
hetcomp.com

Johan Seland

1

SINTEF Petroleum Development Workshop – Session 3

Trondheim - 9. December 2010

Parallel Programming Patterns

hetcomp.com 2

• Introduction and vocabulary

• Limits to performance

• Amdahls Law vs Gustafson Law

• Concurrency

• Domain decomposition

• Task parallelism

• Synchronization

• Fences

• Barriers

• Mutex es

• Semaphores

• Testing parallel programs

Overview

hetcomp.com 3

A Pattern is:

• General

• Reusable

• Based on a proven design

• Not directly translatable into code

• Originated in architecture

• Christopher Alexander 1977

• Now part of the Software Eng. Vocabulary

• Gang of Four, 1987

• There is also Anti-Patterns

A word about patterns

hetcomp.com 4

• Task

• Sequence of instructions that operate together

• Thread (process)

• An executing task

• Core

• The underlying hardware executing a thread

• Load balancing/scheduling

• The mapping of threads to cores

• Race condition

• The outcomes varies as the scheduling of threads varies

• Deadlock

• A cycle of threads that are waiting on each other

• Critical section

• Part of task that access a common resource

Vocabulary

hetcomp.com 5

• Single Instruction, Single Data (SISD)

• A sequential computer

• Example: Mobile phones, low-end laptops

• Single Instruction, Multiple Data (SIMD)

• A single instruction applied to multiple data streams

• Example: Vector unit of CPUs, some GPUs

• Multiple Instruction, Single Data (MISD)

• Multiple instructions on a single data stream.

• Example: Fault tolerant systems (space shuttle)

• Multiple Instruction, Multiple Data (MIMD)

• Multiple processors simultaneously executing different instructions on different data

• Example: Multi-Core CPUs, clusters, some GPUs

Flynns Taxonomy of Computer Systems

Most TOP500

supercomputers

are based on

MIMD

hetcomp.com 6

Limits to performance

hetcomp.com 7

• Presented by Gene Amdahl in 1967

• Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities

• Find maximum expected improvement performance

• Overly pessimistic in practice

• Contradicted by Gustafsons Law

• Result: Theoretical speedup is limited by serial part of code

Amdahls Law

hetcomp.com 8

• Total running time of serial program is given by:

• Using P processors we get:

• The relative speedup is:

TTTT finalcomputesetuptotal
)1()1(

(1)
()

compute

total setup final
P

P

T
T T T

(1)
()

()

total

total

T
S P

T P

Amdahls Law - Equations

hetcomp.com 9

• The serial fraction is:

• Inserting this into S(P) give Amdahls Law:

(1)
()

()

total

total

T
S P

T P

1
1)

,
(

0
setup final

total

T T

T

1

1

()
(

(1)

(1)

1

)

total

taP l

P

to

T
S P

T

Amdahls Law - Equations II

hetcomp.com 10

• Assume an infinite number of processors

• The maximum performance increase is bound by the serial fraction

1

1

1
lim () lim
P P

P

S P

Amdahls Law - Equations III

hetcomp.com 11

-

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

20,00

1 16 256 4 096

Sp
e

e
d

u
p

cores

10 %

50 %

75 %

90 %

95 %

99 %

Parallel Portion

Plot of Amdahls law

Logarithmic scale

hetcomp.com 12

• Amdahls law does not incorporate increased problem size

• We are interested in solving the largest possible problem in reasonable time

• Assume γ is independent of P

• S is then linear in P

()

(1 ()

(

(

)

1)

)

total setup compute final

setup final

scaled

total

scaled scaled

T P T

T T

P

T P T

T

S P P

Gustafson Law

hetcomp.com 13

-

500,00

1 000,00

1 500,00

2 000,00

2 500,00

3 000,00

3 500,00

4 000,00

4 500,00

- 500 1 000 1 500 2 000 2 500 3 000 3 500 4 000 4 500

Sp
e

e
d

u
p

cores

10 %

50 %

75 %

90 %

95 %

99 %

Parallel Portion

Plot of Gustafson law

hetcomp.com 14

-

500,00

1 000,00

1 500,00

2 000,00

2 500,00

3 000,00

3 500,00

4 000,00

4 500,00

- 500 1 000 1 500 2 000 2 500 3 000 3 500 4 000 4 500

Sp
e

e
d

u
p

cores

Gustafsons Law

-

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

20,00

1 16 256 4 096

Sp
e

e
d

u
p

cores

Amdahls Law

Logarithmic scale

hetcomp.com 15

• Experience shows that Amdahls law is overly pessimistic

• But you will always have some serial parts

• Many real world scenarios demonstrate almost linear speedup

• Some cases see superlinear speedup!

• Both models are simplified

• Parallelism also introduces overhead

• Don’t forget Donald Knuth: Premature Optimization is the root of all evil

• Is the potential speedup worth the extra effort?

