
2016-12-30

 A27972- Unrestricted

Report

The FLUIDE Specification Languages with
an Accompanying Method

Author(s)

Erik Gøsta Nilsson
Ketil Stølen

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final 2 of 136

Table of contents

1 Introduction .. 6

2 The FLUIDE Specification Languages ... 7

2.1 Main Principles ... 7

2.2 Main Constructs in FLUIDE-A ... 9

2.3 Main Constructs in FLUIDE-D ... 12

3 The FLUIDE-A Language ... 15

3.1 Interactor ... 16

3.1.1 Graphical Syntax .. 16

3.1.2 Abstract Syntax .. 17

3.2 Basic Content Presenter ... 18

3.2.1 Graphical Syntax .. 18

3.2.2 Abstract Syntax .. 18

3.2.3 Semantics ... 20

3.2.4 Example ... 23

3.2.4.1 EBNF Specification ... 23

3.2.4.2 Semantics of the EBNF Specification ... 23

3.3 Aggregated Content Presenter .. 25

3.3.1 Graphical Syntax .. 25

3.3.2 Abstract Syntax .. 26

3.3.3 Semantics ... 27

3.3.4 Example ... 28

3.3.4.1 EBNF Specification ... 28

3.3.4.2 Semantics of the EBNF Specification ... 29

3.4 Task Supporter ... 32

3.4.1 Graphical Syntax .. 32

3.4.2 Abstract Syntax .. 32

3.4.3 Semantics ... 33

3.4.4 Example ... 34

3.4.4.1 EBNF Specification ... 34

3.4.4.2 Semantics of the EBNF Specification ... 34

3.5 Basic Work Supporter .. 35

3.5.1 Graphical Syntax .. 35

3.5.2 Abstract Syntax .. 35

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final 3 of 136

3.5.3 Semantics ... 36

3.5.4 Example ... 38

3.5.4.1 EBNF Specification ... 39

3.5.4.2 Semantics of the EBNF Specification ... 40

3.6 Aggregated Work Supporter .. 41

3.6.1 Graphical Syntax .. 41

3.6.2 Abstract Syntax .. 41

3.6.3 Semantics ... 43

3.6.4 Example ... 45

3.6.4.1 EBNF Specification ... 45

3.6.4.2 Semantics of the EBNF Specification ... 46

3.7 Category Manager ... 48

3.7.1 Graphical Syntax .. 48

3.7.2 Abstract Syntax .. 48

3.7.3 Semantics ... 49

3.7.4 Example ... 50

3.7.4.1 EBNF Specification ... 50

3.7.4.2 Semantics of the EBNF Specification ... 50

4 The FLUIDE-D Language ... 51

4.1 Interactor Design ... 51

4.1.1 Graphical Syntax .. 51

4.1.2 Abstract Syntax .. 53

4.2 Views .. 54

4.2.1 Graphical Syntax .. 54

4.2.1.1 Decorational View ... 54

4.2.1.2 Layout Manager View .. 55

4.2.1.3 Content View ... 55

4.2.1.4 Content Integration View .. 57

4.2.1.5 Interactor Design View .. 58

4.2.1.6 Dialog navigation ... 58

4.2.1.7 Example ... 59

4.2.2 Abstract Syntax .. 59

4.2.2.1 Decorational View ... 62

4.2.2.2 Layout Manager View .. 62

4.2.2.3 Content View ... 62

4.2.2.4 Model Patterns Used in Content Views ... 66

4.2.2.5 Content Integration View .. 68

4.2.2.6 Interactor Design View .. 69

4.2.2.7 Dialog navigation ... 69

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

4 of 136

4.2.3 Semantics ... 70

4.2.3.1 Decorational View ... 73

4.2.3.2 Layout Manager View .. 74

4.2.3.3 Content View ... 75

4.2.3.4 Model Patterns Used in Content Views ... 89

4.2.3.5 Content Integration View .. 91

4.2.3.6 Interactor Design View .. 95

4.2.3.7 Dialog navigation ... 96

4.3 Basic Content Presenter Design ... 98

4.3.1 Graphical Syntax .. 98

4.3.2 Abstract Syntax .. 99

4.3.3 Semantics ... 101

4.3.4 Example ... 102

4.3.4.1 EBNF Specification ... 102

4.3.4.2 Semantics of the EBNF Specification ... 103

4.4 Aggregated Content Presenter Design .. 105

4.4.1 Graphical Syntax .. 105

4.4.2 Abstract Syntax .. 106

4.4.3 Semantics ... 107

4.4.4 Example ... 107

4.4.4.1 EBNF Specification ... 107

4.4.4.2 Semantics of the EBNF Specification ... 108

4.5 Task Supporter Design ... 109

4.5.1 Graphical Syntax .. 109

4.5.2 Abstract Syntax .. 109

4.5.3 Semantics ... 110

4.5.4 Example ... 111

4.5.4.1 EBNF Specification ... 111

4.5.4.2 Semantics of the EBNF Specification ... 111

4.6 Basic Work Supporter Design... 113

4.6.1 Graphical Syntax .. 113

4.6.2 Abstract Syntax .. 113

4.6.3 Semantics ... 115

4.6.4 Example ... 115

4.6.4.1 EBNF Specification ... 115

4.6.4.2 Semantics of the EBNF Specification ... 116

4.7 Aggregated Work Supporter Design .. 117

4.7.1 Graphical Syntax .. 117

4.7.2 Abstract Syntax .. 117

4.7.3 Semantics ... 119

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

5 of 136

4.7.4 Example ... 119

4.7.4.1 EBNF Specification ... 119

4.7.4.2 Semantics of the EBNF Specification ... 120

4.8 Category Manager Design .. 122

4.8.1 Graphical Syntax .. 122

4.8.2 Abstract Syntax .. 122

4.8.3 Semantics ... 124

4.8.4 Example ... 124

4.8.4.1 EBNF Specification ... 124

4.8.4.2 Semantics of the EBNF Specification ... 124

5 The FLUIDE Method ... 126

5.1 Part 1 – Specifying user interfaces with FLUIDE-A ... 126

5.1.1 Step 1.1. Identify users/roles ... 126

5.1.2 Step 1.2. Identify work and task structure .. 127

5.1.3 Step 1.3. Determine tasks that need ICT support ... 127

5.1.4 Step 1.4. Determine information needs for task ... 127

5.1.5 Step 1.5. Choose, adapt or specify Content Presenter .. 127

5.1.6 Step 1.6. Consolidate Content Presenters ... 128

5.1.7 Step 1.7. Specify Task Supporters .. 129

5.1.8 Step 1.8. Specify Work Supporters .. 129

5.1.9 Step 1.9. Consolidate Work Supporters .. 129

5.1.10 Step 1.10. Specify Category Managers .. 129

5.2 Specifying user interfaces with FLUIDE-D .. 130

5.2.1 Step 2.1. Choose platforms, modalities and styles to use for each role 131

5.2.2 Step 2.2. Determine platforms, modalities and styles deviations for work 131

5.2.3 Step 2.3. Determine platforms, modalities and styles deviations for tasks 132

5.2.4 Step 2.4. Specify Content Presenter Designs ... 132

5.2.5 Step 2.5. Specify Task Supporter Designs .. 132

5.2.6 Step 2.6. Specify Work Supporter Designs .. 133

5.2.7 Step 2.7. Specify Category Manager Designs .. 133

References ... 135

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

6 of 136

1 Introduction

We have developed the FLUIDE Framework to support development of flexible user interface supporting

emergency responders. This framework contains a number of parts, as shown in Figure 1.1.

FLUIDE Framework

FLUIDE Specification Languages
FLUIDE

specification

User interface part of
traditional emergency
response application

FLUIDE
Transformation

Approach

Collection of emergency response components

Component ...Component ...FLUIDE Component

FLUIDE Composition and Configuration
Approach

User interface part of
flexible emergency
response solution

FL
U

ID
E

 M
e

th
o

d

Figure 1.1. Overview of the FLUIDE Framework

The current version of the FLUIDE Framework is a first prototype. The most mature part of the FLUIDE

Framework is the FLUIDE Specification Languages, denoted FLUIDE-A and FLUIDE-D. FLUIDE-A is

used for expressing abstract user interface specifications, denoted FLUIDE-A specifications, while FLUIDE-

D is used for expressing how FLUIDE-A specifications should be presented on different targets, denoted

FLUIDE-D specifications. A target is an arbitrary combination of platform, type, style and modality used in

a running user interface.

In this report, we provide a detailed definition of these two specification languages. When defining,

describing and discussing languages, it is common to make a distinction between the syntax, semantics and

pragmatics of the language at hand.

In the context of specification languages, as well as other artificial languages, the syntax describes the set of

legal expressions. It is common to make a distinction between the concrete and abstract syntax of such

languages. The concrete syntax may be textual, graphical, or even implicitly available by the user interface

of a tool employed to express specifications in the language. The abstract syntax is usually expressed through

a meta model and/or a definition in Extended Backus-Naur Form (EBNF). The concrete syntax of the

FLUIDE Specification Languages is expressed using a graphical syntax. The abstract syntax is defined in

EBNF, supported by concept models explaining how the constructs relate to each other in each of the

languages. The graphical and abstract syntax for FLUIDE-A and FLUIDE-D is presented in Section 3 and 4

respectively, including examples illustrating how specifications are expressed in the graphical and abstract

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

7 of 136

syntax. The presentation of the syntax focuses on the different constructs in the languages. Before providing

the details in Section 3 and 4, we present the rationale behind using the chosen constructs, definitions of the

constructs, as well as other main principles in Section 2.

Semantics are concerned with the meaning of the legal sentences or expressions in a language. For

specification languages, the semantics may be defined through different formal definitions which enables

conducting formal reasoning and even proving different aspects of a language. Another approach is to define

the semantics through implementing a compiler or an interpreter enabling expressions in a language to be

executed. With this approach the semantics is defined through how it is executed. A third approach is to

define a translation from the language at hand to a different language whose semantics is formally defined or

well known. We have applied the third approach through defining the semantics of the FLUIDE

Specification Languages as a set of production rules translating expressions in EBNF to English sentences.

These production rules are defined for FLUIDE-A and FLUIDE-D in Section 3 and 4 respectively, including

examples of the English sentences corresponding to specifications expressed in EBNF.

The pragmatics of languages deals with how the languages are used. For artificial languages, it is common to

focus on how they should be used. A typical way of operationalizing this is through a method. In Section 5

we present the parts of the FLUIDE Method giving guidance on how to use the FLUIDE Specification

Languages. There is one part for each of the two languages.

2 The FLUIDE Specification Languages

In this section, we provide an introduction to the FLUIDE Specification Languages. We start by outlining the

main principles applied in the design of the languages. Then we present the main constructs in the languages,

and related concepts used when describing them.

2.1 Main Principles

FLUIDE provides two specification languages: FLUIDE-A for expressing abstract (platform-independent)

user interface (AUI) (Calvary et al., 2003), and FLUIDE-D for expressing concrete (platform-specific) user

interface (CUI) specifications.

In Figure 2.1 we give a schematic overview of a FLUIDE-A specification.

Two FLUIDE-A constructs embed models expressing the intension of the user interface, one focusing on

hierarchical and temporal structure among the tasks the user perform (task model) (Paternò, 1999; Wilson

and Johnson, 1996) the other on the structure of the information to be presented (concept model) (OMG,

2008). Other constructs only specify compositions. Neither of the constructs offer any means for specifying

Figure 2.1. Content of FLUIDE-A specifications

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

8 of 136

user interface components or controls, but possible aspects regarding the rendering of the intended user

interfaces may be specified in annotations.

FLUIDE-D designs refine FLUIDE-A specifications for certain platforms, styles and modalities. These

designs add a more concrete specification of the structure of the user interface through different view types.

Content Views specify how the extent of a model fragment is presented. Figure 2.2 shows the connection

between Content Views and specifications in FLUIDE-A and FLUIDE-D. Such views provide means for

specifying quite advanced designs in a very compact way through exploiting a combination of user interface

patterns Borchers (2001) and model patterns (Gamma et al., 1994).

Figure 2.2. Content views in FLUIDE-D specifications

As FLUIDE-D is based on needs in the emergency response domain, the available views are ones considered

particularly useful in this domain. The views provide versatility through being based on model patterns. This

means that the views may be used to specify advanced user interfaces managing a wide variety of

information as long as the information to be presented has a structure that matches the model patterns used in

the view. For example the Map Icons View provides means for specifying an icon-based presentation of any

type of information in a map user interface as long as the model follows a given structure (including

providing locations). This view may thus just as well be used for presenting incident objects, resources,

victims, important locations or risks. Thus, such views combine being specialized and powerful with regard to

emergency response needs with being versatile with regard to the actual information they present.

FLUIDE uses a hybrid approach for domain support, as illustrated in Figure 2.3. All the constructs in

FLUIDE-A, and the corresponding design constructs in FLUIDE-D are generic. FLUIDE does nevertheless

provide specific support for the emergency response domain through view types in FLUIDE-D that support

user interface patterns that are particularly useful in the emergency response domain. These views are constructs

in FLUIDE-D, and thus they are a domain-specific part of FLUIDE-D. But as they reflect certain user

interface patterns, and are named after these user interface patterns rather than after emergency response

specific concepts, we consider them a library of emergency response user interface patterns. This is also

supported by the versatility provided through the use of model patterns. Emergency response user interfaces

also benefit from user interface designs that are not made specifically for the domain. Thus, FLUIDE-D

contains generic views (reflecting user interface patterns and supporting model patterns) in addition to the

domain-specific ones.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

9 of 136

Figure 2.3. Domain support in FLUIDE

2.2 Main Constructs in FLUIDE-A

The user interface of an emergency response application must support the work performed by emergency

responders. The four main language constructs in FLUIDE presented as rounded rectangles in Figure 2.4

support a natural breakdown of emergency response work, presented as ordinary rectangles.

We use the term interactor construct to refer to these constructs in FLUIDE-A and interactor design

construct to refer to the corresponding constructs in FLUIDE-D. The CAMELEON glossary (CAMELEON,

2003) provides this definition of interactor:

Interactor: A computational abstraction that allows the rendering and manipulation of entities (domain

concepts and/or tasks) that require input and output resources.

Based on this definition we define interactor construct:

By interactor construct we mean a language construct for specifying interactor instances, operationalized as

one of the four main construct in FLUIDE-A, i.e. either Content Presenter, Task Supporter, Work Supporter

or Category Manager.

Figure 2.4. Overview of the main constructs in FLUIDE-A

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

10 of 136

When a systems developer uses the FLUIDE-A to specify the user interface of an application, the developer

makes instances of the interactor constructs. We denote such specifications interactor instances.

By interactor instance we mean the concrete use of an interactor construct as part of a specification of a user

interface.

Two of the interactor constructs, i.e. Content Presenter and Work Supporter have an associated domain

model. As these models may be part of larger domain models we denote them model fragments.

By model fragment we mean a domain model or part thereof. We denote a model fragment expressed in a

task modelling notation a task model fragment. We denote a model fragment expressed in a concept

modelling notation a concept model fragment.

Emergency response work can be categorized with respect to responder types, responder roles and high level

tasks, as well as combinations of these. In FLUIDE-A, the Category Manager construct supports the

specification of a whole application, or some part of it if the application supports more than one category of

functionality (Nilsson and Stølen, 2011).

By Category Manager we mean a construct that makes it possible to specify a placeholder for a part of a user

interface supporting a category of functionality within a specific application domain, supporting different

type of work related to the category.

A category of functionality supports certain work performed by emergency responders. Such work can be

divided into tasks on different levels. These tasks may be categorized both in a hierarchical goals/means

structure and through temporal constraints between sets of tasks. Such task structures are specified using the

Work Supporter construct, which includes a task model to specify hierarchical and temporal structures.

By Work Supporter we mean a construct that makes it possible to define a placeholder for a part of a user

interface supporting certain work within a specific application domain, as expressed in a connected task

model fragment.

FLUIDE-A provides two kinds of Work Supporter constructs, i.e. basic and aggregated. Aggregated Work

Supporters aggregate other Work Supporters (basic or aggregated). To be denoted connected, a task model

fragment used in a Work Supporter must meet some constraints.

By connected task model fragments we mean a task model fragment containing at least one task, where all

tasks in the task model fragment are part of the same hierarchical structure.

To be consistent with the vocabulary used in relation to concept model fragments below, we also introduce

the term task anchor.

By task anchor we mean the root task of a connected task model fragment.

A user interface supporting one of the tasks in the task model of a Work Supporter needs to manage certain

information content that is relevant for solving the task. The information needs of individual tasks are

specified using the Task Supporter construct.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

11 of 136

By Task Supporter we mean a construct that makes it possible to define a placeholder for a part of a user

interface supporting a specific task in a specific application domain.

The task supported by a Task Supporter is usually part of at least one task model associated with a Work

Supporter. How the information content used in a Task Supporter is further broken down and structured in a

(part of a) user interface is specified using the Content Presenter construct.

By Content Presenter we mean a construct that makes it possible to define a placeholder for a part of a user

interface within a specific application domain, presenting instances reflecting a connected concept model

fragment.

FLUIDE-A provides two kinds of Content Presenter constructs, i.e. basic and aggregated. Aggregated

Content Presenters aggregate other Content Presenters (basic or aggregated). The information to be presented

by a Content Presenter is specified through a concept model where all entities1 are connected through

relations (directly or indirectly).

By connected concept model fragment we mean a concept model fragment containing at least one entity,

where all entities are either directly or indirectly associated to all other entities in the model fragment.

A model fragment containing exactly one entity is connected. In a UML class model, a connected model

fragment is a network, where the nodes are the entities and the edges are any of UMLs association types.

Figure 2.5 (adapted from Nilsson (2010)) contains an example of a concept model containing three

connected model fragments, indicated by the dashed outlines. As can be seen from the example, one of the

model fragments contains a single entity with no associations to other entities.

1 Some modelling notations use other terms. E.g., UML class diagrams use the term class. We use entity in its meaning
as a natural language concept, and not restricted to the way it is used in Entity-Relationship modelling notation.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

12 of 136

 *

1

1

*

1

*

*

1

1

*

 *

1
location (usually point)

Local Base

Local CP
Other Local

base
Check point

location (usually area)

Operational Area

location (point or area)
secure distance

Scene of Incident

location (line or area)

Cordon

 *
1

temperature
wind
actual forecast
time

Weather

Hazard

Gaz leak

description

Type of gaz

location (point)
name
status

Involved Person

 1 *
location (usually point)
of persons involved
of persons injured
responsible

Involved Object

Owner Cargo

*

Figure 2.5 - Example model with three connected model fragments

A connected concept model fragment has an entry point, denoted an entity anchor.

By entity anchor we mean one specific entity in a connected concept model fragment that will be used to

transform the model fragment to a hierarchical structure.

In order to determine the instances to present in a final user interface based on a Content Presenter at run-

time, the connected concept model fragment (which in the general case is a network) must be transformed to

a hierarchy with the anchor entity as the root. The anchor is also needed when composing Content Presenters

into an Aggregated Content Presenter.

2.3 Main Constructs in FLUIDE-D

FLUIDE-D contains variants of the four main constructs in FLUIDE-A, using the same names with the

suffix Design. The interactor design constructs in FLUIDE-D are used to specify which parts of the domain

and task models that are to be included in a final user interface (FUI). The main role of FLUIDE-D is to

provide the means for specifying enough additional information to the FLUIDE-A specification to enable a

generic transformation mechanism to generate a final user interface. FLUIDE-D's core is the library of user

interface patterns, operationalized in the View constructs. Views are used to specify how some part a

FLUIDE-A specification is to be presented on a given user interface platform using certain modalities and

user interface styles.

Below, we provide definition for the main constructs for specifying designs in FLUIDE-D.

By interactor design construct we mean a language construct for specifying interactor design instances,

operationalized as one of the four main construct in FLUIDE-D, i.e. either Content Presenter Design, Task

Supporter Design, Work Supporter Design or Category Manager Design.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

13 of 136

By interactor design instance we mean the concrete use of an interactor design construct as part of the

specification of the user interface for an application.

By Category Manager Design we mean a construct that makes it possible to specify how a Category

Manager should be presented on a given user interface platform using certain user interface styles through

wrapping selected designs for a subset of the member Work Supporters, as well as Content Presenters into a

set of views.

By Work Supporter Design we mean a construct that makes it possible to specify how a Work Supporter

should be presented on a given user interface platform using certain user interface styles through wrapping

selected designs for a subset of the member Task and Work Supporters into a set of views.

By Task Supporter Design we mean a construct that makes it possible to specify how a Task Supporter

should be presented on a given user interface platform using certain user interface styles through wrapping

selected designs for a subset of the member Content Presenters into a set of views.

By Content Presenter Design we mean a construct that makes it possible to specify how a Content Presenter

should be presented on a given user interface platform using certain user interface styles through wrapping

one or more subsets of the connected concept model fragment into a set of views.

In the same way as FLUIDE-A, FLUIDE-D provides two kinds of Content Presenter Design and Work

Supporter Design constructs, i.e. basic and aggregated. Aggregated Content Presenter Designs aggregate

other Content Presenter Designs (basic or aggregated), while Aggregated Work Supporter Designs aggregate

other Work Supporter Designs (basic or aggregated).

