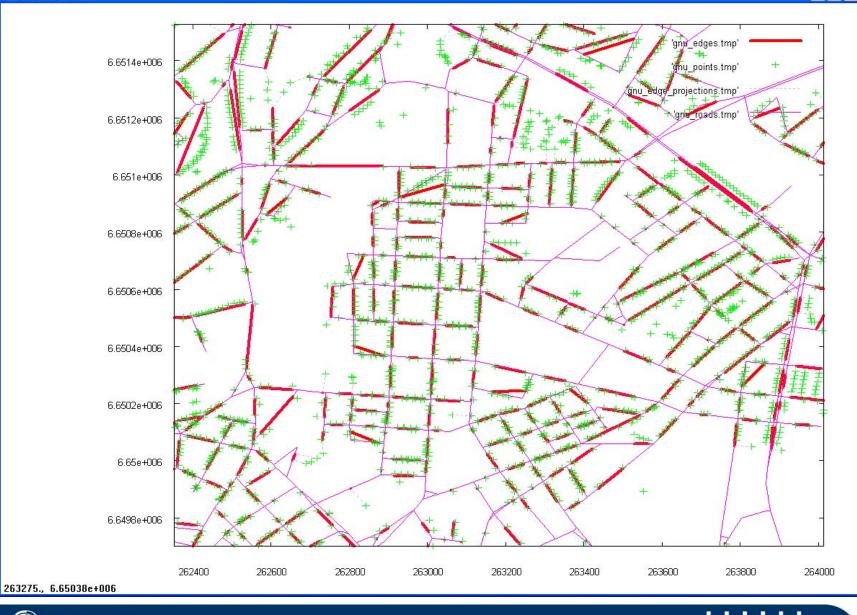
- Dynamic and stochastic vehicle routing
- Uncertainty, mainly in travel time and load
- Inferring speed models from measurements
- Learning from historical data, Bayesian networks
- User Managed Innovation Project (2004–2007)
- Total budget ~16 MNOK, 1/3 RCN

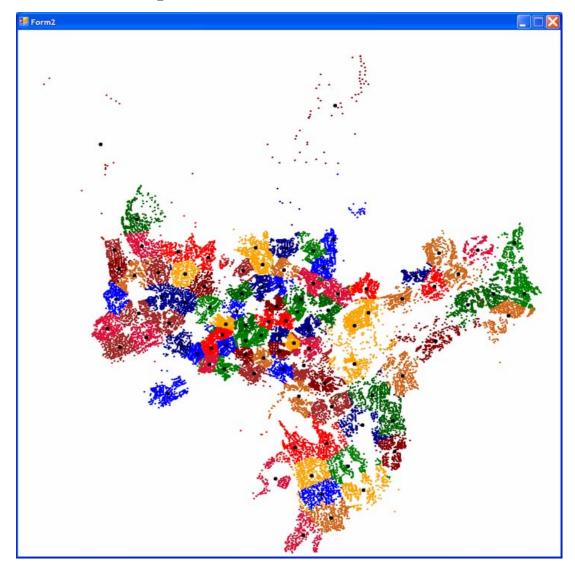


EDGE – Project 2005-2008


ICT

Case: Oslo data from Aftenposten


33.200 orders reduced to 5600 aggregates


💹 gnuplot graph

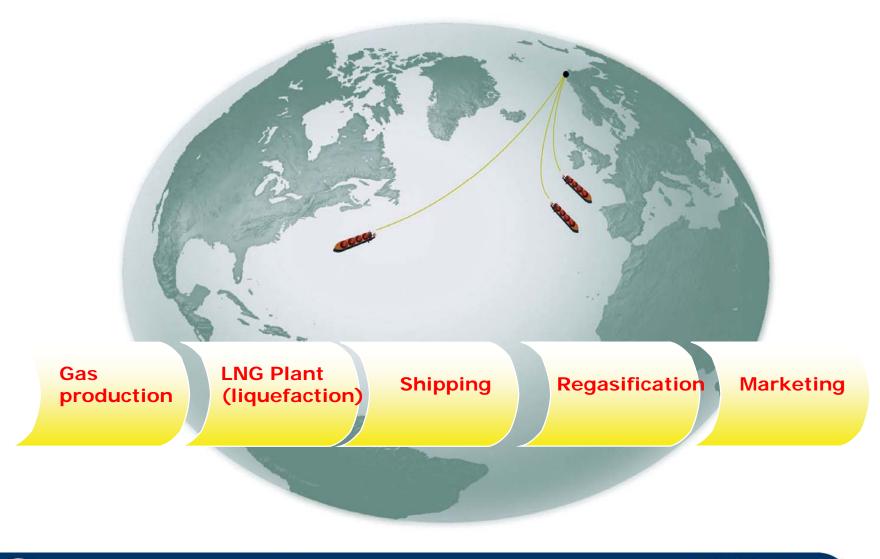
35.000 orders – Aftenposten in Oslo Decomposition into some 100 sub-areas

Effekt (2008-2011)

- follow-up of EDGE, distribution part
- Distribution Innovation AS
- Aftenposten Distribusjon AS
- RMD AS
- Edda Media AS
- Norkart AS
- Agora Innoroad Laboratory, Univ. Jyväskylä
 SINTEF ICT