• Up front and maintenance wide?

Dicussion

hetcomp.com 16

Concurrency

hetcomp.com 17

Definition of CONCURRENCE

a : the simultaneous occurrence of events or circumstances

b : the meeting of concurrent lines in a point

Definition of CONCURRENT

a : operating or occurring at the same time

b : running parallel

from Merriam Webster

Concurrency

http://www.merriam-webster.com/dictionary/concurrent
http://www.merriam-webster.com/dictionary/parallel[1]

hetcomp.com 18

• Concurrency can be found at many levels

• Concurrency exists in two forms:

1. Data parallel

2. Task parallel

• Not mutually exclusive

• A complex program will have both

• The line between them is blurred

Concurrency

hetcomp.com 19

• The same task is executed as many threads on different pieces of the data

• Examples:

• Rendering

• (Dense) linear algebra

• FFTs

• Max/Min computations

• Web servers

• Databases

Data parallelism

hetcomp.com 20

• Different, independent tasks

• Linked by sharing data

• Examples:

• GUI code

• Logging

• Loading data

• Writing data

• Networking

• Monitoring data?

• Hard to find enough tasks to scale to 10++ cores

Task parallelism

hetcomp.com 21

• Concurrency should be identified early

• #Cores on target hardware should be known before choosing algorithm

• Good serial algorithms seldom make good parallel ones

Discussion

hetcomp.com 22

Synchronization

hetcomp.com 23

• Most parallel programs require tasks to communicate

• Synchronization must be explicitly handled

• Difficult to enforce automatically

• Threads are assumed to follow an agreed upon protocol

• Synchronization is expensive

• Slows down the program

• Common source of bugs

• Hard to find

• Hard to reproduce

Synchronization

hetcomp.com 24

int getNextId() {

static int lastIdUsed = 0;

return ++lastIdUsed;

}

• Assume two threads call getNextId()

Illustrating the problem

Thread one Thread two lastIdUsed

43 44 44

44 43 44

43 43 43

hetcomp.com 25

• Modern CPUs have complex cache hierarchies

• Typically three levels deep

• A fence ensures that all threads have a consistent view of memory

• Typically invoked by higher level primitives

• Only meaningful in a shared memory setting

Memory fences

RAM

Level 2

Level 1 Level 1

Thread 1:
v[i] = 42;

Thread 2:
foo(v[i]);

v[i]

v[i]

v[i]v[i]

hetcomp.com 26

• Synchronization point:

• Every thread must arrive before continuing

• Typically used at the end of an iteration

• Explicitly written by the programmer

• Useful in cluster and shared memory processing

Barriers

hetcomp.com 27

• Mutex = Mutual Exclusion

• Protects against the simultaneous use of a common resource

• Example: global variable, network card, write to file

• The mutex is a lock that protects the resource

• Threads must acquire the mutex before entering a critical section

• If the mutex is busy the thread must wait (spin on the lock)

• Remember to release the mutex!

• Coding a mutex is not trivial – use libraries (which generally use HW)

Mutex

hetcomp.com 28

int main() {

omp_lock_t lock;

omp_init_lock(&lock);

#pragma omp parallel shared (lock)

{ // non-critical section

omp_set_lock(&lock);

// critical section…

omp_unset_lock(&lock);

// non-critical section

}

}

OpenMP Lock Example
Declare and init lock

Wait or Aquire

lock

Release lock

hetcomp.com 29

• Controls access to common resources (note the plural form)

• Records how many units of a resource is available (counting semaphore)

• Hands out a permit to the resource

• Example:

• A library with ten study rooms and ten keys

• A librarian (semaphore) hands out keys to the rooms

• Students (threads) must wait if there are no free keys

• A mutex can be seen as a binary-semaphore

• A mutex has the concept of a “owner”

Semaphores

hetcomp.com 30

• An object designed to be safely used by several threads

• Often implemented using mutex/semaphores

• Java, C# has language support

• Monitors often have mechanism for signaling callers when they are “ready”

• Mutex/Semaphore: caller is responsible

• Monitor: callee is responsible

Monitors

hetcomp.com

Release lock before

returning

31

class A {

private:

Lock l;

int lastIdUsed;

public:

int getNextId() {

l.aquire();

int id = ++lastIdUsed;f

l.release();

return id; }

}

}

Monitor example

int main() {

A a;

int id = a.getNextId();

}

Client code does need not

worry about locking

hetcomp.com 32

• Notoriously hard

• Ensure unicore algorithm is correct

• Parameterize the “test space” – make it as big as possible

• Vary number of cores

• Vary hardware platform

• Vary compiler settings

• Vary input data

• Run tests in different order

• Run automatically

Debugging and testing parallel programs

hetcomp.com 33

• Synchronization protocol must be agreed upon

• Common source of bugs

Conclusion

hetcomp.com 34

Reading list