The functionality offered by a final user interface which is the result of applying a design will typically be

restricted to CRUD (create, read, update, delete) and possible generic functionality for the user interface

style. For example a map based user interfaces will have certain functionality for all information presented in

a given way – like an information window that is displayed when an icon in the map is clicked.

In Figure 2.6 we give a schematic overview of the connection between the specification languages, user

interface specifications made using the languages, and user interfaces generated from the specifications.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

14 of 136

At the language level, FLUIDE-A and FLUIDE-D contain the interactor and interactor Design constructs just

presented. When a systems developer specifies a user interface, the AUI is specified through making a set of

interactor instances. The CUI contains a one or more interactor design instances for each interactor instance.

The final user interface may be automatically generated from the CUI, and consists of a set of user interface

elements on a given platform.

FLUIDE-A

*

1

Abstract user
interface

Element

Interactor
Instance

Interactor

Design

Instance

1 *

1

*

 *1

Final user
interface1

*

UI specifications
made and

generated by
systems developers

FLUIDE-D

*

1

Specification
languages

Interactor
Construct

Interactor

Design

Construct

1

4

1

4

Concrete user
interface

1

*

UI of an application

Figure 2.6. UML class diagram summarizing the FLUIDE specification languages and how they

are connected and used

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

15 of 136

3 The FLUIDE-A Language

In this section, we present the syntax and semantics of the FLUIDE-A language. The syntax is presented

both as a concrete syntax in the form of a graphical syntax, and as an abstract syntax expressed in Extended

Backus-Naur Form (EBNF). The semantics is presented as a natural language semantics giving production

rules which may be used to translate an expression in EBNF to one or more English sentences. For each

interactor construct in FLUIDE-A we provide one example specification. The examples expressed using the

graphical syntax are provided as part of the sections explaining the graphical syntax. The examples

expressed in EBNF and the corresponding English sentences describing the semantics of the example are

presented together directly after the definition of the semantics for the interactor construct at hand.

In the EBNF definition of the abstract syntax, terminal symbols are expressed using bold font, while non-

terminal symbols are expressed using italic font. EBNF operators and brackets are expressed using normal

font. As a convention, all names ending with the word "identifier" should be considered implicitly defined as

alphanumeric identifiers/names for artefacts occurring in a specification written in FLUIDE-A. In the same

way, data types like string, integer, and picture should be considered implicitly defined. Furthermore,

expression should be considered implicitly defined as an arbitrary expression that is given at design-time or

may be determined at run-time based on available information.

The semantics presented in the sections below give production rules which may be used to translate

expressions following the abstract syntax into English sentences. The semantics is defined by a function ⟦ ⟧

that takes a FLUIDE-A expression as argument and returns a fragment of English prose. The production

rules focus on the contents of the produced sentences, not details regarding formatting and grammar. Thus,

line breaks, indents, bullets, etc. that are used in the English text in the examples below are not included in

the rules. The same is the case for capitalization of identifiers, the use of correct verb forms for singular or

plural nouns, as well as delimiters (commas, semicolons and conjunctions) between elements in the

sentences produced from sets of elements in a specification. In the production rules, the EBNF expressions

use the same formatting rules as in the EBNF definitions above, while the fixed English phrases are

expressed using normal font.

As a convention, the semantics of all implicitly defined names in the EBNF (identifiers and expressions)

should be considered implicitly defined as the identifiers/names for artefacts occurring in a specification

written in FLUIDE-A. As a short hand notation in the production rules, the identifiers used for these

elements in the EBNF definition are used to denote their semantics in the production rules. For example

when basic_content_presenter_identifier occurs on the right hand side of the "="-sign in a production rule, it

means the name used for a given presenter in a specification.

As the semantics of the control structures in EBNF ("{…}", "[…]", "…|…", etc.) is defined and well-known,

we inherit this semantics in our production rule. Thus, we take it for given for example that ⟦{…}⟧ by

definition equals {⟦…⟧}.This also means that for example for elements in a specification that may occur zero

or more times, the production rule (or the part of the production rule associated with the set) will only be

applied if there actually are some elements in the set.

We start by giving the syntax and semantics for the interactor construct. This section contains the common

graphical syntax used in FLUIDE-A. Thereafter, the syntax and semantics of the four interactor constructs in

FLUIDE-A (Content Presenter, Task Supporter, Work Supporter and Category Manager) are given in

separate sections for each of the constructs. The Content Presenters and the Work Supporters are presented in

separate sections for the basic and aggregated variants. The Task Supporters and Category Managers are

only available in one variant. When we present the constructs, we start with Basic Content Presenters, and

move up in the aggregation hierarchy finishing with Category Managers.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

16 of 136

3.1 Interactor

This section is primarily a definition of the common graphical syntax for FLUIDE-A. We also provide an

EBNF definition of the abstract syntax for interactors. As there are no terminal symbols in the abstract

syntax, the semantics for all parts of the EBNF definition of the interactor construct is given by the general

rules for the semantics given in the introduction part of Section 3 above.

3.1.1 Graphical Syntax

In the graphical notation, all the interactor constructs in FLUIDE-A use the basic layout shown in Figure 3.1.

Figure 3.1 - Basic layout of the interactor constructs in FLUIDE-A

An interactor instance is represented as a rectangle with a top border resembling a window. The top border

contains the name of the interactor instance, as well as an icon on the top left denoting interactor construct

used and an icon on the top right denoting whether the instance is basic or aggregated. Instances of all

constructs may be basic, while only Content Presenters and Work Supporters may be aggregated. The

content part (canvas) underneath the top border is used for presenting the content of the interactor instance.

The content is different for instances of the different constructs.

Table 3.1 shows the icons used for the four interactor constructs, while Table 3.2 shows the icons used to

denote whether an interactor instance is basic or aggregated.

Table 3.1 – Icons used for the four interactor constructs

Interactor construct Icon

Content Presenter

Task Supporter

Work Supporter

Category Manager

CM

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

17 of 136

Table 3.2 – Icons used to denote whether an interactor instance is basic or aggregated

Interactor construct

variant

Icon

Basic

Aggregated

3.1.2 Abstract Syntax

interactor = content_presenter | task_supporter | work_supporter | category_manager;

content_presenter = basic_content_presenter | aggregated_content_presenter;

work_supporter = basic_ work_supporter | aggregated_ work_supporter;

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

18 of 136

3.2 Basic Content Presenter

In this section, we provide the syntax and semantics of the basic variant of the Content Presenter construct.

3.2.1 Graphical Syntax

The concrete syntax of FLUIDE-A uses a subset of the UML class model syntax (extended with the anchor)

to express the concept models of Basic Content Presenters. In the graphical notation, the concept model is

located in the content part (canvas) of a Basic Content Presenter. Figure 3.2 gives an example of a Basic

Content Presenter, with explanations of certain parts.

Figure 3.2 - A Basic Content Presenter in FLUIDE-A

There is always one anchor in the concept model of a Basic Content Presenter. Platform-independent visual

properties are expressed using UML annotations. The annotations shown in Figure 3.2 specify icons, display

rules, labels and visualizations.

3.2.2 Abstract Syntax

Figure 3.3 provides a concept model explaining the main concepts used when specifying a Basic Content

Presenter.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

19 of 136

Basic Content
Presenter

1

1

has

Connected concept
model fragment

1

*

*

1

1

1

Annotation

Entity
anchor

Annotatable
concpet model

element
Enitity

Attribute

1

*

Relation

*

1..*

to

*

1

from

Method

*

Figure 3.3 – Concept model describing the means for specifying Basic Content Presenters in

FLUIDE-A

A Basic Content Presenter is mainly a definition of the connected concept model fragment. All members of

such a fragment (entities, attributes, methods and relations) may have connected annotations, giving for

example type, uniqueness, label, as well as domain information that is useful for choosing user interface

controls automatically. The concept model in Figure 3.3 does not distinct between the three types of relations

that may be specified in the EBNF.

basic_content_presenter =

bcp(basic_content_presenter_identifier, connected_concept_model_fragment, anchor_entity);

connected_concept_model_fragment = ccmf({entity_with_attributes}-,{relation});

anchor_entity = entity_identifier;

entity_with_attributes = entwa(entity_identifier, {attribute}, {method}, {annotation});

relation = generalization | association | containment;

attribute = att(attribute_identifier, {annotation});

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

20 of 136

method = met(method_identifier, {parameter}, {annotation});

annotation = ann(annotation_identifier, expression);

parameter = param(parameter_identifier, type-identifier);

generalization = gen(generalized_entity, {specialized_entity}-, {annotation});

generalized_entity = entity_identifier;

specialized_entity = entity_identifier;

association =

asso(association_identifier, (from_entity, from_cardinality), (to_entity, to_cardinality),

{annotation});

from_entity = entity_identifier;

from_cardinality = cardinality;

cardinality = one|many;

to_entity = entity_identifier;

to_cardinality = cardinality;

containment = cont(containment_identifier, from_entity, {(to_entity, to_cardinality)}-, {annotation});

3.2.3 Semantics

⟦ basic_content_presenter ⟧=

⟦ bcp(basic_content_presenter_identifier, connected_concept_model_fragment, anchor_entity) ⟧

⟦ bcp(basic_content_presenter_identifier, connected_concept_model_fragment, anchor_entity) ⟧ =

basic_content_presenter_identifier is a part of a user interface, consisting of ⟦ logical_unit ⟧.

basic_content_presenter_identifier presents instances from the extent of

⟦connected_concept_model_fragment ⟧. The starting point for determining the extent of the concept

model is anchor_entity.

⟦ logical_unit ⟧ =

a part of a "window", one "window", or a limited number of "windows" between which there exists

immediate mechanisms for easy navigation and visual connections

⟦ connected_concept_model_fragment ⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

21 of 136

 ⟦ ccmf({entity_with_attributes}-,{relation}) ⟧

⟦ ccmf({entity_with_attributes}-, {relation}) ⟧ =

a concept model, containing the following main blocks of information: {⟦entity_with_attributes ⟧}

The user interface part also contains the following visual and behavioural connections: {⟦relation ⟧}

⟦ entity_with_attributes ⟧ =

 ⟦ entwa(entity_identifier, {attribute}, {method}, {annotation}) ⟧

⟦ entwa(entity_identifier, {attribute}, {method}, {annotation}) ⟧ =

entity_identifier is presented as ⟦ logical_unit ⟧ guided by the information that {⟦annotation⟧}.

Within the realms of the presentation of entity_identifier, visual (or other) means are used to present

the values of {⟦ attribute ⟧} and {⟦ method ⟧}

⟦ attribute ⟧ =

 ⟦ att(attribute_identifier, {annotation}) ⟧

⟦ att(attribute_identifier, {annotation}) ⟧ =

attribute_identifier, guided by the information that {⟦ annotation ⟧}

⟦ method ⟧ =

 ⟦ met(method_identifier, {parameter}, {annotation})⟧

⟦ met(method_identifier, {parameter}, {annotation})⟧ =

method_identifier with the parameters {⟦ parameter ⟧}, guided by the information that

{⟦ annotation ⟧}

⟦ parameter ⟧=

⟦ param(parameter_identifier, type-identifier) ⟧

⟦ param(parameter_identifier, type-identifier) ⟧ =

parameter_identifier having the type type-identifier

⟦ annotation ⟧=

⟦ ann(annotation_identifier, expression) ⟧

⟦ ann(annotation_identifier, expression) ⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

22 of 136

annotation_identifier is expression

⟦ relation ⟧ =

⟦ generalization ⟧ | ⟦ association ⟧ | ⟦ containment ⟧

⟦ generalization ⟧ =

 ⟦ gen(generalized_entity, {specialized_entity}-, {annotation}) ⟧

⟦ gen(generalized_entity, {specialized_entity}-, {annotation}) ⟧ =

generalized_entity, {specialized_entity} will usually be presented using the same means, guided by

the information that {⟦ annotation ⟧}

⟦ association ⟧=

⟦ asso(association_identifier, (from_entity, from_cardinality), (to_entity, to_cardinality),

{annotation}) ⟧

⟦ asso(association_identifier, (from_entity, from_cardinality), (to_entity, to_cardinality), {annotation}) ⟧ =

A connection called association_identifier from ⟦ from_cardinality ⟧ of the presentation of

from_entity to ⟦ to_cardinality ⟧ of the presentation of to_entity, guided by the information that

{⟦annotation ⟧}

⟦ cardinality ⟧ =

one instance | any natural number of instances (including 0)

⟦ containment ⟧=

⟦ cont(containment_identifier, from_entity, {(to_entity, to_cardinality)}-, {annotation}) ⟧

⟦ cont(containment_identifier, from_entity, {(to_entity, to_cardinality)}-, {annotation}) ⟧ =

The values in the presentation of {⟦ (to_entity, to_cardinality) ⟧ } are determined by the value in the

presentation of from_entity, guided by the information that {⟦ annotation ⟧}

⟦ (to_entity, to_cardinality) ⟧ =

⟦ to_cardinality ⟧ of to_entity

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

23 of 136

3.2.4 Example

In this section, we provide an example of using the abstract syntax (EBNF definitions) and the production

rules defining the semantics for Basic Content Presenters in FLUIDE-A. The example is a subset of the

specification of the Basic Content Presenter in Figure 3.2.

3.2.4.1 EBNF Specification

bcp(Victim Presenter,

ccmf(

 entwa(Victim,

 att(id,),

 att(name,),

 att(age,),

 att(gender, ann(Visualization, Icons(male, female))),

 /* specification of four more attributes omitted */

 /* no methods*/,

 /* annotations for the entity – one annotation omitted*/

 ann(Icon Label, value(id) & value(medical description)),

 ann(Icons, iconCollection(triage))

),

 entwa(Logistic location,

 att(name, ann(Label, "Location")),

 /* no methods*/,

 /* no annotations for the entity */

),

 entwa(Point,

 att(coordinates,),

 /* no methods*/,

 /* no annotations for the entity */

),

 entwa(Location,

 /* no attributes*/,

 /* no methods*/,

 /* no annotations for the entity */

),

 /* specification of four more entities omitted */

 asso(victimLogisticLocation, (Victim, many), (LogisticLocation, one),),

 asso(victimLocation, (Victim, many), (Point, one),),

 gen(Location, Point,)

 /* specification of four more relations omitted */

), /* end of ccmf specification */

Victim /* anchor */

) /* end of bcp specification */

3.2.4.2 Semantics of the EBNF Specification

Applying the production rules from Section 3.2.3 on the EBNF specification just presented results in the

following English sentences:

Victim Presenter is a part of a user interface, consisting of a part of a "window", one "window", or a limited

number of "windows" between which there exists immediate mechanisms for easy navigation and visual

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

24 of 136

connections. Victim Presenter presents instances from the extent of a concept model, containing the

following main blocks of information:

Victim is presented as a part of a "window", one "window", or a limited number of "windows" between

which there exists immediate mechanisms for easy navigation and visual connections guided by the

information that Icon Label is "value(id) & value(medical description" and Icons is

iconCollection(triage). Within the realms of the presentation of Victim, visual (or other) means are used

to present the values of

 id

 name

 age

 gender, guided by the information that Visualization is Icons(male, female)

Logistic location is presented as a part of a "window", one "window", or a limited number of "windows"

between which there exists immediate mechanisms for easy navigation and visual connections. Within the

realms of the presentation of Logistic location, visual (or other) means are used to present the values of

 name, guided by the information that Label is "Location"

Point is presented as a part of a "window", one "window", or a limited number of "windows" between

which there exists immediate mechanisms for easy navigation and visual connections. Within the realms

of the presentation of Point, visual (or other) means are used to present the values of

 coordinates

Location is presented as a part of a "window", one "window", or a limited number of "windows" between

which there exists immediate mechanisms for easy navigation and visual connections.

The user interface part also contains the following visual and behavioural connections:

A connection called victimLogisticLocation from any natural number of instances (including 0) of the

presentation of Victim to one instance of the presentation of LogisticLocation.

A connection called victimLocation from any natural number of instances (including 0) of the

presentation of Victim to one instance of the presentation of Point.

Location and Point will usually be presented using the same means.

The starting point for determining the extent of the concept model is Victim.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

25 of 136

3.3 Aggregated Content Presenter

In this section, we provide the syntax and semantics of the aggregated variant of the Content Presenter

construct, i.e. Content Presenters that have other Content Presenters as children, also allowing relations

between the child Content Presenters.

3.3.1 Graphical Syntax

Aggregated Content Presenters aggregate other Content Presenters (Basic or Aggregated). The connected

concept model fragment of an Aggregated Content Presenter is specified indirectly, and thus expressed

implicitly. The aggregated presenter inherits the model fragments of all its children. The relations in the

aggregated presenter is operationalized in its implicit concept model by connecting the anchor entities of the

concept models of the child presenters. Entities that are shared by a number of member presenters occur only

once in the implicit concept model. The anchor of the aggregated presenter is specified by identifying which

of the child presenters the anchor is inherited from. In the graphical notation, the child presenters are located

in the content part of an Aggregated Content Presenter. Figure 3.4 gives an example of an Aggregated

Content Presenter, with explanations of certain parts.

Figure 3.4 - An Aggregated Content Presenter in FLUIDE-A

Only the border part of the child presenters is shown in the aggregated one. The names of the child

presenters are shown in their content part. The relations between the child presenters are expressed using the

concrete syntax of relations in UML class models, including cardinalities. To ensure that the implicit concept

model is connected, all child presenters must be connected through relations (directly or indirectly).

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

26 of 136

3.3.2 Abstract Syntax

Figure 3.5 provides a concept model explaining the main concepts used when specifying an Aggregated

Content Presenter.

Aggregated Content
Presenter

11

has

Presenter Relation

*

1

from

*

*

*

1

to

1

1..*

owner

Entity Anchor

1

1

is member of

Basic Content
Presenter

Content Presenter

Figure 3.5 - Concept model describing the means for specifying Aggregated Content Presenters in

FLUIDE-A

An Aggregated Content Presenter contains references to a number of Content Presenters that are either basic

or aggregated. It also identifies the anchor for the Aggregated Content Presenter through identifying the

Content Presenter from which the anchor is inherited. The Aggregated Content Presenter also has a number

of Presenter Relations connecting pairs of member presenters. The concept model in Figure 3.5 does not

distinct between the two types of presenter relations that may be specified in the EBNF.

aggregated_content_presenter =

acp(aggregated_content_presenter_identifier, anchor_entity, {(content_presenter)}-,

{presenter_relation}-);

anchor_entity = entity_identifier;

content_presenter = aggregated_content_presenter | basic_content_presenter;

presenter_relation = presenter_association | presenter_containment;

presenter_association = presasso((from_anchor, from_cardinality), (to_anchor, to_cardinality));

from_anchor = entity_identifier;

from_cardinality = cardinality;

cardinality = one|many;

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

27 of 136

to_anchor = entity_identifier;

to_cardinality = cardinality;

presenter_containment = prescont(from_anchor, {(to_anchor, to_cardinality)}-);

3.3.3 Semantics

⟦ aggregated_content_presenter ⟧ =

⟦ acp(aggregated_content_presenter_identifier, anchor_entity, {(content_presenter)}-,

{presenter_relation}-) ⟧

⟦ acp(aggregated_content_presenter_identifier, anchor_entity, {(content_presenter)}-,

{presenter_relation}-) ⟧ =

aggregated_content_presenter_identifier is a part of a user interface, consisting of ⟦logical_unit⟧.

aggregated_content_presenter_identifier presents instances from the extent of a concept model,

containing the following main blocks of information:

{ /* These brackets represent the set of child presenters */

{ /* These brackets represent the set of entities for each of the child presenter */

⟦ entity_with_attributes ⟧

}

}

The user interface part also contains the following visual and behavioural connections:

{ /* These brackets represent the set of child presenters */

{ /* These brackets represent the set of relations for each of the child presenter */

⟦ relation ⟧

}

}

In addition, there is:

{⟦ presenter_relation ⟧}

The starting point for determining the extent of the concept model is anchor_entity.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

28 of 136

⟦ logical_unit ⟧ =

a part of a "window", one "window", or a limited number of "windows" between which there exists

immediate mechanisms for easy navigation and visual connections

⟦ cardinality ⟧ =

one instance | any natural number of instances (including 0)

⟦ presenter_relation ⟧ =

⟦ presenter_association ⟧ | ⟦ presenter_containment ⟧

⟦ presenter_association ⟧ =

⟦ presasso((from_anchor, from_cardinality), (to_anchor, to_cardinality)) ⟧

⟦ presasso((from_anchor, from_cardinality), (to_anchor, to_cardinality)) ⟧ =

A connection from ⟦ from_cardinality ⟧ of the presentation of from_anchor to

⟦ to_cardinality ⟧ of the presentation of to_anchor

⟦ presenter_containment ⟧=

⟦ prescont(from_anchor, {(to_anchor, to_cardinality)}-)⟧

⟦ prescont(from_anchor, {(to_anchor, to_cardinality)}-)⟧ =

The values in the presentation of {⟦ to_cardinality ⟧ of to_anchor} are determined by the value in

the presentation of from_anchor

3.3.4 Example

In this section, we provide an example of using the abstract syntax (EBNF definitions) and the production

rules defining the semantics for Aggregated Content Presenters in FLUIDE-A. The example is a subset of the

specification of the Aggregated Content Presenter in Figure 3.4.