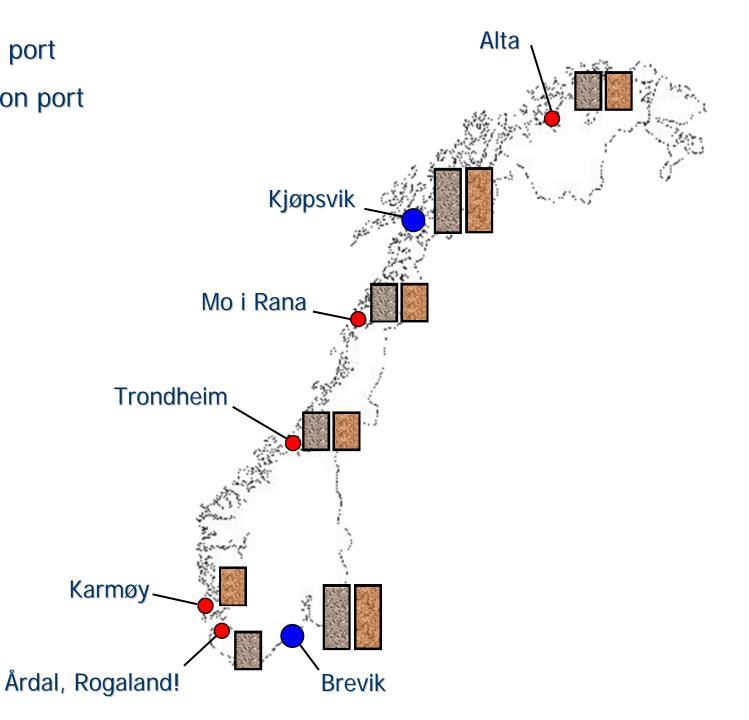
Maritime transportation and logistics

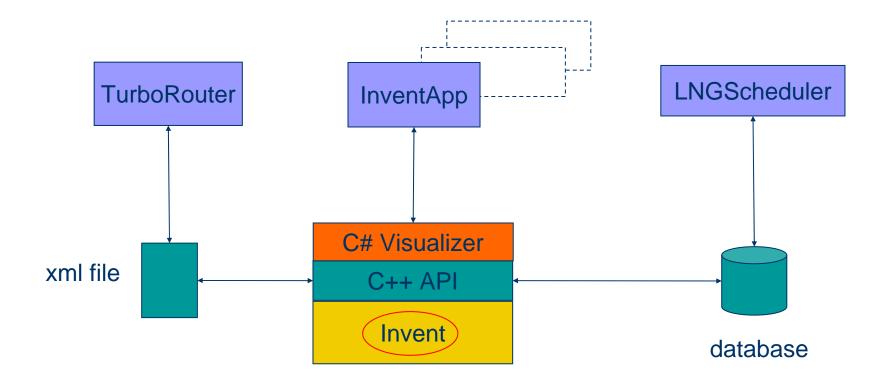
- SINTEF-funded strategic project (11 MNOK, 2005-2008)
- MARINTEK, SINTEF T&S, SINTEF ICT, NTNU
- Large, internationally well reputed group
- Generic maritime inventory routing
- Liquefied Natural Gas value chain
- Optimized liner shipping
- 33 MNOK projects portfolio
 - Broström Tankers (soon to be Maersk)
 - StatoilHydro
 - Gas de France / Suez Energy
 - DnVeritas
 - Saga Forest Carriers
 - Höegh Autoliners
 - partly funded by RCN


Invent – SINTEF ICT

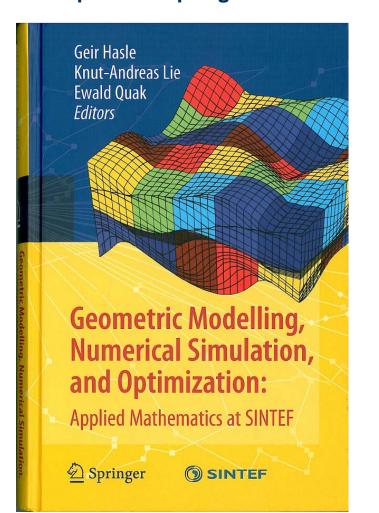
Generic sw library to solve Inventory Routing Problems

- Primary focus on routing and inventories
- Extended with bookings and contracts
- Three applications used as pilot studies
 - Cement multiple products, short horizon, no spot
 - Chemical tankers tramp and inventory, multiple products, tank handling, cleaning
 - LNG single product, long term, contracts, full load


LNG value chain



- Consumption port
- Product 1
- Product 2


Invent - integration

ICT

 Hasle, Geir; Lie, Knut-Andreas; Quak, Ewald (Eds.) Geometric Modelling, Numerical Simulation, and Optimization: Applied Mathematics at SINTEF 2007, XI, 558 p. 162 illus., 59 in color., Hardcover. ISBN: 978-3-540-68782-5 http://www.springer.com/

Applied Optimization at SINTEF

Chief Scientist, Dr. scient. Geir Hasle SINTEF ICT, Oslo, Norway

Invited talk

University of Jyväskylä October 9 2008