3.3.4.1 EBNF Specification

To enable sufficiently rich semantic description, a copy of the whole specification of the member presenters

are included in the specifications of the aggregated presenter.

acp(Mission Locations Presenter, Mission,

bcp(Mission Presenter,

 ccmf(

 entwa(Mission,

 att(name,),

 att(id,),

 att(description, ann(Label, "Purpose")),

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

29 of 136

 /* specification of three more attributes omitted */

 /* no methods*/,

 /* annotation for the entity */

 ann(Colouring rule, <expression>)

),

 entwa(Observation,

 att(description,)

 /* no methods*/,

 /* no annotation for the entity */

),

 entwa(Search Area,

 att(type,)

 /* no methods*/,

 /* no annotation for the entity */

),

 /* specification of four more entities omitted */

 asso(missionObservations, (Mission, one), (Observation, many),),

 asso(missionSearchArea, (Mission, one), (Search Area, many),)

 /* specification of three more relations omitted */

), /* end of ccmf specification */

Mission /* anchor */

), /* end of Mission Presenter bcp specification */

bcp(GGS Presenter,

 ccmf(

 entwa(Generic Ground Station,

 /* no attributes */

 /* no methods*/,

 /* annotation for the entity */

 ann(Icon, iconCollection(GGS))

),

 entwa(Point,

 att(coordinates,)

 /* no methods*/,

 /* no annotation for the entity */

)

 asso(GGSLocation, (Generic Ground Station, one), (Point, one),),

), /* end of ccmf specification */

Generic Ground Station /* anchor */

), /* end of GGS Presenter bcp specification */

/* specification of three more bcps omitted */

/* presenter relations */

presasso((Mission, one), (Generic Ground Station, one)),

/* specification of four more presenter relations omitted */

) /* end of acp specification */

3.3.4.2 Semantics of the EBNF Specification

Applying the production rules from Section 3.3.3 on the EBNF specification just presented results in the

following English sentences:

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

30 of 136

Mission Locations Presenter is a part of a user interface, consisting of a part of a "window", one "window",

or a limited number of "windows" between which there exists immediate mechanisms for easy navigation and

visual connections. Mission Locations Presenter presents instances from the extent of a concept model,

containing the following main blocks of information:

Mission is presented as a part of a "window", one "window", or a limited number of "windows" between

which there exists immediate mechanisms for easy navigation and visual connections guided by the

information that Colouring rule is <expression>. Within the realms of the presentation of Mission, visual

(or other) means are used to present the values of

 name

 id

 description, guided by the information that Label is " Purpose"

Observation is presented as a part of a "window", one "window", or a limited number of "windows"

between which there exists immediate mechanisms for easy navigation and visual connections. Within the

realms of the presentation of Observation, visual (or other) means are used to present the values of

 description

Search Area is presented as a part of a "window", one "window", or a limited number of "windows"

between which there exists immediate mechanisms for easy navigation and visual connections. Within the

realms of the presentation of Search Area, visual (or other) means are used to present the values of

 type

Generic Ground Station is presented as a part of a "window", one "window", or a limited number of

"windows" between which there exists immediate mechanisms for easy navigation and visual connections

guided by the information that Icon is iconCollection(GGS).

Point is presented as a part of a "window", one "window", or a limited number of "windows" between

which there exists immediate mechanisms for easy navigation and visual connections. Within the realms

of the presentation of Point, visual (or other) means are used to present the values of

 coordinates

The user interface part also contains the following visual and behavioural connections:

A connection called missionObservations from one instance of the presentation of Mission to any

natural number of instances (including 0) of the presentation of Observation.

A connection called missionSearchArea from one instance of the presentation of Mission to any natural

number of instances (including 0) of the presentation of Search Area.

A connection called GGSLocation from one instance of the presentation of Generic Ground Station one

instance of the presentation of Point.

In addition, there is:

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

31 of 136

A connection from one instance of the presentation of Mission to one instance of the presentation of

Generic Ground Station.

The starting point for determining the extent of the concept model is Mission.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

32 of 136

3.4 Task Supporter

In this section, we provide the syntax and semantics of the Task Supporter construct. Task Supporters are

only provided in a basic variant.

3.4.1 Graphical Syntax

The Task Supporter construct is used to specify the information that is needed for solving one specific task,

through identifying one or more Content Presenters that manages the information that is needed to support

performing the task. A Task Supporter thus aggregates a number of Content Presenters (Basic or

Aggregated). Unlike a Content Presenter, a Task Supporter does not have a connected concept model

fragment. Thus it does not have an anchor, and it is not possible to specify any relations between its child

presenters. In the graphical notation, the child presenters are located in the content part of a Task Supporter.

Figure 3.6 gives an example of a Task Supporter, with explanations of certain parts.

Figure 3.6 - A Task Supporter in FLUIDE-A

Only the border part of the child presenters is shown in the Task Supporter. The names of the child

presenters are shown in their content part. In the example in Figure 3.6, one of the children is a Basic and the

other is an Aggregated Content Presenter.

3.4.2 Abstract Syntax

Figure 3.7 provides a concept model explaining the main concepts used when specifying a Task Supporter.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

33 of 136

Content Presenter

Task Supporter

*

*

Aggregated Content
Presenter

Basic Content
Presenter

Figure 3.7 - Concept model describing the means for specifying Task Supporters in FLUIDE-A

As can be seen from the EBNF definition below, the specification of a Task Supporter includes the name of

the task the Task Supporter supports.

task_supporter = ts(task_supporter_identifier, task_identifier, {content_presenter_identifier}-);

content_presenter_identifier =

aggregated_ content_presenter_identifier | basic_content_presenter_identifier;

3.4.3 Semantics

⟦ task_supporter ⟧ =

⟦ ts(task_supporter_identifier, task_identifier, {(content_presenter_identifier)}-) ⟧

⟦ ts(task_supporter_identifier, task_identifier, {(content_presenter_identifier)}-) ⟧ =

task_supporter_identifier is a part of a user interface supporting the user task task-identifier.

task_supporter_identifier contains the user interface parts {content_presenter_identifier}. These user

interface parts have no specific connections.

With these production rules, only the identifiers (the names) of the Content Presenters that are member of the

Task Supporter are included in the resulting sentences. To investigate the semantics of the corresponding

presenters, the production rules for the presenters must be used. The reason for this solution is that a Task

Supporter (in contrast to an Aggregated Content Presenter) does not change the semantics of the member

presenters.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

34 of 136

3.4.4 Example

In this section, we provide an example of using the abstract syntax (EBNF definitions) and the production

rules defining the semantics for Task Supporters in FLUIDE-A. The example is the specification of the Task

Supporter in Figure 3.6.

3.4.4.1 EBNF Specification

ts(User Map, Use Map, Mission Location Presenter, Weather Presenter)

3.4.4.2 Semantics of the EBNF Specification

Applying the production rules from Section 3.4.3 on the EBNF specification just presented results in the

following English sentences:

User Map is a part of a user interface supporting the user task User Map. User Map contains the user

interface parts Mission Location Presenter and Weather Presenter. These user interface parts have no

specific connections.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

35 of 136

3.5 Basic Work Supporter

In this section, we provide the syntax and semantics of the basic variant of the Work Supporter construct.

3.5.1 Graphical Syntax

The work that is supported by a Work Supporter is specified through a task model giving the hierarchical and

temporal structures of the work, as well as which tasks that are supported by which user interface (if any).

The concrete syntax of FLUIDE-A uses a neutral hierarchical task model syntax to express the hierarchical

structure. The temporal structure is expressed using operators. The graphical notation used for operators is

adopted from a subset of the temporal relationships used in ConcurrentTaskTrees (CTT) notation (Paternò,

1999). In the graphical notation, the task model is located in the content part of a Basic Work Supporter.

Figure 3.8 gives an example of a Basic Work Supporter, with explanations of certain parts.

Figure 3.8 - A Basic Work Supporter in FLUIDE-A

There are eight tasks organized in three levels in the task model in the Perform Work in the Field Supporter,

of which four of the leaf tasks have Task Supporters. Tasks with children may also have Tasks Supporters.

Only the border part of the Task Supporters is shown in the Work Supporter, and their names are shown in

their content part. The task model contains some operators: “>>” indicates sequence in task performance, while

“[]” indicates a choice between tasks. The anchor is always located at the root task.

3.5.2 Abstract Syntax

Figure 3.9 provides a concept model explaining the main concepts used when specifying a Basic Work

Supporter.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

36 of 136

Basic Work
Supporter

 1

1

has

Connected task
model fragment

1

*

*

1

11

Annotation

Task anchor

Task Supporter

*

1..*

presents

0..1

1 supports

1..2

*

constrains

Operator

Task

0..1 *

Figure 3.9 - Concept model describing the means for specifying Basic Work Supporters in FLUIDE-A

A Basic Work Supporter is mainly a definition of the connected task model fragment. Tasks may have

connected annotations, giving for example headings and colours. As given by the relation from Basic Work

Supporter and Task Supporter in Figure 3.9, as well as in the EBNF definition below, at least one of the tasks

in the task model of a Basic Work Supporter instance must include a reference to a Task Supporter.

basic_work_supporter =

bws(basic_work_supporter_identifier, connected_task_model_fragment, anchor_task,

{task_supporter}-);

connected_task_model_fragment = ctmf({task}-,{operator});

anchor_task = task_identifier;

task = ta(task_identifier, {child_task}, {annotation});

child_task = task_identifier;

annotation = ann(name, expression);

operator = op(operator_type, from_operand_task, [to_operand_task]);

operator_type = [] | [> | >> | |> | * ;

from_operand_task = task_identifier;

to_operand_task = task_identifier;

3.5.3 Semantics

⟦ basic_work_supporter ⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

37 of 136

⟦ bws(basic_work_supporter_identifier, connected_task_model_fragment, anchor_task,

{task_supporter}-) ⟧

⟦ bws(basic_work_supporter_identifier, connected_task_model_fragment, anchor_task,

{task_supporter}-) ⟧ =

basic_work_supporter_identifier is a part of a user interface supporting the following user tasks

through a set of Task Supporters (which present the parts of the user interface supporting each task):

{

The user task task_identifier is supported the Task Supporter task_supporter_identifier

}

The tasks presented by basic_work_supporter_identifier have a hierarchical structure. The task

anchor_task is the root of this hierarchy. ⟦ connected_task_model_fragment ⟧.

⟦ connected_task_model_fragment ⟧ =

⟦ ctmf({task}-,{operator}) ⟧

⟦ ctmf({task}-,{operator}) ⟧ =

{/* These brackets are for describing the hierarchical structure among the tasks */

⟦ task ⟧

}

Furthermore,

{/* These brackets are for describing operators */

⟦ operator ⟧

}

⟦ task ⟧ =

⟦ ta(task_identifier, {child_task}, {annotation}) ⟧

/* There are two production rules for task, depending on whether the task has any children or not */

⟦ ta(task_identifier, {child_task}-, {annotation}) ⟧ =

task_identifier has the child tasks {child_task}, and its presentation is guided by the information that

{⟦ annotation ⟧}

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

38 of 136

⟦ ta(task_identifier, ∅, {annotation}) ⟧ =

The presentation of task_identifier is guided by the information that {⟦ annotation ⟧}

⟦ annotation ⟧=

⟦ ann(name, expression) ⟧

⟦ ann(name, expression) ⟧ =

name is expression

⟦ operator ⟧=

⟦ op(operator_type, from_operand_task, [to_operand_task]) ⟧

/* There is one production rules for each operator type */

⟦ op([], from_operand_task, to_operand_task) ⟧=

either from_operand_task or to_operand_task is performed

⟦ op([>, from_operand_task, to_operand_task) ⟧=

to_operand_task deactivates from_operand_task

⟦ op(>>, from_operand_task, to_operand_task) ⟧=

from_operand_task is performed before to_operand_task is performed

⟦ op(|>, from_operand_task, to_operand_task) ⟧=

to_operand_task may interupt and deactivates from_operand_task. from_operand_task is reactivated

once to_operand_task is completed

⟦ op(*, from_operand_task) ⟧=

from_operand_task is performed a number of times

3.5.4 Example

In this section, we provide an example of using the abstract syntax (EBNF definitions) and the production

rules defining the semantics for Basic Work Supporters in FLUIDE-A. The example is a subset of the

specification of the Basic Work Supporter in Figure 3.8.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

39 of 136

3.5.4.1 EBNF Specification

To enable sufficiently rich semantic description, a copy of the whole specification of the member Task

Supporters are included in the specifications of the Basic Work Supporter.

bws(Perform Work in the Field Supporter,

ctmf(

 ta(Perform Work in the Field,

 /* child tasks: */

 Use Map, Manage Tasks,

 /* no annotations for the task */

)

 ta(Use Map,

 /* no child tasks */,

 /* no annotations for the task */

)

 ta(Manage Tasks,

 /* child tasks: */

 Receive Task Request, View Tasks, Accept Task, Decline Task, Perform Task,

 /* no annotations for the task */

)

 ta(Receive Task Request,

 /* no child tasks */,

 /* no annotations for the task */

)

 ta(View Tasks,

 /* no child tasks */,

 /* no annotations for the task */

)

 ta(Accept Task,

 /* no child tasks */,

 /* no annotations for the task */

)

 ta(Decline Task,

 /* no child tasks */,

 /* no annotations for the task */

)

 /* specification of Perform Task omitted */

 /* operators: */

 op(>>, Receive Task Request, View Tasks),

 op(>>, View Tasks, Accept Task),

 op([], Accept Task, Decline Task),

 /* specification of one operator omitted */

), /* end of ctmf specification */

Perform Work in the Field, /* anchor */

/* Task Supporters: */

ts(User Map, Use Map, Scene of Incident Presenter, Local Bases Presenter, Zones Presenter,

Resources Presenter, Task for Resources Presenter),

ts(Receive Task Request, Receive Task Request, Task for Resources Presenter),

ts(View Tasks, View Tasks, Task for Resources Presenter, Task for Resources Presenter, Task for

Resources Presenter),

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

40 of 136

ts(Decline Task, Decline Task, Task for Resources Presenter)

) /* end of bws specification */

3.5.4.2 Semantics of the EBNF Specification

Applying the production rules from Section 3.5.3 on the EBNF specification just presented results in the

following English sentences:

Perform Work in the Field Supporter is a part of a user interface supporting the following user tasks

through a set of Task Supporters (which present the parts of the user interface supporting each task):

The user task User Map is supported the Task Supporter User Map.

The user task Receive Task Request is supported the Task Supporter Receive Task Request.

The user task View Tasks is supported the Task Supporter View Tasks.

The user task Decline Task is supported the Task Supporter Decline Task.

The tasks presented by Perform Work in the Field Supporter have a hierarchical structure. The task

Perform Work in the Field is the root of this hierarchy. Perform Work in the Field has the child tasks Use

Map and Manage Tasks. Manage Tasks has the child tasks Receive Task Request, View Tasks, Accept Task,

Decline Task, and Perform Task.

Furthermore, Receive Task Request is performed before View Tasks is performed, View Tasks is performed

before Accept Task is performed, and either Accept Task or Decline Task is performed.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

41 of 136

3.6 Aggregated Work Supporter

In this section, we provide the syntax and semantics of the aggregated variant of the Work Supporter

construct, i.e. Work Supporters that have other Work Supporters as children, also allowing operators

between the child Work Supporters.

3.6.1 Graphical Syntax

Aggregated Work Supporters aggregate other Work Supporters (Basic or Aggregated). An Aggregated Work

Supporter must add exactly one task (possibly with a Task Supporter) on the level above the member

supporters. The task model of an Aggregated Work Support is specified indirectly, and thus expressed

implicitly. The aggregated supporter inherits the task models of all its children. In the implicit task model,

the root tasks of all the child supporters become direct children of the root task in aggregated supporter. In

the graphical notation, the root task (and its Task Supporter if it has one) as well as its child supporters are

located in the content part of an Aggregated Work Supporter. Figure 3.10 gives an example of an Aggregated

Work Supporter, with explanations of certain parts.

Figure 3.10 - An Aggregated Work Supporter in FLUIDE-A

Only the border part of the child supporters is shown in the aggregated one. The names of the child

supporters are shown in their content part. The operators specified in the aggregated supporter operate

between the root tasks of the involved child supporters in the implicit task model.

3.6.2 Abstract Syntax

Figure 3.11 provides a concept model explaining the main concepts used when specifying an Aggregated

Work Supporter.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

42 of 136

*

1

1

1

has

Aggregated Work
Supporter

Supporter
operator

*

*

*

1..2

constrains

1

*

owner

Task anchor

Basic Work
Supporter

Work Supporter

Task supporter

0..1 1
supports Task

Annotation

Figure 3.11 - Concept model describing the means for specifying Aggregated Work Supporters in

FLUIDE-A

An Aggregated Work Supporter contains references to a number of Work Supporter that are either basic or

aggregated. It also adds a task anchor that may have a Task Supporter and a set of annotations. The

Aggregated Work Supporter may also have a number of Supporter Operators giving temporal restrictions on

the performance of one or more of the tasks of the member supporters.

aggregated_work_supporter =

aws(aggregated_work_supporter_identifier, task_anchor,

{(work_supporter, presenter_anchor)}-, {supporter_operator});

task_anchor = tanc(anchor_task, [anchor_task_supporter], {annotation});

anchor_task = task_identifier;

anchor_task_supporter = task_supporter_identifier;

annotation = ann(name, expression);

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

43 of 136

work_supporter = aggregated_work_supporter | basic_work_supporter;

presenter_anchor = task_identifier;

supporter_operator =

supop(operator_type,

(from_operand_work_supporter, from_operand_presenter_anchor),

[(to_operand_work_supporter, to_operand_presenter_anchor)]);

operator_type = [] | [> | >> | |> | * ;

from_operand_work_supporter= work_supporter_identifier;

from_operand_presenter_anchor = task_identifier;

to_operand_work_supporter= work_supporter_identifier;

to_operand_presenter_anchor = task_identifier;

3.6.3 Semantics

⟦ aggregated_work_supporter ⟧ =

⟦ aws(aggregated_work_supporter_identifier, task_anchor,

{(work_supporter, presenter_anchor)}-, {supporter_operator}) ⟧

⟦ aws(aggregated_work_supporter_identifier, task_anchor,

{(work_supporter, presenter_anchor)}-, {supporter_operator}) ⟧ =

aggregated_work_supporter_identifier is a part of a user interface supporting the following user

tasks through a set of Task Supporters (which present the parts of the user interface supporting each

task):

/* If there is a presenter for the task anchor, there must be a separate sentence for this */

[The user task anchor_task is supported through the Task Supporter anchor_task_supporter]

{ /* These brackets represent the set of child presenters (recursively for the aggregated ones) */

{ /* These brackets represent the set of Task Supporters for each of the child presenter */

The user task task_identifier is supported through the Task Supporter

task_supporter_identifier

}

}

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

44 of 136

The tasks presented by aggregated_work_supporter_identifier have a hierarchical structure. The task

anchor_task is the root of this hierarchy.

/* First a description of the task anchor */

⟦ task_anchor ⟧

/* The achors of each aggregated presenters are children of the anchor task */

anchor_task has the child tasks {presenter_anchor}

/* Each of these child tasks (and their children) are described */

{ /* These brackets represent the set of child presenters (recursively for the aggregated ones) */

{/* These brackets represent the set of tasks within the connected_task_model_fragment of

each child presenter */

⟦ task ⟧

}

}

Furthermore,

{⟦ presenter_operator ⟧} /* if no presenter_operators are given, this will produce nothing */

{ /* These brackets represent the set of child presenters (recursively for the aggregated ones) */

{/* These brackets represent the set of tasks within the connected_task_model_fragment of

each child presenter */

⟦ operator ⟧

}

}

⟦ task_anchor ⟧=

⟦ tanc(anchor_task, [anchor_task_supporter], {annotation}) ⟧

⟦ tanc(anchor_task, [anchor_task_supporter], {annotation}) ⟧ =

The presentation of anchor_task is guided by the information that {⟦ annotation ⟧}.

⟦ annotation ⟧=

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

45 of 136

⟦ ann(name, expression) ⟧

⟦ ann(name, expression) ⟧ =

name is expression

⟦ supporter_operator ⟧ =

⟦ supop(operator_type,

(from_operand_work_supporter, from_operand_presenter_anchor),

(to_operand_work_supporter, to_operand_presenter_anchor)) ⟧

/* There is one production rules for each operator type */

⟦ supop ([],(from_operand_work_supporter, from_operand_presenter_anchor),

(to_operand_work_supporter, to_operand_presenter_anchor)) ⟧=

either from_operand_presenter_anchor or to_operand_presenter_anchor is performed

⟦ supop ([>,(from_operand_work_supporter, from_operand_presenter_anchor),

(to_operand_work_supporter, to_operand_presenter_anchor)) ⟧=

to_operand_presenter_anchor deactivates from_operand_presenter_anchor

⟦ supop (>>,(from_operand_work_supporter, from_operand_presenter_anchor),

(to_operand_work_supporter, to_operand_presenter_anchor)) ⟧=

from_operand_presenter_anchor is performed before to_operand_presenter_anchor is performed

⟦ supop (|>,(from_operand_work_supporter, from_operand_presenter_anchor),

(to_operand_work_supporter, to_operand_presenter_anchor)) ⟧=

to_operand_presenter_anchor may interupt and deactivate from_operand_presenter_anchor.

from_operand_ presenter_anchor is reactivated once to_presenter_anchor is completed

⟦ supop (*,(from_operand_work_supporter, from_operand_presenter_anchor)) ⟧=

from_operand_presenter_anchor is performed a number of times

3.6.4 Example

In this section, we provide an example of using the abstract syntax (EBNF definitions) and the production

rules defining the semantics for Aggregated Work Supporters in FLUIDE-A. The example is a subset of the

specification of the Aggregated Work Supporter in Figure 3.10.

3.6.4.1 EBNF Specification

To enable sufficiently rich semantic description, a copy of the whole specification of the member Work and

Task Supporters are included in the specifications of the Aggregated Work Supporter.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

46 of 136

aws(Manage Missions Supporter,

anc(Manage Missions,

 /* no Task Supporter for the anchor task */,

 /* no annotations for the anchor task */

),

/* child Work Supporters: */

(

 bws(Receive Mission Supporter,

 ctmf(

 ta(Receive Mission,

 /* no child tasks: */

 /* no annotations for the task */

),

 /* no operators */

 ,

), /* end of ctmf specification */

 Receive Mission, /* anchor */

 /* Task Supporters: */

 ts(Receive Mission, Receive Mission, Message Reader),

), /* end of bcp specification */

Receive Mission /* presenter anchor */

),

/* specification of Plan Mission Supporter and Monitor Mission Supporter omitted */

(bws(Finish Mission Supporter,

 ctmf(

 ta(Finish Mission,

 /* no child tasks: */

 /* no annotations for the task */

),

 /* no operators */

 ,

), /* end of ctmf specification */

 Receive Mission, /* anchor */

 /* Task Supporters: */

 ts(Assess Mission, Assess Mission, Mission Presenter, Mission Presenter),

), /* end of bcp specification */

Finish Mission /* presenter anchor */

),

/* supporter operators: */

op(>>,(Receive Mission Supporter, Receive Mission), (Plan Mission Supporter, Plan Mission)),

op(>>,(Plan Mission Supporter, Plan Mission),

 (Monitor Mission Supporter, Monitor Mission)),

op(>>,(Monitor Mission Supporter, Monitor Mission),

 (Finish Mission Supporter, Finish Mission))

) /* end of aws specification */

3.6.4.2 Semantics of the EBNF Specification

Applying the production rules from Section 3.6.3 on the EBNF specification just presented results in the

following English sentences (contents from the parts of the EBNF specification that are omitted is indicated

in [brackets]):

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

47 of 136

Manage Missions Supporter is a part of a user interface supporting the following user tasks through a set of

Task Supporters (which present the parts of the user interface supporting each task):

The user task Receive Mission is supported the Task Supporter Receive Mission.

[eleven more Task Supporters from the two omitted child Work Supporters]

The user task Assess Mission is supported the Task Supporter Assess Mission.

The tasks presented by Manage Missions Supporter have a hierarchical structure. The task Manage

Missions is the root of this hierarchy. Manage Missions has the child tasks Receive Mission, [two more

tasks] and Finish Mission. [the rest of the task hierarchy].

Furthermore, Receive Mission is performed before Plan Mission is performed. Plan Mission is performed

before Monitor Mission is performed. Monitor Mission is performed before Finish Mission is performed.

[three more operators from the task models in the child Work Supporters].

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

48 of 136

3.7 Category Manager

In this section, we provide the syntax and semantics of the Category Manager construct. Category Managers

are only provided in a basic variant.

3.7.1 Graphical Syntax

The Category Manager construct is used to group user interfaces supporting a category of functionality, like

common operational picture, triage and resource management. Such a category may coincide with an

application, but one application may support more than one category of functionality. A Category Manager

primarily aggregates a number of Work Supporters (Basic or Aggregated). It may also aggregate Content

Presenters (Basic or Aggregated). A Category Manager does not have an anchor, and it is not possible to

specify any relations between its child supporters/presenters. A Category Manager aggregating only Content

Presenters is semantically equal to a Task Supporter aggregating the same Content Presenters. In the

graphical notation, the child supporters/presenters are located in the content part of a Category Manager.

Figure 3.12 gives an example of a Category Manager, with explanations of certain parts.

Figure 3.12 - A Category Manager in FLUIDE-A

Only the border part of the child supporters/presenters is shown in the Category Manager. The names of the

child supporters/presenters are shown in their content part. In the example in Figure 3.12, there are three

children, a Basic Work Supporter, an Aggregated Work Supporter, as well as a Basic Content Presenter.

3.7.2 Abstract Syntax

Figure 3.13 provides a concept model explaining the main concepts used when specifying a Category

Manager.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

49 of 136

*

Content Presenter

*

*

Work Supporter

Category manager

Aggregated Work
Supporter

Basic Work
Supporter

Aggregated Content
Presenter

Basic Content
Presenter

Figure 3.13 - Concept model describing the means for specifying Category Managers in FLUIDE-A

In the EBNF below, there is neither a requirement to have Work Supporter nor Content Presenter members

of a Category Manager, but to have neither is not meaningful. To have both types of members is allowed.

category_manager =

cm(category_manager_identifier, {work_supporter_identifier}, {content_presenter_identifier});

work_supporter_identifier =

aggregated_work_supporter_identifier | basic_work_supporter_identifier;

content_presenter_identifier =

aggregated_content_presenter_identifier | basic_content_presenter_identifier;

3.7.3 Semantics

⟦ category_manager ⟧ =

⟦ cm(category_manager_identifier, {work_supporter_identifier}, {content_presenter_identifier}) ⟧

⟦ cm(category_manager_identifier, {work_supporter_identifier}, {content_presenter_identifier}) ⟧ =

category_manager_identifier is a part of a user interface supporting a category of functionality.

category_manager_identifier contains the user interface parts {work_supporter_identifier} as well as

{content_presenter_identifier}. These user interface parts have no specific connections.

With these production rules, only the identifiers (the names) of the Work Supporters and Content Presenters

that are member of the Category Manager are included in the resulting sentences. To investigate the

semantics of the corresponding supporters and presenters, the production rules for the supporters and

presenters must be used. The reason for this solution is that a Category Manager (in contrast to an

Aggregated Work Supporter and Aggregated Content Presenter) does not change the semantics of the

member supporters and presenters.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

50 of 136

3.7.4 Example

In this section, we provide an example of using the abstract syntax (EBNF definitions) and the production

rules defining the semantics for Category Managers in FLUIDE-A. The example is the specification of the

Category Manager in Figure 3.12.

3.7.4.1 EBNF Specification

cm(Resource Manager Category Manager, Manage Resources Supporter, Keep Track of Colleagues

Supporter, Task for Resource Presenter)

3.7.4.2 Semantics of the EBNF Specification

Applying the production rules from Section 3.7.3 on the EBNF specification just presented results in the

following English sentences:

Resource Manager Category Manager is a part of a user interface supporting a category of functionality.

Resource Manager Category Manager contains the user interface parts Manage Resources Supporter and

Keep Track of Colleagues Supporter, as well as Task for Resource Presenter. These user interface parts

have no specific connections.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

51 of 136

4 The FLUIDE-D Language

In this section, we present the syntax and semantics of the FLUIDE-D language. The syntax is presented

both as a concrete syntax in the form of a graphical syntax, and as an abstract syntax expressed in Extended

Backus-Naur Form (EBNF). The semantics is presented as a natural language semantics giving production

rules which may be used to translate an expression in EBNF to one or more English sentences. For each

interactor construct in FLUIDE-D, we provide one example specification, each being a design for the

corresponding interactor instance provided in the examples in Section 3. The examples expressed using the

graphical syntax are provided as part of the sections explaining the graphical syntax. The examples

expressed in EBNF and the corresponding English sentences describing the semantics of the example are

presented together directly after the definition of the semantics for the interactor design construct at hand.

We use the same typographical and other conventions we use in the description of FLUIDE-A, as described

in the beginning of Section 3.

We start by giving the syntax and semantics for the common parts. This includes the interactor design

construct, as well as the different view types. These sections contain the common graphical syntax used in

FLUIDE-D. Even though this part contains definitions of abstract syntax and semantics, we do not provide

exampleS for the common parts. Instead, examples expressed in EBNF and the corresponding English

sentences for these parts are embedded in the examples provided for the individual interactor design

constructs.

After the common parts are presented, the syntax and semantics of the four interactor constructs in FLUIDE-

D (Content Presenter Design, Task Supporter Design, Work Supporter Design and Category Manager

Design) are given in separate sections for each of the constructs. The Content Presenter Designs and the

Work Supporter Designs are presented in separate sections for the basic and aggregated variants. The Task

Supporter Designs and Category Manager Designs are only available in one variant. When we present the

constructs, we start with Basic Content Presenter Designs, and move up in the aggregation hierarchy

finishing with Category Manager Designs.

4.1 Interactor Design

In this section, we provide a definition of the common graphical syntax for FLUIDE-D. We also provide an

EBNF definition of the abstract syntax for interactor designs. As there are no terminal symbols in the

abstract syntax, the semantics for all parts of the EBNF definition of the interactor design construct is given

by the general rules for the semantics given in the introduction part of Section 3 above.

4.1.1 Graphical Syntax

In the graphical notation, all the interactor constructs in FLUIDE-D use the basic layout in shown in Figure

4.1.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

52 of 136

Figure 4.1 - Basic layout of the interactor design constructs in FLUIDE-D

An interactor design instance in FLUIDE-D looks similar to an interactor instance in FLUIDE-D, and is

represented as a rectangle with a top border resembling a window. The top border contains the name of the

interactor design instance, as well as an icon on the top left denoting interactor design construct used and an

icon on the top right denoting whether the instance is basic or aggregated. Instances of all constructs may be

basic, while only Content Presenter Designs and Work Supporter Designs may be aggregated. The content

part (canvas) underneath the top border is used for presenting the content of the interactor design instance.

The content is different for instances of the different constructs. Compared to interactor instances in

FLUIDE-D, the interactor design instances have some additional icons in the top border. On the top left (to

the right of the construct icon), there should be one or more icons specifying the user interface style(s) used

in the design. On the right (to the left of the basic/aggregated icon), there should be one or more icons

specifying the modality/platform combination(s) used in the design.

Table 4.1 shows the icons used for the four interactor design constructs. As can be seen, these icons resemble

the icons used in FLUIDE-A, but the FLUIDE-D versions have a "window" heading to indicate that the

specifications are less abstract. The icons used to denote whether an interactor design instance is basic or

aggregated are the same as in FLUIDE-A (see Table 3.2 above). Table 4.2 shows the icons used for the

available user interface styles, while Table 4.3 shows the icons used for the available modalities/platforms.

Table 4.1 – Icons used for the four interactor design constructs

Interactor design construct Icon

Content Presenter Design

Task Supporter Design

Work Supporter Design

Category Manager Design

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

53 of 136

Table 4.2 – Icons used for user interface styles

User interface style Icon

Forms based

List based

Icons based

Map based

Graph based

Multimedia based

Table 4.3 – Icons used for user platforms/modalities

Modality / Platform Icon

PC / laptop with mouse and

keyboard

Mobile device with touch

Table top

Augmented reality

Audio interaction

4.1.2 Abstract Syntax

interactor_design =

content_presenter_design | task_supporter_design | work_supporter_design |

category_manager_design;

content_presenter_design =

basic_content_presenter_design | aggregated_content_presenter_design;

work_supporter_design = basic_ work_supporter_design | aggregated_ work_supporter_design;

 . .
 . .
 . .

 . .
 . .

..

..

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

54 of 136

4.2 Views

The interactor design instances in FLUIDE-D have similar content as the interactor instances in FLUIDE-A,

except that the content in the interactor design instances is wrapped in views. Below, we present the five

different view types available in FLUIDE-D including their available layout mechanisms.

In this section, we present the common graphical syntax for views FLUIDE-D. We also provide an EBNF

definition of the abstract syntax for the different view types, as well as production rules defining a translation

from EBNF expressions to English sentences.

As mentioned above, we do not provide examples of using the abstract syntax and production rules for the

semantics. Examples of views expressed in EBNF and the corresponding English sentences are embedded in

the examples provided for the interactor design constructs.

4.2.1 Graphical Syntax

In this section, we present the graphical syntax for each of the five view types in FLUIDE-D, as well as the

syntax used for specifying dialog navigation. The corresponding abstract syntax defined in EBNF is given

for the five view types and the model patterns in Section 4.2.2 below, while semantics for the same is

defined in Section 4.2.3.

4.2.1.1 Decorational View

A Decorational View is used to specify different containers with a visual appearance. There are three types

of such views, i.e. a Border, Window and Loosely connected windows. The former represents a visual border

within a user interface, while the two others represent the outermost visual part of one or more dialogs. In the

graphical notation, these views resemble the concrete user interface element they represent. A Border type view is

represented as a solid rectangle with its optional heading shown on the outline of the rectangle. A Window type

view is represented as an abstract window, with its optional heading shown in the top border, and a close button

on the top right. A stacking look is used for loosely connected windows/dialogs. Figure 4.2 shows the graphical

notation for the three types of Decorational Views.

Figure 4.2 - Decorational Views in FLUIDE-D

The different view types offer a set of options for how the layout of their content is organized. Decorational Views

offer four layout methods: percentage, relative, managed and automatic. When percentage layout is used, the

location and size of the view's children are given as percentage values of the parent view. When relative layout is

used, the location and size of the view's children are given through rules for how they should be placed relative

to their parent or a sibling, using expressions like "parent top left filled" and "sibling right". In the graphical

notation, relative layout is specified using fat solid arrows pointing from the view being laid out to the view

it connects to (see Figure 4.7 for an illustration). When managed layout is used, the layout is determined by

one or more child views of the type Layout Manager View. When automatic layout is used, the location and

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

55 of 136

size of the view's children are determined by a layout algorithm provided by the view. In the graphical

notation, the layout method is indicated by an icon on the top right of the view. Table 4.4 shows the icons

used for the different layout methods in the graphical notation.

Table 4.4 – Icons used for layout methods

Layout method Icon

Percentage
%

Relative

R

Managed
M

Automatic

A

If the sibling rules used in a view with relative layout do not refer to which sibling it should be placed

relative to, as well as for managed and automatic layout, the sequence in which sibling elements are placed

in the interactor design is important for the layout. The sequence may also be influences by annotations from

the corresponding FLUIDE-A specification.

4.2.1.2 Layout Manager View

Layout Manager Views are not given names, and are shown using dashed lines (to indicate that they are usually

not visible). The arrows on the dashed line specify whether the children are organized horizontally or

vertically. Figure 4.3 shows the graphical notation for Layout Manager Views (a vertical one with a horizontal

child).

Figure 4.3 - Layout Manager View in FLUIDE-D

As Layout Manager Views always use a managed layout method there are no icon for layout method for

such views.

4.2.1.3 Content View

A Content View presents instances of one or more entities, and may only be used as part of Basic Content

Presenters. In the graphical notation, Content Views are represented as a solid rectangle. On the top of the

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

56 of 136

rectangle, UML stereotype notation is used to denote the view type before its name. A 1 or * on the top left

denotes whether the view presents one or a number of instances of the anchor entity. Content views usually

use automatic layout, but a layout method icon is still used. Figure 4.4 shows the graphical notation for

Content Views.

Figure 4.4 - Content View in FLUIDE-D

All Content Views impose restrictions on the concept model fragment they may present, expressed in

FLUIDE-D as a model pattern fitting the user interface pattern supported by the Content View type. The

model pattern for the generic Content View used in Figure 4.4 (Table View) must contain one entity

(possibly with subtypes) that determines the rows in the table (Mission). It may also include related entities,

as long as the cardinality on the side of the related entity is one. By requiring that the concept model

fragment to be presented in a view follow a certain model pattern, transforming the view to a final user

interface is a manageable and predictable process that may be automated. Because the structure of the

concept model fragment is known, it is possible to define an algorithm for doing the transformation that is

independent of the actual entities, attributes and relations used in the concept model fragment.

Content Views may be divided in two groups: generic and domain-specific. Generic Content Views are

views that are not tailored for the emergency response domain. Example of such views in FLUIDE-D are:

 Single Instance View – for viewing one instance of one entity type in a forms-based user interface

 Owner + Members View – for viewing details of one instance of one entity type in a forms-based

user interface and a list of a related entity type in a table

 List + Details View – for viewing multiple instances of one entity type in a list, and details about one

of these instances in a forms-based user interface

 List View – for viewing multiple instances of one attribute of one entity type as a list

 Table View – for viewing multiple instances of one entity type in a table able to show multiple

attributes

 Icon List View – for viewing multiple instances of one entity type as a list of icons

 Icon Table View – for viewing multiple instances of one entity type as a grid of icons

 Sensor Feeds View – for viewing a sensor feed graphically

 Media-player View – for viewing images and videos

Domain-specific Content Views are views that are tailored for needs in the emergency response domain.

Despite being tailored for such needs, these views may also be used when specifying user interfaces in

related domains or domains with overlapping needs. Examples of such views in FLUIDE-D are:

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

57 of 136

 The views used for specifying the contents of the ribbon sub categories and the ribbon ticker and

ribbon buttons (Nilsson and Stølen, 2016a). These views include Ribbon Sub Category Single Entity

View, Ribbon Category Overview View, Ribbon Ticker Category View, and Ribbon Button View.

 The views used for specifying maps with icons and other graphics representing emergency response

objects on a map (Nilsson and Stølen, 2016a; Nilsson and Stølen, 2016b). These views include Map

Icons View, Map Outline View, and Map Icons with Details Dialog View.

 The Body Parts Visualization View used in the eTriage part of the (Nilsson and Stølen, 2016a) for

visualizing affected body parts of a victim being triaged.

The distinction between generic and domain-specific views is neither reflected in the graphical nor the

abstract syntax.

4.2.1.4 Content Integration View

Content Integration Views integrate related content from different interactor design instances. Content

Integration Views require that their member designs use specific Content or Content Integration Views.

Occurrences of all interactor design constructs may be children as long as they contain views having the

required type. In the graphical notation, Content Integration Views are represented as a solid rectangle. On

the top of the rectangle, UML stereotype notation is used to denote the view type before its name. Content

Integration Views do not have any cardinality. Such views usually use automatic layout, but a layout method

icon is still used. Figure 4.5 shows the graphical notation for Content Views.

Figure 4.5 - Content Integration View in FLUIDE-D

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

58 of 136

The connection between Content Views and Content Integration Views may be illustrated through the views

for map-based visualization. Map View is a Content Integration View that among other may have Map Icons

Views and Map Outline Views, as well as other Map Views as members. If a presenter design using Map

Icons Views or Map Outline Views is member of a Map View, either directly or one or more times among its

parents, the icons and outlines are shown on the map provided by the Map View highest up in the hierarchy.

If a Map Icons (or Outline) View does not have a parent providing a Map View, it will provide its own map.

All Content Integration Views in FLUIDE-D are domain-specific. Examples of such views in FLUIDE-D

are:

 The views used for specifying a ribbon category, a set of ribbon buttons and the ribbon ticker

(Nilsson and Stølen, 2016a). These views include Ribbon Category View, Ribbon Contents View,

Ribbon Ticker View, and Ribbon View.

 The Map View discussed above.

 A view combining ribbons and maps.

The available Content and Content Integration Views make up the FLUIDE library of emergency response

user interface patterns.

4.2.1.5 Interactor Design View

As occurrences of interactors (except Basic Content Presenter Designs) may include references to other

interactor occurrences, interactor design occurrences may contain references to other interactor design

occurrences. As the content of interactor design occurrences are views, member interactor design

occurrences are formally defined as views in FLUIDE-D. We denote such views Interactor Design Views.

The graphical syntax is similar to references to interactor instances in FLUIDE-A specifications. The view

shown in Figure 4.5 contains three Interactor Design Views, more precisely three Basic Content Presenter

Design Views.

In the abstract syntax of the different interactor design constructs, references to Interactor Design Views are

usually referred to by the name of the design construct with the term view added. For example, in an

Aggregated Content Presenter Design, child designs are referred to as (or rather wrapped in) Content

Presenter Design Views.

4.2.1.6 Dialog navigation

A dialog navigation specification is shown as a dashed-lined arrow with a growing size. The type of dialog

navigation (open, show, hide, close, or return) is shown as text on the arrow, as illustrated in Figure 4.6.

show

Figure 4.6 – Dialog navigation in FLUIDE-D

Such arrows point from a part of an interactor design specification to a reference to another interactor design

specification (using the same syntax as for members of aggregated interactor designs) or another view in the

interactor design. The small end indicates which element of the user interface that triggers the dialog

navigation, i.e. the user interface representation of the view, button, entity or attribute that the small end

starts from. The point of the arrow indicates which design or view that is the target for the dialog navigation.

If the navigation type is return, there is no target, as this specifies navigation back to the dialog from which

the dialog being specified was opened.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

59 of 136

Figure 4.17 provides an example where dialog navigation is specified in the context of a view that is part of

an Aggregated Work Supporter Design.

4.2.1.7 Example

To illustrate some of the view types and layout mechanisms we present the Incident Presenter Design shown

in Figure 4.7.

Incident Presenter Design

«Single Instance View»
Incident view

A

*

description

Incident

 . .
 . .
 . .

 . .
 . .

R

Incident
1

%

%

Figure 4.7 - Example showing different views and layout mechanisms in FLUIDE-D

The Basic Content Presenter in Figure 4.17 has one view as its top level child. This is a Border type

Decorational View using a relative layout mechanism. Therefore, all the child views of this view have fat

arrows specifying how their layout relate to their parent and sibling views. This will also ensure that the child

views will resize properly if the outmost view is resized. The border view has two child views. To the left,

there is a vertical Layout Manager View, which itself has two Border type Decorational Views as children.

Both these views use percentage layout method. To the right, there is a generic Content View (a Single

Instance View called Incident view) using an automatic layout method.

4.2.2 Abstract Syntax

In this section, we present the abstract syntax defined in EBNF for each of the five view types in FLUIDE-D,

as well as the model patterns used in the Content Views and the syntax used for specifying dialog navigation.

The semantics for the same is defined in Section 4.2.3.

Figure 4.8 provides a concept model giving an overview of the different view types and explaining the main

concepts used when specifying views.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

60 of 136

layout details

View

layoutDirection

Layout manager
view

Content view

layout method
roleOfView
presentDate
presentTime
logo
headingText

Decorational view

Enum with these values:
Loosely connected windows
Window
Border

Enum with these
values:
Horizontal
Vertical

Model pattern

1

 *

Composite view

Content Presenter
Design view

Content
integration view

Interactor design
view

Task Supporter
Design view

Work Supporter
Design view

Enum with these
values:
Percentage
Relative
Managed
Automatic

*

*

allowed members

*

*

Figure 4.8 - Concept model describing the means for specifying views in FLUIDE-D

As shown in Figure 4.8, the view types may be divided into views that are composite and views that are not.

Composite views may have other views (composite or not) as children. All view types except Content Views

and Interactor Design Views are composite.

Before addressing the five view types (and the model patterns and dialog navigation), we provide definitions

of some parts of the abstract syntax that are used by all or most of the view types as well as by the interactor

design constructs.

view = composite_view | content_view | interactor_design_view;

composite_view = decorational_view | layout_manager_view | content_integration_view;

Layout details may be used by all view types in the role as child view to a parent having percentage or

relative layout method.

layout_details = coordinates | relative_layout_details;

coordinates = coord(x, y, width, height);

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

61 of 136

x = percentage;

y = percentage;

width = percentage;

height = percentage;

The x, y, width and height values are expressed relative to the parent.

relative_layout_details = top left parent| filled parent | top filled parent | sibling right | sibling left |

sibling over | sibling under;

Visual elements may be used by all view types, but attributes and annotations may only be used in the

specification of Content Views. Image may be used for static logos as well as icons. Text may be used both

for headings and labels.

visual_elements =

ves([image], [text] , [border_colour], {graphics}, {button});

image = static_picture | picture_attribute;

static_picture = picture;

picture_attribute = attribute_identifier;

text =static_string | text_attribute;

static_string = string;

text_attribute = attribute_identifier;

border_colour = colour_spec;

colour_spec = static_colour | use annotation;

static_colour = colour;

graphics = gr(shape, colour_spec);

shape = circle | triange | square;

button = btn(button_identifier, [button_image], [button_text]);

button_image = picture;

button_text = string;

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

62 of 136

4.2.2.1 Decorational View

decorational_view =

dv(decorational_view_identifier, role_of_decorational_view, [present date], [present time],

[visual_elements], {dialog_navigation}, layout_method, [layout_details], {child_view});

role_of_decorational_view = loosely connected windows | window | border;

layout_method = percentage | relative | managed | automatic;

child_view = view;

4.2.2.2 Layout Manager View

layout_manager_view =

lmv(layout_manager_view_identifier, layout_direction, [visual_elements], {dialog_navigation},

[layout_details], {child_view});

layout_direction = horizontal | vertical;

child_view = view;

If the visual elements contain a specification of a heading, this will be ignored.

4.2.2.3 Content View

content_view = 3D_icons_imposed_on_camera_view | body_parts_visualization_view |

browser_for_composite_view | browser_for_one_to_many_hierarchy_view | icon_list_view | |

icon_table_view | icon_table_subtypes_view | list_details_view | list_view | map_icons_view |

map_icons_with_details_dialog_view | map_multi_line_view | map_outline_view | media_player_view |

multi_instance_view | owner_member_view | ribbon_button_view | ribbon_category_overview_view |

ribbon_sub_category_single_entity_view | ribbon_sub_category_subtyped_single_entity_view |

ribbon_sub_categories_categorized_single_entity_view |

ribbon_sub_categories_categorized_subtyped_single_entity_view | ribbon_ticker_category_view |

sensor_feeds_view | single_instance_view | single_instance_with_proposed_standard_text_view | table_view

| tree_for_composite_view | tree_for_one_to_many_hierarchy_view;

3D_icons_imposed_on_camera_view =

3Diiocv(3D_icons_imposed_on_camera_view_identifier, main_entity_identifier,

point_localized_extended_single_entity, [visual_elements], {dialog_navigation}, [layout_details]);

body_parts_visualization_view =

bpvv(body_parts_visualization_view_identifier, single_entity, [visual_elements],

{dialog_navigation}, [layout_details]);

browser_for_composite_view =

bfcv(browser_for_composite_view_identifier, composite, [visual_elements], {dialog_navigation},

[layout_details]);

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

63 of 136

browser_for_one_to_many_hierarchy_view =

bfotmv(browser_for_one_to_many_hierarchy_view_identifier, one_to_many_hierarchy,

[visual_elements], {dialog_navigation}, [layout_details]);

icon_list_view =

ilv(icon_list_view_identifier, single_entity, [visual_elements], {dialog_navigation},

[layout_details]);

icon_table_view =

itv(icon_table_view_identifier, categorized_single_entity, [visual_elements], {dialog_navigation},

[layout_details]);

icon_table_subtypes_view =

itsv(icon_table_subtypes_view_identifier, subtyped_single_entity, [visual_elements],

{dialog_navigation}, [layout_details]);

list_details_view =

ldv(list_details_view_identifier, main_entity_identifier, entity_with_list_attributes,

entity_with_details_attributes, [visual_elements], {dialog_navigation}, [layout_details]);

entity_with_list_attributes and entity_with_details_attributes must have the same main_entity.

entity_with_list_attributes = extended_single_entity;

entity_with_details_attributes = extended_single_entity;

list_view =

lv(list_view_identifier, extended_single_entity, [visual_elements], {dialog_navigation},

[layout_details]);

map_icons_view =

micv(map_icons_view_identifier, main_entity_identifier, point_localized_extended_single_entity,

map_buttons, [visual_elements], {dialog_navigation}, [layout_details]);

map_buttons = mb([include mode button], [include center button], [include projector button]);

map_icons_with_details_dialog_view =

miwddv(map_icons_with_details_dialog_view_identifier, main_entity_identifier,

point_localized_extended_single_entity, map_buttons, [visual_elements], {dialog_navigation},

[layout_details]);

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

64 of 136

map_multi_line_view =

mmlv(map_multi_line_view_identifier, single_entity_with_point_collection, map_buttons,

[visual_elements], {dialog_navigation}, [layout_details]);

map_outline_view =

mov(map_outline_view_identifier, area_localized_categorized_single_entity, map_buttons,

[visual_elements], {dialog_navigation}, [layout_details]);

media_player_view =

mpv(media_player_view_identifier, {single_attribute_from_single_entity}, [visual_elements],

{dialog_navigation}, [layout_details]);

multi_instance_view =

miv(multi_instance_view_identifier, extended_single_entity, [visual_elements],

{dialog_navigation}, [layout_details]);

owner_member_view =

omv(owner_member_view_identifier, extended_owner_entity_with_member, [visual_elements],

{dialog_navigation}, [layout_details]);

This user interface pattern is sometimes called master/details.

ribbon_button_view =

rbv(ribbon_button_view_identifier, single_entity, [visual_elements], {dialog_navigation},

[layout_details]);

ribbon_category_overview_view =

rcov(ribbon_category_overview_view_identifier, single_entity, ribbon_category_buttons,

[visual_elements], {dialog_navigation}, [layout_details]);

ribbon_category_buttons = rcb([include tree button], [include home button], [include table button],

[include search button]);

ribbon_sub_category_single_entity_view =

rscsev(ribbon_sub_category_single_entity_view_identifier, single_entity, [include add button],

[visual_elements], {dialog_navigation}, [layout_details]);

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

65 of 136

ribbon_sub_category_subtyped_single_entity_view =

rscssev(ribbon_sub_category_subtyped_single_entity_view_identifier, subtyped_single_entity,

[include add button], [visual_elements], {dialog_navigation}, [layout_details]);

ribbon_sub_categories_categorized_single_entity_view =

rsccssev(ribbon_sub_categories_categorized_single_entity_view_identifier,

categorized_single_entity, [include add button], [visual_elements], {dialog_navigation},

[layout_details]);

ribbon_sub_categories_categorized_subtyped_single_entity_view =

rsccssev(ribbon_sub_categories_categorized_subtyped_single_entity_view_identifier,

categorized_subtyped_single_entity, [include add button], [visual_elements], {dialog_navigation},

[layout_details]);

ribbon_ticker_category_view =

rtcv(ribbon_ticker_category_view_identifier, single_entity, [visual_elements], {dialog_navigation},

[layout_details]);

sensor_feeds_view =

sfv(sensor_feeds_view_identifier, sensor_feed | typed_sensor_feed, [visual_elements],

{dialog_navigation}, [layout_details]);

sensor_feed = value_collection;

typed_sensor_feed = typed_value_collection;

single_instance_view =

siv(single_instance_view_identifier, extended_single_entity, [visual_elements], {dialog_navigation},

[layout_details]);

single_instance_with_proposed_standard_text_view =

siwpstv(single_instance_with_proposed_standard_text_view_identifier, extended_single_entity,

attribute_for_standard_texts, {standard_text}, [visual_elements], {dialog_navigation},

[layout_details]);

attribute_for_standard_texts = attribute_identifier;

standard_text = string;

table_view = tv(table_view_identifier, extended_single_entity, [visual_elements], {dialog_navigation},

[layout_details]);

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

66 of 136

tree_for_composite_view =

tfcv(tree_for_composite_view_identifier, composite, [visual_elements], {dialog_navigation},

[layout_details]);

tree_for_one_to_many_hierarchy_view =

tfotmv(tree_for_one_to_many_hierarchy_view_identifier, one_to_many_hierarchy,

[visual_elements], {dialog_navigation}, [layout_details]);

4.2.2.4 Model Patterns Used in Content Views

categorized_single_entity = cse(main_entity, categorizer);

main_entity = entity_design;

categorizer = categorizing_entity | categorizing_attribute;

categorizing_entity = entity_identifier;

categorizing_attribute = attribute_identifier;

composite = comp(composite_entity, component_entity, leaf_entity);

composite_entity = entity_identifier;

component_entity = entity_identifier;

leaf_entity = entity_identifier;

one_to_many_hierarchy = entity_without_members | otmh(owner_entity, one_to_many_hierarchy);

entity_without_members = entity_identifier;

owner_entity = entity_identifier;

extended_owner_entity_with_member = eoewm(the_extended_single_entity, member_entity);

the_extended_single_entity = extended_single_entity;

single_entity = se(main_entity);

single_attribute_from_single_entity = (entity_identifier, attribute_design);

subtyped_single_entity = sse(main_entity, {subtype});

extended_single_entity = ese(main_entity, {subtype}, {one_related});

categorized_subtyped_single_entity = csse(the_subtyped_single_entity, categorizer);

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

67 of 136

the_subtyped_single_entity = subtyped_single_entity;

point_localized_extended_single_entity =

plese(the_extended_single_entity, point_localizer);

area_localized_categorized_single_entity =

alcse(main_entity_identifier, area_localizer, categorizer);

single_entity_with_point_collection =

sewpc(main_entity_identifier, point_collection_provider, {subtype}, {one_related});

point_collection_provider may be the same entity as main_entity_identifier.

main_entity_identifier = entity_identifier;

point_localizer = point_localizing_entity | point_localizing_attribute;

point_localizing_entity = entity_identifier;

point_localizing_attribute = attribute_identifier;

area_localizer = area_localizing_entity | area_localizing_attribute;

area_localizing_entity = entity_identifier;

area_localizing_attribute = attribute_identifier;

point_collection_provider = entity_identifier;

member_entity = entity_design;

subtype = entity_ design;

one_related = entity_ design;

entity_design = ed(entity_identifier, {attribute_design}, {method_design}, {annotation_design});

attribute_design = ad(attribute_identifier, {annotation_design});

method_design = md(method_identifier, {annotation_design });

annotation_design = annotation_identifier;

value_collection = vc(collection, value_provider);

collection = entity_design;

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

68 of 136

value_provider = entity_design;

typed_value_collection = tvc(collection, value_provider, value_type);

value_type = entity_design;

4.2.2.5 Content Integration View

combined_map_and_ribbon_view =

cmarv(combined_map_and_ribbon_view_identifier, view_for_map, view_for_ribbon,

[visual_elements], {dialog_navigation}, [layout_details]);

view_for_map = interactor_design_view;

view_for_ribbon = interactor_design_view;

map_view =

mv(map_view_identifier, {view_for_child_map}, [visual_elements], {dialog_navigation},

[layout_details]);

view_for_child_map = interactor_design_view;

ribbon_buttons_view =

rbsv(ribbon_buttons_view_identifier, {view_for_ribbon_button}, [visual_elements],

{dialog_navigation}, [layout_details]);

view_for_ribbon_button = interactor_design_view;

ribbon_categories_view =

rcsv(ribbon_categories_view_identifier, {view_for_ribbon_category}, [visual_elements],

{dialog_navigation}, [layout_details]);

view_for_ribbon_category = interactor_design_view;

ribbon_category_view =

rcv(ribbon_category_view_identifier, view_for_overview, views_for_categories, [visual_elements],

{dialog_navigation}, [layout_details]);

view_for_overview = basic_content_presenter_design_view;

views_for_categories = views_for_sub_category | view_for_sub_categories;

views_for_sub_category = { basic_content_presenter_design_view };

view_for_sub_categories = basic_content_presenter_design_view;

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

69 of 136

ribbon_contents_view =

rctv(ribbon_contents_view_identifier, view_for_ribbon_categories, view_for_ribbon_buttons,

[visual_elements], {dialog_navigation}, [layout_details]);

view_for_ribbon_categories = interactor_design_view;

view_for_ribbon_buttons = interactor_design_view;

ribbon_ticker_view =

rtv(ribbon_ticker_view_identifier, {view_for_ribbon_ticker_category}, [visual_elements],

{dialog_navigation}, [layout_details]);

view_for_ribbon_ticker_category = interactor_design_view;

ribbon_view =

rv(ribbon_view_identifier, view_for_ribbon_contents, view_for_ribbon_ticker, [visual_elements],

{dialog_navigation}, [layout_details]);

view_for_ribbon_contents = interactor_design_view;

view_for_ribbon_ticker = interactor_design_view;

4.2.2.6 Interactor Design View

As Category Manager Designs may not be members of any other interactor designs there is no need for a

Category Manager Design View construct.

interactor_design_view =

content_presenter_design_view | task_supporter_design_view | work_supporter_design_view;

content_presenter_design_view =

cpdv(content_presenter_design_identifier, [layout_details]);

task_supporter_design_view = tsdv(task_supporter_design_identifier, [layout_details]);

work_supporter_design_view = wsdv(work_supporter_design_identifier, [layout_details]);

4.2.2.7 Dialog navigation

Dialog navigation may have different sources, if no source is provided, the source is the view in which the

dialog navigation is specified. The target is either another view or return.

dialog_navigation =

dn(dialog_navigation_identifier, navigation_type, [navigation_source], [navigation_target]);

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

70 of 136

navigation_type =

open | show | hide | close | return ;

navigation_source =

entity_identifier |(attribute_identifier, entity_identifier) | button_identifier;

navigation_target =

view_identifier;

4.2.3 Semantics

In this section, we present the production rules defining the semantics for each of the five view types in

FLUIDE-D, as well as the model patterns used in the Content Views and dialog navigation. Before

addressing the five view types (and the model patterns and dialog navigation), we provide the semantics for

the parts of the abstract syntax that are used by all or most of the view types as well as by the interactor

design constructs. There are also some part of some constructs that are used in more than one view. The

semantics of these are only specified in the first construct in which they are used.

⟦ layout_details ⟧ =

⟦ coordinates ⟧ | ⟦ relative_layout_details ⟧

⟦ coordinates ⟧ =

⟦ coord(x, y, width, height)⟧

⟦ coord(x, y, width, height)⟧ =

is located x percent into the horizontal, and y percent into the the vertical extent of the parent view.

The width is width percent of the width of the partent view. The hight is height percent of the hight

of the partent view.

⟦ relative_layout_details ⟧ =

⟦ top left parent ⟧ | ⟦ filled parent ⟧ | ⟦ top filled parent ⟧ | ⟦ sibling right ⟧ | ⟦ sibling left ⟧| ⟦
sibling over ⟧ | ⟦ sibling under ⟧

⟦ top left parent ⟧ =

is located at the top left of its partent view. Its width and height will be determined automatically.

⟦ filled parent ⟧ =

uses all available space in the partent view. Its vertical location and height will be determined

automatically.

⟦ top filled parent ⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

71 of 136

uses all available space in the top part of the partent view. Its height will be determined

automatically.

⟦ sibling right ⟧ =

is located to the right of its prior sibling view. Its width and height will be determined automatically.

⟦ sibling left ⟧ =

is located to the left of its prior sibling view. Its width and height will be determined automatically.

⟦ sibling over ⟧ =

is located over its prior sibling view. Its width and height will be determined automatically.

⟦ sibling under ⟧ =

is located under its prior sibling view. Its width and height will be determined automatically.

⟦visual_elements ⟧ =

⟦ ves([image], [text] , [border_colour], {graphics}, {button}) ⟧

⟦ ves([image], [text] , [border_colour], {graphics}, {button}) ⟧ =

[⟦ image ⟧] [⟦ text ⟧] [⟦ border_colour ⟧] {⟦ graphics ⟧} {⟦ button ⟧}

⟦ image ⟧ =

⟦ static_picture ⟧ | ⟦ picture_attribute ⟧

⟦ static_picture ⟧ =

A static picture is shown or used as icon.

⟦ picture_attribute ⟧ =

A dynamic picture provided by attribute_identifier is shown or used as icon.

⟦ text ⟧ =

⟦ static_string ⟧ | ⟦ text_attribute ⟧

⟦ static_string ⟧ =

The text string is used as heading or label.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

72 of 136

⟦ picture_attribute ⟧ =

A dynamic text provided by attribute_identifier is used as heading or label.

⟦ border_colour ⟧ =

The colour of the border is ⟦ colour_spec ⟧.

⟦ colour_spec ⟧ =

⟦ static_colour ⟧ | ⟦ use annotation ⟧

⟦ static_colour ⟧ =

colour

⟦ use annotation ⟧ =

determined by an annotion

⟦ graphics ⟧ =

⟦ gr(shape, colour_spec)⟧

⟦ gr(shape, colour_spec)⟧ =

A ⟦ shape ⟧ which colour is ⟦ colour_spec ⟧.

⟦ shape ⟧ =

⟦ circle ⟧ | ⟦ triange ⟧ | ⟦ square ⟧

⟦ circle ⟧ =

visual circle

⟦ triange ⟧ =

visual triangle

⟦ square ⟧=

visual square

⟦ button ⟧=

⟦ btn(button_identifier, [button_image], [button_text]) ⟧

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

73 of 136

⟦ btn(button_identifier, [button_image], [button_text]) ⟧ =

The button button_identifier [with the image ⟦ button_image ⟧] [and the text ⟦ button_text ⟧].

4.2.3.1 Decorational View

⟦ decorational_view ⟧ =

⟦ dv(decorational_view_identifier, role_of_decorational_view, [present date], [present time],

[visual_elements], {dialog_navigation}, layout_method, [layout_details], {child_view}-) ⟧

⟦ dv(decorational_view_identifier, role_of_decorational_view, [present date], [present time],

[visual_elements], {dialog_navigation}, layout_method, [layout_details], {child_view}-)⟧ =

The Decorational View decorational_view_identifier which represents ⟦role_of_decorational_view⟧
in which a following content are presented:

[⟦ present date ⟧] [⟦ present time ⟧] [⟦visual_elements ⟧] {⟦ child_view ⟧}

The layout of this content is ⟦ layout_method ⟧.

[In the context of its parent view, decorational_view_identifier ⟦ layout_details ⟧.]

decorational_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ role_of_decorational_view ⟧ =

⟦ loosely connected windows ⟧ | ⟦ window ⟧ | ⟦ border ⟧

⟦ loosely connected windows ⟧ =

a set of loosely connected windows or a number of full screen renderings

⟦ windows ⟧ =

a window or a full screen rendering

⟦ border ⟧ =

a visually marked border, usually a rectancle

⟦ present date ⟧ =

The current date.

⟦ present time ⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

74 of 136

The current time.

⟦ child_view ⟧ =

⟦ view ⟧.

⟦ layout_method ⟧ =

⟦ percentage ⟧ | ⟦ relative ⟧ | ⟦ managed ⟧ | ⟦ automatic ⟧

⟦ percentage ⟧ =

given as percentage values of decorational_view_identifier in the child views

⟦ relative ⟧ =

given by rules in the child views for how they should be placed relative to their parent or a sibling

view

⟦ managed ⟧ =

given through one or more child Layout Manager Views

⟦ automatic ⟧ =

determined by a layout algorithm provided by decorational_view_identifier

4.2.3.2 Layout Manager View

⟦ layout_manager_view ⟧ =

⟦ lmv(layout_manager_view_identifier, layout_direction, [visual_elements], {dialog_navigation},

[layout_details], {child_view}-)⟧

⟦ lmv(layout_manager_view_identifier, layout_direction, [visual_elements], {dialog_navigation},

[layout_details], {child_view}-)⟧ =

The Layout Manager layout_manager_view_identifier which is invisible and presents:

 [⟦visual_elements ⟧] {⟦ child_view ⟧}

This content is presented ⟦ layout_direction⟧.

[In the context of its parent view, layout_manager_view_identifier ⟦ layout_details ⟧.]

layout_manager_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ layout_direction⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

75 of 136

⟦ horizontal ⟧ | ⟦ vertical ⟧

⟦ horizontal ⟧ =

side by side horizontally

⟦ vertical ⟧ =

over/under each other vertically

4.2.3.3 Content View

⟦ 3D_icons_imposed_on_camera_view ⟧ =

⟦ 3Diiocv(3D_icons_imposed_on_camera_view_identifier, main_entity_identifier,

point_localized_extended_single_entity, [visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ 3Diiocv(3D_icons_imposed_on_camera_view_identifier, main_entity_identifier,

point_localized_extended_single_entity, [visual_elements], {dialog_navigation}, [layout_details]) ⟧ =

The 3D Icons Imposed on Camera View 3D_icons_imposed_on_camera_view_identifier provides an

augmented reality presentation where 3D icons are imposed on a real time camera image from a

mobile device. The 3D icons represent one or more instances of main_entity_identifier. The icons

may include a presentation of ⟦the_extended_single_entity⟧.

The location of the 3D icons are determined by ⟦point_localizer⟧.

[3D_icons_imposed_on_camera_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, 3D_icons_imposed_on_camera_view ⟦ layout_details ⟧.]

3D_icons_imposed_on_camera_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ body_parts_visualization_view ⟧ =

⟦ bpvv(body_parts_visualization_view_identifier, single_entity, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧

⟦bpvv(body_parts_visualization_view_identifier, single_entity, [visual_elements], {dialog_navigation},

[layout_details])⟧ =

The Body Parts Visualization View body_parts_visualization_view_identifier provides a graphical

presentation of one or more body parts that are affected. The affected body parts are given by

⟦main_entity ⟧.

[body_parts_visualization_view_identifier also includes ⟦visual_elements ⟧].

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

76 of 136

[In the context of its parent view, body_parts_visualization_view_identifier ⟦layout_details⟧.]

body_parts_visualization_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ browser_for_composite_view ⟧ =

⟦ bfcv(browser_for_composite_view_identifier, composite, [visual_elements], {dialog_navigation},

[layout_details]) ⟧

⟦ bfcv(browser_for_composite_view_identifier, composite, [visual_elements], {dialog_navigation},

[layout_details]) ⟧ =

The Browser for Composite View browser_for_composite_view_identifier provides a browser in

which each level of a composite structure is presented in a list. Such a list contains one or more

instances of ⟦ component_entity ⟧. If an item in the list is selected, details about this entity is shown

in a details pane. If the selected list item is an instance of ⟦composite_entity⟧, its children are shown

in an additional list view. If the selected list item is an instance of ⟦leaf_entity⟧, all list views

reflecting lower levels in the hierarchy are closed. There are no restrictions with regard to the

number of levels, and thus the number of lists in the view.

[browser_for_composite_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, browser_for_composite_view_identifier ⟦ layout_details ⟧.]

browser_for_composite_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ browser_for_one_to_many_hierarchy_view ⟧ =

⟦ bfotmv(browser_for_one_to_many_hierarchy_view_identifier, one_to_many_hierarchy,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ bfotmv(browser_for_one_to_many_hierarchy_view_identifier, one_to_many_hierarchy,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧ =

The Browser for One to Many Hierarchy View

browser_for_one_to_many_hierarchy_view_identifier provides a browser in which each level of a

tree of entities connected through one to many relations is presented in a list. Such a list contains one

or more instances of the entity at a given level. If an item in the list is selected, details about this

entity is shown in a details pane. If the entity that the selected list item is an instance of has a related

entity at the level below, its children are shown in an additional list view. If the entity that the

selected list item is an instance of does not have related entity at the level below, all list views

reflecting lower levels in the hierarchy are closed. The hierarchy of entities that may be presented in

the browser consists of:

 ⟦ one_to_many_hierarchy ⟧

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

77 of 136

[browser_for_one_to_many_hierarchy_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, browser_for_one_to_many_hierarchy_view_identifier
⟦layout_details⟧.]

browser_for_one_to_many_hierarchy_view_identifier is the source for {⟦dialog_navigation⟧}.

⟦ icon_list_view ⟧ =

⟦ ilv(icon_list_view_identifier, single_entity, [visual_elements], {dialog_navigation},

[layout_details]) ⟧

⟦ ilv(icon_list_view_identifier, single_entity, [visual_elements], {dialog_navigation},

[layout_details]) ⟧ =

The Icon List View icon_list_view_identifier provides an icon-based presentation of one or more

instances of ⟦main_entity⟧ in a list.

[icon_list_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, icon_table_view_identifier ⟦ layout_details ⟧.]

icon_list_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ icon_table_view ⟧ =

⟦ itv(icon_table_view_identifier, categorized_single_entity, [visual_elements], [layout_details]) ⟧

⟦ itv(icon_table_view_identifier, categorized_single_entity, [visual_elements], {dialog_navigation},

[layout_details]) ⟧ =

The Icon Table View icon_table_view_identifier provides an icon-based presentation of one or more

instances of ⟦main_entity⟧. The icons are organized in groups given by ⟦categorizer⟧.

[icon_table_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, icon_table_view_identifier ⟦ layout_details ⟧.]

icon_table_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ icon_table_subtypes_view ⟧ =

⟦ itsv(icon_table_subtypes_view_identifier, subtyped_single_entity, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

78 of 136

⟦ itsv(icon_table_subtypes_view_identifier, subtyped_single_entity, [visual_elements], {dialog_navigation},

[layout_details]) ⟧ =

The Icon Table Subtypes View icon_table_subtypes_view_identifier provides an icon-based

presentation of one or more instances of ⟦ subtyped_single_entity ⟧. The subtypes are usually

presented by different icons.

[icon_table_subtypes_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, icon_table_subtypes_view_identifier ⟦ layout_details ⟧.]

icon_table_subtypes_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ list_details_view ⟧ =

⟦ ldv(list_details_view_identifier, main_entity_identifier, entity_with_list_attributes,

entity_with_details_attributes, [visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ ldv(list_details_view_identifier, main_entity_identifier, entity_with_list_attributes,

entity_with_details_attributes, [visual_elements], {dialog_navigation}, [layout_details]) ⟧ =

The List + Details View list_details_view_identifier provides two synchronized presentations of

main_entity_identifier. One presents a list of one or more instances of ⟦ entity_with_list_attributes ⟧.
The other gives a forms-based presentation of the details of ⟦entity_with_details_attributes⟧ from the

instance represented by the item selected in the list.

[list_details_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, list_details_view_identifier ⟦ layout_details ⟧.]

list_details_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ list_view ⟧ =

⟦ lv(list_view_identifier, extended_single_entity, [visual_elements], {dialog_navigation},

[layout_details]) ⟧

⟦ lv(list_view_identifier, extended_single_entity, [visual_elements], {dialog_navigation}, [layout_details]) ⟧

=

The List View list_view_identifier provides a simple list-based presentation (using a single user

interface control) of one or more instances of ⟦ extended_single_entity ⟧.

[list_view_identifier also includes ⟦visual_elements ⟧].

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

79 of 136

[In the context of its parent view, list_view_identifier ⟦ layout_details ⟧.]

list_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ map_icons_view ⟧ =

⟦ micv(map_icons_view_identifier, main_entity_identifier, point_localized_extended_single_entity,

map_buttons, [visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ micv(map_icons_view_identifier, main_entity_identifier, point_localized_extended_single_entity,

map_buttons, [visual_elements], {dialog_navigation}, [layout_details]) ⟧ =

The Map Icons View map_icons_view_identifier provides a map-based presentation of icons

representing one or more instances of main_entity_identifier. The icons may include a presentation

of ⟦the_extended_single_entity⟧. The location of the icons are determined by ⟦point_localizer⟧. If
map_icons_view_identifier does not have a parent providing a Map View, it will provide its own

map.

map_icons_view_identifier includes ⟦ map_buttons ⟧

[map_icons_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, map_icons_view_identifier ⟦ layout_details ⟧.]

map_icons_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ map_buttons ⟧ =

⟦ mb([include mode button], [include center button], [include projector button]) ⟧

⟦ mb([include mode button], [include center button], [include projector button]) ⟧ =

[⟦include mode button ⟧] [⟦include center button ⟧] [⟦include projector button ⟧]

⟦ include mode button ⟧ =

a button for accessing functionality for adjusting the presentation mode of the map

⟦ include center button ⟧ =

a button for centering the map

⟦ include projector button ⟧ =

a button for opening an augmented reality presentation of the contents in the map

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

80 of 136

⟦ map_icons_with_details_dialog_view ⟧ =

⟦ miwddv(map_icons_with_details_dialog_view_identifier, main_entity_identifier,

point_localized_extended_single_entity, map_buttons, [visual_elements], {dialog_navigation},

[layout_details]) ⟧

⟦ miwddv(map_icons_with_details_dialog_view_identifier, main_entity_identifier,

point_localized_extended_single_entity, map_buttons, [visual_elements], {dialog_navigation},

[layout_details])⟧ =

The Map Icons with Details Dialog View map_icons_with_details_dialog_view_identifier provides a

map-based presentation of icons representing one or more instances of main_entity_identifier. The

icons may include a presentation of ⟦the_extended_single_entity⟧. The location of the icons are

determined by ⟦point_localizer⟧. The icons provide functionality for separate forms-based

presentations of ⟦the_extended_single_entity⟧ of selected instances. If

map_icons_with_details_dialog_view_identifier does not have a parent providing a Map View, it

will provide its own map.

map_icons_with_details_dialog_view_identifier includes ⟦ map_buttons ⟧

[map_icons_with_details_dialog_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, map_icons_with_details_dialog_view_identifier ⟦layout_details⟧.]

map_icons_with_details_dialog_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ map_multi_line_view ⟧ =

⟦ mmlv(map_multi_line_view_identifier, single_entity_with_point_collection, map_buttons,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ mmlv(map_multi_line_view_identifier, single_entity_with_point_collection, map_buttons,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧ =

The Map Multi-line View map_multi_line_view_identifier provides a map-based presentation of a

set of line segments related to main_entity_identifier. The points defining the line segments are

obtained from point_collection_provider. If map_multi_line_view_identifier does not have a parent

providing a Map View, it will provide its own map.

map_multi_line_view_identifier includes ⟦ map_buttons ⟧

[map_multi_line_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, map_icons_with_details_dialog_view_identifier ⟦layout_details⟧.]

map_multi_line_view_identifier is the source for {⟦ dialog_navigation ⟧}.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

81 of 136

⟦ map_outline_view ⟧ =

⟦ mov(map_outline_view_identifier, area_localized_categorized_single_entity, map_buttons,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ mov(map_outline_view_identifier, area_localized_categorized_single_entity, map_buttons,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧ =

The Map Outline View map_outline_view_identifier provides a map-based presentation of outlies

representing one or more instances of main_entity_identifier. The visual appearance of the outlines

may be influenced by ⟦ categorizer ⟧. The location of the outlines are determined by

⟦area_localizer⟧. If map_outline_view_identifier does not have a parent providing a Map View, it

will provide its own map.

map_outline_view_identifier includes ⟦ map_buttons ⟧

[map_outline_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent map_outline_view_identifier ⟦ layout_details ⟧.]

map_outline_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ media_player_view ⟧ =

⟦ mpv(media_player_view_identifier, {single_attribute_from_single_entity}, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧

⟦ mpv(media_player_view_identifier, {single_attribute_from_single_entity}, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧ =

The Media-player View media_player_view_identifier presents media contents from one instance of

entity_identifier. The media contents are identified by {⟦ attribute_design ⟧}.

[media_player_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, media_player_view_identifier ⟦ layout_details ⟧.]

media_player_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ multi_instance_view ⟧ =

⟦ miv(multi_instance_view_identifier, extended_single_entity, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

82 of 136

⟦ miv(multi_instance_view_identifier, extended_single_entity, [visual_elements], {dialog_navigation},

[layout_details])⟧ =

The Multi-instance View multi_instance_view_identifier provides a forms-based presentation of one

or more instances of ⟦ extended_single_entity ⟧ using separate user interface controls for each

attribute.

[multi_instance_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, multi_instance_view_identifier ⟦ layout_details ⟧.]

multi_instance_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ owner_member_view ⟧ =

⟦ omv(owner_member_view_identifier, extended_owner_entity_with_member, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧

⟦ omv(owner_member_view_identifier, extended_owner_entity_with_member, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧ =

The Owner + Member View owner_member_view_identifier provides a master/details forms-based

presentation. The master part presents one instance of ⟦the_extended_single_entity⟧. The details part

presents one or more instances of the many-related ⟦ member_entity ⟧.

[owner_member_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, owner_member_view_identifier ⟦ layout_details ⟧.]

owner_member_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ ribbon_button_view ⟧ =

⟦ rbv(ribbon_button_view_identifier, single_entity, [visual_elements], {dialog_navigation},

[layout_details]) ⟧

⟦ rbv(ribbon_button_view_identifier, single_entity, [visual_elements], {dialog_navigation},

[layout_details]) ⟧ =

The Ribbon Button View ribbon_button_view_identifier provides a button intended to be part of a

ribbon. The button may show the name of entity_identifier as well as ⟦main_entity⟧ as part of the

button. The button also provides access to a ribbon category.

[ribbon_button_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, ribbon_button_view_identifier ⟦ layout_details ⟧.]

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

83 of 136

ribbon_button_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ ribbon_category_overview_view ⟧ =

⟦ rcov(ribbon_category_overview_view_identifier, single_entity, ribbon_category_buttons,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ rcov(ribbon_category_overview_view_identifier, single_entity, ribbon_category_buttons,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧ =

The Ribbon Category Overview View ribbon_category_overview_view_identifier provides overview

information about a ribbon category. This includes the name of entity_identifier as well as

⟦main_entity ⟧.

ribbon_category_overview_view_identifier includes ⟦ ribbon_category_buttons ⟧

[ribbon_category_overview_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, ribbon_category_overview_view_identifier ⟦layout_details⟧.]

ribbon_category_overview_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ ribbon_category_buttons ⟧ =

⟦ rcb([include tree button], [include home button], [include table button], [include search

button]) ⟧

⟦ rcb([include tree button], [include home button], [include table button], [include search button])⟧ =

[⟦include tree button ⟧] [⟦include home button ⟧] [⟦include table button ⟧] [⟦include search

button ⟧]

⟦ include tree button ⟧ =

a button for opening a presentation of the instances of the category in a tree view

⟦ include home button ⟧ =

a button for going back to the ribbon buttons

⟦ include table button ⟧ =

a button for opening a presentation of the instances of the category in a table view

⟦ include search button ⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

84 of 136

a button for accessing the search function

⟦ ribbon_sub_category_single_entity_view ⟧ =

⟦ rscsev(ribbon_sub_category_single_entity_view_identifier, single_entity, [include add button],

[visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ rscsev(ribbon_sub_category_single_entity_view_identifier, single_entity, [include add button],

[visual_elements], {dialog_navigation}, [layout_details]) ⟧ =

The Ribbon Sub Category Single Entity View ribbon_sub_category_single_entity_view_identifier

provides an icon-based presentation of one sub category of a ribbon as a grid or table of icons. The

icons represent one or more instances of ⟦main_entity⟧.

[ribbon_sub_category_single_entity_view_identifier includes ⟦ include add button ⟧].

[ribbon_sub_category_single_entity_view_identifier also includes ⟦visual_elements ⟧].

 [In the context of its parent view, ribbon_sub_category_single_entity_view_identifier
⟦layout_details⟧.]

ribbon_sub_category_single_entity_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ include add button ⟧ =

a button for adding instances of the entity presented in the ribbon category

⟦ ribbon_sub_category_subtyped_single_entity_view ⟧ =

⟦ rscssev(ribbon_sub_category_subtyped_single_entity_view_identifier, subtyped_single_entity,

[include add button], [visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ rscssev(ribbon_sub_category_subtyped_single_entity_view_identifier, subtyped_single_entity, [include

add button], [visual_elements], {dialog_navigation}, [layout_details]) ⟧ =

The Ribbon Sub Category Subtyped Single Entity View

ribbon_sub_category_subtyped_single_entity_view_identifier provides an icon-based presentation of

one sub category of a ribbon as a grid or table of icons. The icons represent one or more instances of

⟦ subtyped_single_entity ⟧. The subtypes are usually presented by different icons.

[ribbon_sub_category_subtyped_single_entity_view_identifier includes
⟦include add button⟧].

[ribbon_sub_category_subtyped_single_entity_view_identifier also includes ⟦visual_elements⟧].

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

85 of 136

 [In the context of its parent view, ribbon_sub_category_subtyped_single_entity_view_identifier
⟦layout_details⟧.]

ribbon_sub_category_subtyped_single_entity_view_identifier is the source for

{⟦dialog_navigation⟧}.

⟦ ribbon_sub_categories_categorized_single_entity_view ⟧ =

⟦ rsccssev(ribbon_sub_categories_categorized_single_entity_view_identifier,

categorized_single_entity, [include add button], [visual_elements], {dialog_navigation},

[layout_details]) ⟧

⟦ rsccssev(ribbon_sub_categories_categorized_single_entity_view_identifier, categorized_single_entity,

[include add button], [visual_elements], {dialog_navigation}, [layout_details]) ⟧ =

The Ribbon Sub Categories Categorized Single Entity View

ribbon_sub_categories_categorized_single_entity_view_identifier provides an icon-based

presentation of a ribbon category as a grid or table of icons divided into sub categories. The icons

represent one or more instances of ⟦ main_entity ⟧. The sub categories are determined by

⟦categorizer ⟧.

[ribbon_sub_categories_categorized_single_entity_view_identifier includes
⟦ include add button ⟧].

[ribbon_sub_categories_categorized_single_entity_view_identifier also includes ⟦visual_elements⟧].

 [In the context of its parent view, ribbon_sub_categories_categorized_single_entity_view_identifier

⟦layout_details⟧.]

ribbon_sub_categories_categorized_single_entity_view_identifier is the source for

{⟦dialog_navigation⟧}.

⟦ ribbon_sub_categories_categorized_subtyped_single_entity_view ⟧ =

⟦ rsccssev(ribbon_sub_categories_categorized_subtyped_single_entity_view_identifier,

categorized_subtyped_single_entity, [include add button], [visual_elements], {dialog_navigation},

[layout_details]) ⟧

⟦ rsccssev(ribbon_sub_categories_categorized_subtyped_single_entity_view_identifier,

categorized_subtyped_single_entity, [include add button], [visual_elements], {dialog_navigation},

[layout_details]) ⟧ =

The Ribbon Sub Categories Categorized Subtyped Single Entity View

ribbon_sub_categories_categorized_subtyped_single_entity_view_identifier provides an icon-based

presentation of a ribbon category as a grid or table of icons divided into sub categories. The icons

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

86 of 136

represent one or more instances of ⟦ the_subtyped_single_entity ⟧. The sub categories are determined

by ⟦ categorizer ⟧. Within each sub category the subtypes are usually presented by different icons.

[ribbon_sub_categories_categorized_subtyped_single_entity_view_identifier includes ⟦include add

button ⟧].

[ribbon_sub_categories_categorized_subtyped_single_entity_view_identifier also includes
⟦visual_elements⟧].

 [In the context of its parent view,

ribbon_sub_categories_categorized_subtyped_single_entity_view_identifier ⟦layout_details⟧.]

ribbon_sub_categories_categorized_subtyped_single_entity_view_identifier is the source for

{⟦dialog_navigation ⟧}.

⟦ ribbon_ticker_category_view ⟧ =

⟦ rtcv(ribbon_ticker_category_view_identifier, single_entity, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧

⟦ rtcv(ribbon_ticker_category_view_identifier, single_entity, [visual_elements], {dialog_navigation},

[layout_details]) ⟧ =

The Ribbon Ticker Category View ribbon_ticker_category_view_identifier presents key information

from one ribbon category as part of a ribbon ticker. The key information that is presented is

⟦main_entity ⟧.

[ribbon_ticker_category_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, ribbon_ticker_category_view_identifier ⟦ layout_details ⟧.]

ribbon_ticker_category_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ sensor_feeds_view ⟧ =

⟦ sfv(sensor_feeds_view_identifier, sensor_feed | typed_sensor_feed, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧

⟦ sfv(sensor_feeds_view_identifier, sensor_feed | typed_sensor_feed, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧ =

The Sensor Feeds View sensor_feeds_view_identifier provides a graphical presentation of a set of

sensor values from one or more sensors. ⟦ sensor_feed ⟧ | ⟦ typed_sensor_feed ⟧

[sensor_feeds_view_identifier also includes ⟦visual_elements ⟧].

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

87 of 136

[In the context of its parent view, sensor_feeds_view_identifier ⟦ layout_details ⟧.]

sensor_feeds_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ sensor_feed ⟧ =

The sensors are determined by ⟦ collection ⟧. The sensor values to present are determined by

⟦value_provider ⟧.

⟦ typed_sensor_feed ⟧ =

The sensors are determined by ⟦ collection ⟧. The sensor type is given by ⟦ value_type ⟧. The sensor

values to present are determined by ⟦ value_provider ⟧.

⟦ single_instance_view ⟧ =

⟦ siv(single_instance_view_identifier, extended_single_entity, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧

⟦ siv(single_instance_view_identifier, extended_single_entity, [visual_elements], {dialog_navigation},

[layout_details]) ⟧ =

The Single Instance View single_instance_view_identifier which provides a forms-based

presentation of one instance of ⟦extended_single_entity⟧ using separate user interface controls for

each attribute.

[single_instance_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, single_instance_view_identifier ⟦ layout_details ⟧.]

single_instance_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ single_instance_with_proposed_standard_text_view ⟧ =

⟦ siwpstv(single_instance_with_proposed_standard_text_view_identifier, extended_single_entity,

attribute_for_standard_texts, {standard_text}, [visual_elements], {dialog_navigation},

[layout_details]) ⟧

⟦ siwpstv(single_instance_with_proposed_standard_text_view_identifier, extended_single_entity,

attribute_for_standard_texts, {standard_text}, [visual_elements], {dialog_navigation}, [layout_details]) ⟧ =

The Single Instance with Proposed Standard Text View

single_instance_with_proposed_standard_text_view_identifier provides a forms-based presentation

of one instance of ⟦extended_single_entity⟧ using separate user interface controls for each attribute.

Values for the attribute attribute_for_standard_texts may be chosen from a list containing the values

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

88 of 136

{⟦standard_text⟧}. Access to this list is provided from a button with the label "Choose standard

attribute_for_standard_texts text".

[single_instance_with_proposed_standard_text_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, single_instance_with_proposed_standard_text_view_identifier
⟦layout_details ⟧.]

single_instance_with_proposed_standard_text_view_identifier is the source for

{⟦dialog_navigation⟧}.

⟦ table_view ⟧ =

⟦ tv(table_view_identifier, extended_single_entity, [visual_elements], {dialog_navigation},

[layout_details]) ⟧

⟦ tv(table_view_identifier, extended_single_entity, [visual_elements], {dialog_navigation}, [layout_details])

⟧ =

The Table View table_view_identifier provides a list-based presentation (using separate user

interface controls for each attribute) of one or more instances of ⟦ extended_single_entity ⟧.

[table_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, table_view_identifier ⟦ layout_details ⟧.]

table_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ tree_for_composite_view ⟧ =

⟦ tfcv(tree_for_composite_view_identifier, composite, [visual_elements], {dialog_navigation},

[layout_details]) ⟧

⟦ tfcv(tree_for_composite_view_identifier, composite, [visual_elements], {dialog_navigation},

[layout_details]) ⟧ =

The Tree for Composite View tree_for_composite_view_identifier provides a visual tree in which

instances of a whole composite structure is presented. Each level in the tree contains one or more

instances of ⟦ component_entity ⟧. If an item in the tree is an instance of ⟦composite_entity⟧, its

children may be viewed in the tree by expanding the item. If an item in the tree is an instance of

⟦leaf_entity ⟧, it may not be expanded. There are no restrictions with regard to the number of levels,

and thus the depth of the tree.

[tree_for_composite_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, tree_for_composite_view_identifier ⟦ layout_details ⟧.]

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

89 of 136

tree_for_composite_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ tree_for_one_to_many_hierarchy_view ⟧ =

⟦ tfotmv(tree_for_one_to_many_hierarchy_view_identifier, one_to_many_hierarchy,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ tfotmv(tree_for_one_to_many_hierarchy_view_identifier, one_to_many_hierarchy, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧ =

The Tree for One to Many Hierarchy View tree_for_one_to_many_hierarchy_view_identifier

provides a visual tree in which instances of all levels of a hierarchy of one to many related entities is

presented. Each level in the tree contains one or more instances of the entity at a given level. If the

entity that an item in the tree is an instance of has a related entity at the level below, its children may

be viewed in the tree by expanding the item. If the entity that an item in the tree is an instance of

does not have related entity at the level below, it may not be expanded. The hierarchy of entities that

may be presented in the tree consists of:

 ⟦ one_to_many_hierarchy ⟧

[tree_for_one_to_many_hierarchy_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, tree_for_one_to_many_hierarchy_view_identifier
⟦layout_details⟧.]

tree_for_one_to_many_hierarchy_view_identifier is the source for {⟦ dialog_navigation ⟧}.

4.2.3.4 Model Patterns Used in Content Views2

⟦ one_to_many_hierarchy ⟧ =

⟦entity_without_members⟧. ⟦entity_without_members⟧ does not have any related entities.|

⟦otmh(owner_entity, one_to_many_hierarchy)⟧

⟦ otmh(owner_entity, one_to_many_hierarchy) ⟧ =

 ⟦owner_entity⟧. ⟦owner_entity⟧ has the one to many related entity ⟦one_to_many_hierarchy⟧

⟦ extended_single_entity ⟧ =

⟦ ese(main_entity, {subtype}, {one_related}) ⟧

⟦ ese(main_entity, {subtype}, {one_related}) ⟧ =

2 Some of the EBNF expressions in Section 4.2.2.4 are not included in this section as the definitions of the semantics of
the views using these model patterns exploit the semantics of individual elements of the model patterns rather than
the semantics of the complete model pattern.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

90 of 136

⟦ main_entity ⟧ {⟦ subtype ⟧} {⟦ one_related ⟧}

⟦ subtyped_single_entity ⟧ =

⟦ sse(main_entity, {subtype}) ⟧

⟦ sse(main_entity, {subtype}) ⟧ =

⟦ main_entity ⟧ {⟦ subtype ⟧}

⟦ entity_design ⟧ =

⟦ ed(entity_identifier, {attribute_design}, {method_design}, {annotation_design}) ⟧

⟦ ed(entity_identifier, {attribute_design}, {method_design}, {annotation_design}) ⟧ =

{⟦ attribute_design ⟧} and {⟦ method_design ⟧} from entity_identifier, taking {⟦annotation_design ⟧}
into account

⟦ attribute_design ⟧ =

⟦ ad(attribute_identifier, {annotation_design}) ⟧

⟦ ad(attribute_identifier, {annotation_design}) ⟧ =

attribute_identifier, taking {⟦annotation_design ⟧} into account

⟦ method_design ⟧ =

⟦ md(method_identifier, {annotation_design }) ⟧

⟦ md(method_identifier, {annotation_design }) ⟧ =

method_identifier, taking {⟦annotation_design ⟧} into account

⟦ categorizer ⟧ =

the one-related entity ⟦ categorizing_entity ⟧ | by the attibute ⟦ categorizing_attribute ⟧

⟦point_localizer⟧ =

the one-related entity ⟦ point_localizing_entity ⟧ | by the attibute ⟦point_localizing_attribute⟧

⟦ area_localizer ⟧ =

the one-related entity ⟦ area_localizing_entity ⟧ | by the attibute ⟦area_localizing_attribute⟧

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

91 of 136

4.2.3.5 Content Integration View

⟦ combined_map_and_ribbon_view ⟧ =

⟦ cmarv(combined_map_and_ribbon_view_identifier, view_for_map, view_for_ribbon,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ cmarv(combined_map_and_ribbon_view_identifier, view_for_map, view_for_ribbon, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧ =

The Combined Map and Ribbon View combined_map_and_ribbon_view_identifier puts together one

interactor design containing a Map View with another interactor design containing a Ribbon View,

together making up a user interface with the map and the ribbon working together. The map part is

provided by:

⟦ view_for_map ⟧

The ribbon part is provided by:

⟦ view_for_ribbon ⟧

[combined_map_and_ribbon_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, combined_map_and_ribbon_view_identifier ⟦layout_details⟧.]

combined_map_and_ribbon_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ map_view ⟧ =

⟦ mv(map_view_identifier, {view_for_child_map}, [visual_elements], {dialog_navigation},

[layout_details]) ⟧

⟦ mv(map_view_identifier, {view_for_child_map}, [visual_elements], {dialog_navigation},

[layout_details])⟧ =

The Map View map_view_identifier provides a map for presenting various map overlays. The

overlays are provided by the child interactor designs, which must contain either another Map View, a

Map Icons View, a Map Icons with Details Dialog View, a Map Outline View, or a Map Multi Line

View. Such views are provided by:

{⟦ view_for_child_map ⟧}

The overlays are shown on the map provided by the Map View highest up in the hierarchy.

[map_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, map_view_identifier ⟦layout_details⟧.]

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

92 of 136

map_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ ribbon_buttons_view ⟧ =

⟦ rbsv(ribbon_buttons_view_identifier, {view_for_ribbon_button}, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧

⟦ rbsv(ribbon_buttons_view_identifier, {view_for_ribbon_button}, [visual_elements], {dialog_navigation},

[layout_details]) ⟧ =

The Ribbon Buttons View ribbon_buttons_view_identifier provides the button part of the top level of

a ribbon, through putting together a set of interactor designs containing Ribbon Button Views. The

ribbon buttons are provided by:

{⟦ view_for_ribbon_button ⟧}

[ribbon_buttons_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, ribbon_buttons_view_identifier ⟦layout_details⟧.]

ribbon_buttons_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ ribbon_categories_view ⟧ =

⟦ rcsv(ribbon_categories_view_identifier, {view_for_ribbon_category}, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧

⟦ rcsv(ribbon_categories_view_identifier, {view_for_ribbon_category}, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧ =

The Ribbon Categories View ribbon_categories_view_identifier puts together a set of a set of

interactor designs containing Ribbon Category Views. The coupling is functional rather than visual.

The ribbon categories are provided by:

{⟦ view_for_ribbon_category ⟧}

[ribbon_categories_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, ribbon_categories_view_identifier ⟦layout_details⟧.]

ribbon_categories_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ ribbon_category_view ⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

93 of 136

⟦ rcv(ribbon_category_view_identifier, view_for_overview, views_for_categories,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ rcv(ribbon_category_view_identifier, view_for_overview, views_for_categories, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧ =

The Ribbon Category View ribbon_category_view_identifier provides the presentation of one ribbon

category, consisting of an overview part and a set of sub categories. The overview part is given by a

Basic Content Presenter Design containing a Ribbon Category Overview View, i.e.:

⟦ view_for_overview ⟧

The sub categories are given by ⟦ views_for_categories ⟧.

[ribbon_category_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, ribbon_category_view_identifier ⟦ layout_details ⟧.]

ribbon_category_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ views_for_categories ⟧ =

⟦ views_for_sub_category ⟧ | ⟦ view_for_sub_categories ⟧

⟦ views_for_sub_category ⟧ =

a number of Basic Content Presenter Designs each containing either a Ribbon Sub Category Single

Entity View or a Ribbon Sub Category Subtyped Single Entity View, i.e.:

{⟦ basic_content_presenter_design_view ⟧}

⟦ view_for_sub_categories ⟧ =

a Basic Content Presenter Design containing either a Ribbon Sub Categories Categorized Single

Entity View or a Ribbon Sub Categories Categorized Subtyped Single Entity View, i.e.:

⟦ basic_content_presenter_design_view ⟧

⟦ ribbon_contents_view ⟧ =

⟦ rctv(ribbon_contents_view_identifier, view_for_ribbon_categories, view_for_ribbon_buttons,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧

⟦ rctv(ribbon_contents_view_identifier, view_for_ribbon_categories, view_for_ribbon_buttons,

[visual_elements], {dialog_navigation}, [layout_details]) ⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

94 of 136

The Ribbon Contents View ribbon_contents_view_identifier puts together one interactor design

containing a Ribbon Categories View with another interactor design containing a Ribbon Buttons

View. The coupling is functional rather than visual, and provides the functionality navigating

between single ribbon buttons and corresponding ribbon categories and up again. The ribbon

categories part is provided by:

⟦ view_for_ribbon_categories ⟧

The ribbon buttons part is provided by:

⟦ view_for_ribbon_buttons ⟧

[ribbon_contents_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, ribbon_contents_view_identifier ⟦layout_details⟧.]

ribbon_contents_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ ribbon_ticker_view ⟧ =

⟦ rtv(ribbon_ticker_view_identifier, {view_for_ribbon_ticker_category}, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧

⟦ rtv(ribbon_ticker_view_identifier, {view_for_ribbon_ticker_category}, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧ =

The Ribbon Ticker View ribbon_ticker_view_identifier puts together a set of a set of interactor

designs containing Ribbon Ticker Category Views, making up the ticker part of the top level of a

ribbon. The ribbon ticker categories are provided by:

{⟦ view_for_ribbon_ticker_category ⟧}

[ribbon_ticker_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, ribbon_ticker_view_identifier ⟦layout_details⟧.]

ribbon_ticker_view_identifier is the source for {⟦ dialog_navigation ⟧}.

⟦ ribbon_view ⟧ =

⟦ rv(ribbon_view_identifier, view_for_ribbon_contents, view_for_ribbon_ticker, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧

⟦ rv(ribbon_view_identifier, view_for_ribbon_contents, view_for_ribbon_ticker, [visual_elements],

{dialog_navigation}, [layout_details]) ⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

95 of 136

The Ribbon View ribbon_view_identifier puts together one interactor design containing a Ribbon

Contents View with another interactor design containing a Ribbon Ticker View, together making up

a complete ribbon. The ribbon contents part is provided by:

⟦ view_for_ribbon_contents ⟧

The ribbon ticker part is provided by:

⟦ view_for_ribbon_ticker ⟧

[ribbon_view_identifier also includes ⟦visual_elements ⟧].

[In the context of its parent view, ribbon_view_identifier ⟦layout_details⟧.]

ribbon_view_identifier is the source for {⟦ dialog_navigation ⟧}.

4.2.3.6 Interactor Design View

⟦ content_presenter_design_view ⟧ =

⟦ cpdv(content_presenter_design_identifier, [layout_details]) ⟧

⟦ cpdv(content_presenter_design_identifier, [layout_details]) ⟧ =

The entire contents of the Content Presenter Design content_presenter_design_identifier.

[In the context of its parent view, content_presenter_design_identifier ⟦layout_details⟧.]

⟦ task_supporter_design_view ⟧ =

⟦ tsdv(task_supporter_design_identifier, [layout_details]) ⟧

⟦ tsdv(task_supporter_design_identifier, [layout_details]) ⟧ =

The entire contents of the Task Supporter Design task_supporter_design_identifier.

[In the context of its parent view, task_supporter_design_identifier ⟦layout_details⟧.]

⟦ work_supporter_design_view ⟧ =

⟦ wsdv(work_supporter_design_identifier, [layout_details]) ⟧

⟦ wsdv(work_supporter_design_identifier, [layout_details]) ⟧ =

The entire contents of the Work Supporter Design work_supporter_design_identifier.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

96 of 136

[In the context of its parent view, work_supporter_design_identifier ⟦layout_details⟧.]

With these production rules, only the identifiers (the names) of the interactor designs being referenced are

included in the resulting sentences. To investigate the semantics of the corresponding interactor designs,

their production rules must be used.

4.2.3.7 Dialog navigation

{⟦ dialog_navigation ⟧} =

⟦ dn(dialog_navigation_identifier, navigation_type, [navigation_source], [navigation_target])⟧

⟦ dn(dialog_navigation_identifier, navigation_type, [navigation_source], [navigation_target]) ⟧ =

a dialog navigation by which [⟦ navigation_source ⟧] the view ⟦ navigation_type ⟧
⟦navigation_target⟧

⟦ navigation_source ⟧ =

the entity entity_identifier in | the attribute attribute_identifier from the entity entity_identifier in | the

button button_identifier in

⟦ navigation_target ⟧ =

view_identifier

⟦ navigation_type ⟧ =

⟦open⟧ | ⟦show⟧ | ⟦hide⟧ | ⟦close⟧ | ⟦return⟧

⟦open⟧ =

opens

⟦show⟧ =

shows

⟦hide⟧ =

hides

⟦close⟧ =

closes

⟦return⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

97 of 136

navigates back to the dialog from which the view was opened

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

98 of 136

4.3 Basic Content Presenter Design

In this section, we provide the syntax and semantics of the basic variant of the Content Presenter Design

construct.

4.3.1 Graphical Syntax

A Content Presenter Design identifies which parts of the connected concept model fragment of the

corresponding Content Presenter in FLUIDE-A which should be included in the design. The concept model

fragment in the design is thus a subset of the FLUIDE-A counterpart, and both entities and attributes may be

omitted. Relations are omitted implicitly if at least one of the entities they connect is omitted. Annotations on

model elements that are omitted are automatically omitted in the design. In addition, it is also possible to

omit annotations on model elements that are not omitted. When model elements are omitted, the resulting

concept model fragment in the design may seem not be connected. This is not a problem, as the original

model fragment (which is connected) is used when the model extent is determined at run-time. This also

means that even the anchor entity may be omitted in the design. The concrete syntax for expressing the

model fragments is the same as in FLUIDE-A. In the graphical notation, the concept model is located in one

or more Content Views. Relations going between entities presented in different views are not shown to avoid

visual clutter. All the views (and their children) are located in the content part of a Basic Content Presenter

Design. Figure 4.9 gives an example of a Basic Content Presenter design, with explanations of certain parts.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

99 of 136

Figure 4.9 - A Basic Content Presenter Design in FLUIDE-D

The corresponding FLUIDE-A specification of the design shown in Figure 4.9 is the Basic Content Presenter

shown in Figure 3.2. As can be seen in Figure 4.9, the concept model fragment may be distributed between

different Content Views, which may have different cardinality. The cardinality in the views must correspond

to the cardinality of the entities presented in the view, as seen from the anchor entity. For example the

Injured body parts view in Figure 4.9 has many cardinality, because there is a relation between the Victim

and Affected body part entities, having many cardinality on the Affected body part side. Note also that only

the relevant annotations are included in the design.

4.3.2 Abstract Syntax

Figure 4.10 provides a concept model explaining the main concepts used when specifying a Basic Content

Presenter Design.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

100 of 136

Basic content
presenter design

Entity anchor
design

Annotatable
concept model
element design

1

1

View

1

1

root

Layout manager
view

1

*

Content view Attribute design

Entity design

Decorational view

1..*

1..*

1

*

Model pattern

1

 *

Annotation
design

1

*

Composite view

Platform/modalityUI Style

*

1..*

*

1..*

Method design

*

Figure 4.10 - Concept model describing the means for specifying Basic Content Presenter Designs in

FLUIDE-D

The concept model in Figure 4.10 has two parts. The concepts drawn in light blue contain a structure

mirroring the structure of the FLUIDE-A concept model for Basic Content Presenter, while the concepts

drawn in light pink represents the means for specifying the design of each part of the mirrored structure, plus

additional mechanisms for specifying decoration and structure that is needed in a design. The light pink part

contains a subset of the corresponding concept model for views (see Figure 4.8).

When specifying a Basic Content Presenter Design using EBNF, most of the specification is expressed using

the View constructs defined in Section 4.2.2. This means that only the root view is included in the EBNF

definition of Basic Content Presenter Design. It also means that all concepts in the light blue part except

Basic Content Presenter Design and Entity Anchor Design are specified as part of Content Views. Thus

Content Views also specify which subset of the connected concept model from FLUIDE-A which is included

in the design.

basic_content_presenter_design = bcpd(basic_content_presenter_design_identifier, {UI_style}-,

{platform_modality}-, basic_content_presenter_identifier, anchor_entity_design, root_view);

The basic_content_presenter_identifier is a reference to the corresponding specification in FLUIDE-A.

UI_style = forms based | list based | icons based | map based | graph based | multimedia based;

platform_modality = PC with mouse and keyboard | mobile device with touch | table top with touch |

augmented reality | audio interaction;

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

101 of 136

anchor_entity_design = entity_identifier;

root_view = view;

4.3.3 Semantics

⟦ basic_content_presenter_design ⟧ =

⟦ bcpd(basic_content_presenter_design_identifier, {UI_style}-, {platform_modality}-,

basic_content_presenter_identifier, anchor_entity_design, root_view) ⟧

⟦ bcpd(basic_content_presenter_design_identifier, {UI_style}-, {platform_modality}-,

basic_content_presenter_identifier, anchor_entity_design, root_view) ⟧ =

basic_content_presenter_design_identifier expresses how the Basic Content Presenter

basic_content_presenter_identifier should be rendered on {⟦ platform_modality ⟧} using

{⟦UI_style⟧} as presentation styles. basic_content_presenter_design_identifier presents these parts:

⟦ root_view ⟧

The starting point for determining the instances to present in these parts is anchor_entity_design.

⟦ platform_modality ⟧ =

⟦ PC with mouse and keyboard ⟧ | ⟦ mobile device with touch ⟧ | ⟦ table top with touch ⟧|

⟦augmented reality ⟧| ⟦ audio interaction ⟧

⟦ PC with mouse and keyboard ⟧ =

a PC or similar using mouse and keyboard as interaction devices

⟦ mobile device with touch ⟧ =

a mobile phone, tablet or similar mobile device using touch as interaction means

⟦ table top with touch ⟧ =

a table top or similar device using touch as interaction means

⟦augmented reality ⟧ =

a mobile phone, tablet or similar mobile device using augmented reality techniques

⟦ audio interaction ⟧ =

a platform supporting sound output, spoken commands and/or dictation as interaction means

⟦UI_style⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

102 of 136

⟦ forms based ⟧ | ⟦ list based ⟧ | ⟦ icons based ⟧| ⟦ map based ⟧| ⟦ graph based ⟧ | ⟦multimedia

based ⟧

⟦ forms based ⟧ =

traditional forms-based presentation, typically exploiting one user interface control per attribute that

is presented

⟦ list based ⟧ =

list-based presentation, showing a number of instances in a list box or in a more complex list using

separate user interface controls for each attribute that is presented

⟦ icons based ⟧ =

icon-based presentation, showing instances as icons

⟦ map based ⟧ =

map-based presentation, showing instances as overlays on a map background

⟦ graph based ⟧ =

graph-based presentation, visualising attribute values using graphical techniques

⟦multimedia based ⟧ =

multi media-based presentation, presenting attribute values using rich media techniques like images,

sound and video

4.3.4 Example

In this section, we provide an example of using the abstract syntax (EBNF definitions) and the production

rules defining the semantics for Basic Content Presenter Design in FLUIDE-D. The example is a subset of

the specification of the Basic Content Presenter Design in Figure 4.9.

4.3.4.1 EBNF Specification

bcpd(Victim Presenter Design – Medical details,

forms based,

PC with mouse and keyboard,
Victim Presenter,

Victim,

/* root view is a layout manager:*/

lmv(triage layout,

 vertical,

 /* no visual elements*/,

 /* no dialog navigation*/,

 /* no layout details*/,

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

103 of 136

 /* child views */

 /* single instance view: */
 siv(Victim heading,

 /* model pattern instance: */

 ese(

 /* main entity: */

 ed(Triage,

 /* included attributes: */

 ad(date, /* no annotations for the attribute design */),

 ad(time, /* no annotations for the attribute design */),

 /* no methods */,

 /* no annotations for the entity design */,

) /* end of main entity design specification */,

 /* no sub types */,

 /* one-related entity: */

 ed(Triager,

 /* included attributes: */

 ad(name, /* no annotations for the attribute design */),

 ad(position, /* no annotations for the attribute design */),

 /* no methods */,

 /* no annotations for the entity design */,

) /* end of one-related entity design specification */

) /* end of model pattern specification */,

 /* no visual elements*/,

 /* no dialog navigation*/,

 /* no layout details*/

) /* end single instance view specification */,

 /* layout manager view: */
 lmv(medical details layout,

 vertical,

 /* no visual elements*/,

 /* no dialog navigation*/,

 /* no layout details*/,

 /* child views (two content views) omitted */

) /* end of layout manager specification */

 /* two single instance views omitted */

) /* end of layout manager specification */

) /* end of bcpd specification */

4.3.4.2 Semantics of the EBNF Specification

Applying the production rules from Section 4.3.3 on the EBNF specification just presented results in the

following English sentences:

Victim Presenter Design – Medical details expresses how the Basic Content Presenter Victim Presenter

should be rendered on a mobile phone, tablet or similar mobile device using touch as interaction means

using traditional forms-based presentation, typically exploiting one user interface control per attribute that

is presented as presentation style. Victim Presenter Design – Medical details presents these parts:

The Layout Manager triage layout which is invisible and presents:

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

104 of 136

The Single Instance View Victim heading which provides a forms-based presentation of one

instance of date and time from Triage and name and position from Triager using separate user

interface controls for each attribute.

The Layout Manager medical details layout which is invisible and presents:

[two omitted Content Views]

This content is presented side by side horizontally.

[two omitted single instance views]

This content is presented over/under each other vertically.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

105 of 136

4.4 Aggregated Content Presenter Design

In this section, we provide the syntax and semantics of the aggregated variant of the Content Presenter

Design construct, i.e. Content Presenter Designs that have other Content Presenter Designs as children of

their views.

4.4.1 Graphical Syntax

Aggregated Content Presenter Designs aggregate other Content Presenter Designs (Basic or Aggregated).

The implicit concept model fragment of the design is determined in the same way as the connected concept

model fragment of the corresponding presenter in FLUIDE-A. Model elements that are to be omitted in the

design must be omitted in the child Content Presenter Designs. In addition, some child presenter designs

(including the one containing the anchor) may be omitted. The relations in the corresponding Aggregated

Content Presenter in FLUIDE-A may not be explicitly omitted, and is not shown in the design to avoid visual

clutter. In the graphical notation, the child presenters are often located in Content Integration Views. One

such view may contain more than one child presenter, sometimes in different compartments. All the views

(and their children) are located in the content part of an Aggregated Content Presenter Design. Figure 4.11

gives an example of an Aggregated Content Presenter Design, with explanations of certain parts. As a short-

hand notation in Figure 4.11, in subsequent figures providing examples for the other interactor design

constructs, and in the text explaining the graphical notation, we refer to the references to member interactor

design as interactor designs, even though they formally (and in the EBNF) are interactor design views.

Figure 4.11 - An Aggregated Content Presenter Design in FLUIDE-D

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

106 of 136

The corresponding FLUIDE-A specification of the design shown in Figure 4.11 is the Aggregated Content

Presenter shown in Figure 3.4. Only the border part of the child presenter designs is shown in the aggregated

one. The names of the child presenter designs are shown in their content part. The same is the case for the

anchor of the presenter design containing the anchor (this presenter design is omitted in the Aggregated

Content Presenter Design in Figure 4.11). In this example, there are two different designs for UV Presenter

in the FLUIDE-A specification. This is similar to locating attributes of the same entity in different Content

Views in a Basic Content Presenter Design (as is done in the example in Figure 4.9). An aggregated

presenter may contain more than one Content Integration View.

4.4.2 Abstract Syntax

Figure 4.12 provides a concept model explaining the main concepts used when specifying an Aggregated

Content Presenter Design.

Aggregated
concept model

fragment
presenter design

 1

1..*

Content presenter
design

Content presenter
design view

1

*

1

1
has

Entity Anchor
Design

1

1

is member of

*

*

View

Layout manager
view

1

*

Decorational view

 Composite view

Content
integration view

Platform/modalityUI Style

*

1..*

*

1..*

Figure 4.12 - Concept model describing the means for specifying Aggregated Content Presenter

Designs in FLUIDE-D

The concept model in Figure 4.12 has two parts. The concepts drawn in light blue contain a structure

mirroring part of the structure of the FLUIDE-A concept model for Aggregated Content Presenter, while

concepts drawn in light pink represent the means for specifying the design of each part of the mirrored

structure, plus additional mechanisms for specifying decoration and structure that is needed in a design. The

light pink part contains a subset of the corresponding concept model for views (see Figure 4.8).

When specifying an Aggregated Content Presenter Design using EBNF, most of the specification is

expressed using the View constructs defined in Section 4.2.2. This means that only the first level of the child

views is included in the EBNF definition of Aggregated Content Presenter Design.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

107 of 136

aggregated_content_presenter_design = acpd(aggregated_content_presenter_design_identifier, {UI_style}-

, {platform_modality}-, aggregated_content_presenter_identifier, entity_anchor_design,

{child_view}-);

UI_style = forms based | list based | icons based | map based | graph based | multimedia based;

platform_modality = PC with mouse and keyboard | mobile device with touch | table top with touch |

augmented reality | audio interaction;

entity_anchor_design = entity_identifier;

child_view = view;

4.4.3 Semantics

⟦ aggregated_content_presenter_design ⟧ =

⟦ acpd(aggregated_content_presenter_design_identifier, {UI_style}-, {platform_modality}-,

aggregated_content_presenter_identifier, entity_anchor_design, {child_view}-) ⟧

⟦ acpd(aggregated_content_presenter_design_identifier, {UI_style}-, {platform_modality}-,

aggregated_content_presenter_identifier, entity_anchor_design, {child_view}-)⟧ =

aggregated_content_presenter_design_identifier expresses how the Aggregated Content Presenter

aggregated_content_presenter_identifier should be rendered on {⟦platform_modality ⟧} using

{⟦UI_style⟧} as presentation styles. aggregated_content_presenter_design_identifier presents these

parts:

{⟦ child_view ⟧}

The starting point for determining the instances to present in these parts is entity_anchor_design.

4.4.4 Example

In this section, we provide an example of using the abstract syntax (EBNF definitions) and the production

rules defining the semantics for Aggregated Content Presenter Design in FLUIDE-D. The example is a

subset of the specification of the Aggregated Content Presenter Design in Figure 4.11.

4.4.4.1 EBNF Specification

acpd (Mission Locations Presenter Design – Icons and areas for map,

map based,

PC with mouse and keyboard,

Mission Locations Presenter,

Mission,

/* One child view (a Map View):*/

mv(Mission Loctions Map view,

 /* pointers to six child views (Content Presenter Design Views) */
 cpdv(GGS Presenter Design – Icons for Map, /* no layout details*/),

 cpdv(UV Presenter Design – Icons for Map, /* no layout details*/),

 cpdv(Search Area Presenter Design – Search Area In Map, /* no layout details*/),

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

108 of 136

 cpdv(Incident Presenter Design – Icons for Map, /* no layout details*/),

 cpdv(Observation Presenter Design – Icons for Map, /* no layout details*/),

 cpdv(UV Presenter Design –Search Path In Map, /* no layout details*/),

 /* no visual elements*/,

 /* no dialog navigation*/,

 /* no layout details*/

) /* end of Map View specification */

) /* end of acpd specification */

4.4.4.2 Semantics of the EBNF Specification

Applying the production rules from Section 4.4.3 on the EBNF specification just presented results in the

following English sentences:

Mission Locations Presenter Design – Icons and areas for map expresses how the Aggregated Content

Presenter Mission Locations Presenter should be rendered on a PC or similar using mouse and keyboard as

interaction devices using map-based presentation, showing instances as overlays on a map background as

presentation style. Mission Locations Presenter Design – Icons and areas for map presents these parts:

The Map View Mission Locations Map view provides a map for presenting various map overlays. The

overlays are provided by the child interactor designs, which must contain either another Map View, a

Map Icons View, a Map Icons with Details Dialog View, a Map Outline View, or a Map Multi Line View.

Such views are provided by:

The entire contents of the GGS Presenter Design – Icons for Map.

The entire contents of the UV Presenter Design – Icons for Map.

The entire contents of the Search Area Presenter Design – Search Area In Map.

The entire contents of the Incident Presenter Design – Icons for Map.

The entire contents of the Observation Presenter Design – Icons for Map.

The entire contents of the UV Presenter Design –Search Path In Map.

The overlays are shown on the map provided by the Map View highest up in the hierarchy.

The starting point for determining the instances to present in these parts is Mission.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

109 of 136

4.5 Task Supporter Design

In this section, we provide the syntax and semantics of the Task Supporter Design construct. Task Supporter

Designs are only provided in a basic variant.

4.5.1 Graphical Syntax

As the relations in an Aggregated Content Presenter Design is not shown, the only difference in the graphical

notation of the content part of a Task Supporter Design and an Aggregated Content Presenter Design is that

there may not be any anchor in a Task Supporter Design. Semantically, the difference is the same as for the

corresponding FLUIDE-A interactors, i.e. that the content of all children of an Aggregated Content Presenter

Design is determined together based on the implicit concept model fragment and the anchor, while the

content of each child of a Task Supporter Design is determined independently of each other based on their

separate concept model fragments and anchors. Figure 4.13 gives an example of a Task Supporter Design,

with explanations of certain parts.

Figure 4.13 - A Task Supporter Design in FLUIDE-D

The corresponding FLUIDE-A specification of the design shown in Figure 4.13 is the Task Supporter shown

in Figure 3.6. Only the border part of the child presenter designs is shown in the Task Supporter Design. The

names of the child presenter designs are shown in their content part. In the example in Figure 4.13, one of the

children is a Basic and the other is an Aggregated Content Presenter Design.

4.5.2 Abstract Syntax

Figure 4.14 provides a concept model explaining the main concepts used when specifying a Task Supporter

Design.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

110 of 136

Task supporter
design

 1

1..*

Content presenter
design

Content presenter
design view

1

*

*

*

View

Layout manager
view

1

*

Decorational view

 Composite view

Content
integration view

Platform/modalityUI Style

*

1..*

*

1..*

 Figure 4.14 - Concept model describing the means for representing Task Supporter Designs in

FLUIDE-D

The concept model in Figure 4.14 has two parts. The concepts drawn in light blue contain a structure

mirroring part of the structure of the FLUIDE-A concept model for Task Supporter while the concepts drawn

in light pink represent the means for specifying the design of each part of the mirrored structure, plus

additional mechanisms for specifying decoration and structure that is needed in a design. The light pink part

contains a subset of the corresponding concept model for views (see Figure 4.8).

When specifying a Task Supporters using EBNF, most of the specification is expressed using the View

constructs defined in Section 4.2.2. This means that only the first level of the child views is included in the

EBNF definition of Task Support Design.

task_supporter_design = tsd(task_supporter_design_identifier, {UI_style}-, {platform_modality}-,

task_supporter_identifier, {child_view}-);

UI_style = forms based | list based | icons based | map based | graph based | multimedia based;

platform_modality = PC with mouse and keyboard | mobile device with touch | table top with touch |

augmented reality | audio interaction;

child_view = view;

4.5.3 Semantics

⟦ task_supporter_design ⟧ =

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

111 of 136

⟦ tsd(task_supporter_design_identifier, {UI_style}-, {platform_modality}-,

task_supporter_identifier, {child_view}-) ⟧

⟦ tsd(task_supporter_design_identifier, {UI_style}-, {platform_modality}-, task_supporter_identifier,

{child_view}-) ⟧ =

task_supporter_design_identifier expresses how the Task Supporter task_supporter_identifier should

be rendered on {⟦platform_modality ⟧} using {⟦UI_style⟧} as presentation styles.

task_supporter_design_identifier presents these parts:

{⟦ child_view ⟧}

The instances to present are determined separately for each part by the Content Presenter Designs

used in the parts.

4.5.4 Example

In this section, we provide an example of using the abstract syntax (EBNF definitions) and the production

rules defining the semantics for Task Supporter Design in FLUIDE-D. The example is the specification of

the Task Supporter Design in Figure 4.13.

4.5.4.1 EBNF Specification

tsd(Use Map Design – Icons and Areas for Map,

map based,

PC with mouse and keyboard,

Use Map,

/* One child view (a Map View):*/

mv(Common Map view,

 /* pointers to two child views (Content Presenter Design Views) */
 cpdv(Mission Locations Presenter Design – Icons and areas for map,

 /* no layout details*/),

 cpdv(Weather Presenter Design –Weather in Map, /* no layout details*/),

 /* no visual elements*/,

 /* no dialog navigation*/,

 /* no layout details*/

) /* end of Map View specification */

) /* end of tsd specification */

4.5.4.2 Semantics of the EBNF Specification

Applying the production rules from Section 4.5.3 on the EBNF specification just presented results in the

following English sentences:

Use Map Design – Icons and Areas for Map expresses how the Task Supporter Use Map should be

rendered on a PC or similar using mouse and keyboard as interaction devices using map-based

presentation, showing instances as overlays on a map background as presentation style. Use Map Design –

Icons and Areas for Map presents these parts:

The Map View Common Map view provides a map for presenting various map overlays. The overlays are

provided by the child interactor designs, which must contain either another Map View, a Map Icons

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

112 of 136

View, a Map Icons with Details Dialog View, a Map Outline View, or a Map Multi Line View. Such views

are provided by:

The entire contents of the Mission Locations Presenter Design – Icons and areas for map.

The entire contents of the Weather Presenter Design –Weather in Map.

The overlays are shown on the map provided by the Map View highest up in the hierarchy.

The instances to present are determined separately for each part by the Content Presenter Designs used in

the parts.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

113 of 136

4.6 Basic Work Supporter Design

In this section, we provide the syntax and semantics of the basic variant of the Work Supporter Design

construct.

4.6.1 Graphical Syntax

In a Basic Work Supporter in FLUIDE-A, the tasks in the task model may or may not have a connected Task

Supporter. In the corresponding design in FLUIDE-D, only the designs for tasks with Task Supporters are

relevant to include. Thus, the tasks are not shown in the design, only the Task Supporter Designs chosen to

be included are shown. Naturally, the operators are not shown in the design, neither. There are three types of

choices to make when specifying a Basic Work Supporter Design. The first is which Task Supporters from

the corresponding Work Supporter to include designs for. The second is which Task Supporter Designs to

use for these (if more than one is available). The third is which view(s) to use for wrapping the Task

Supporter Designs. The graphical notation of the content part of a Basic Work Supporter Design is similar to

the one used in Task Supporter Designs and Aggregated Content Presenter Designs. The main difference is

that the children of a Basic Work Supporter Design must be Task Supporter Designs. It is also allowed to

include only parts of child Task Supporter Design. In these cases, these Task Supporter Designs are

represented by some of their Content Presenter Design children. Figure 4.15 gives an example of a Basic

Work Supporter Design, with explanations of certain parts.

Figure 4.15 - A Basic Work Supporter Design in FLUIDE-D

The corresponding FLUIDE-A specification of the design shown in Figure 4.15 is the Basic Work Supporter

shown in Figure 3.8. Only the border part of the Task Supporter Designs is shown in the Work Supporter

Design, and their names are shown in their content part.

4.6.2 Abstract Syntax

Figure 4.16 provides a concept model explaining the main concepts used when specifying a Basic Work

Supporter Design.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

114 of 136

Task anchor design

1

1

Basic work
supporter design

 1

1..*

Task supporter
design

Task supporter design
view

1

 *

*

*

View

Layout manager
view

1

*

Decorational view

 Composite view

Content
integration view

Platform/modalityUI Style

*

1..*

*

1..*

Figure 4.16 - Concept model describing the means for specifying Basic Work Supporter Designs in

FLUIDE-D

The concept model in Figure 4.16 has two parts. The concepts drawn in light blue contain a structure

mirroring part of the structure of the FLUIDE-A concept model for Basic Work Supporter while the concepts

drawn in light pink represent the means for specifying the design of each part of the mirrored structure, plus

additional mechanisms for specifying decoration and structure that is needed in a design. The light pink part

contains a subset of the corresponding concept model for views (see Figure 4.8).

When specifying a Basic Work Supporter Design using EBNF, most of the specification is expressed using

the View constructs defined in Section 4.2.2. This means that only the first level of the child views is

included in the EBNF definition of Basic Work Support Design. To simplify the concept model, only Task

Supporter Design View is included as an Interactor Design View sub type that may be used, even though

also Concept Presenter Design Views may be used as representatives for Task Supporter Design Views. As

the task model is not shown in the graphical syntax of Basic Work Supporter Designs, it is not included in

the EBNF definition neither, except for the anchor task.

basic_work_supporter_design = bwsd(basic_work_supporter_design_identifier, {UI_style}-,

{platform_modality}-, basic_work_supporter_identifier, anchor_task_design, {child_view}-);

UI_style = forms based | list based | icons based | map based | graph based | multimedia based;

platform_modality = PC with mouse and keyboard | mobile device with touch | table top with touch |

augmented reality | audio interaction;

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

115 of 136

anchor_task_design = task_identifier;

child_view = view;

4.6.3 Semantics

⟦ basic_work_supporter_design ⟧ =

⟦ bwsd(basic_work_supporter_design_identifier, {UI_style}-, {platform_modality}-,

basic_work_supporter_identifier, anchor_task_design, {child_view}-) ⟧

⟦ bwsd(basic_work_supporter_design_identifier, {UI_style}-, {platform_modality}-,

basic_work_supporter_identifier, anchor_task_design, {child_view}-) ⟧ =

basic_work_supporter_design_identifier expresses how the Basic Work Supporter

basic_work_supporter_identifier (supporting a task model having anchor_task_design as root)

should be rendered on {⟦platform_modality ⟧} using {⟦UI_style⟧} as presentation styles.

basic_work_supporter_design_identifier presents these parts:

{⟦ child_view ⟧}

The instances to present are determined separately for each part by the Task Supporter Designs and

Content Presenter Designs used in the parts.

4.6.4 Example

In this section, we provide an example of using the abstract syntax (EBNF definitions) and the production

rules defining the semantics for Basic Work Supporter Design in FLUIDE-D. The example is the

specification of the Basic Work Supporter Design in Figure 4.15.

4.6.4.1 EBNF Specification

bwsd(Perform Work in the Field Supporter Design,

list based, forms based, map based,

mobile device with touch,

Perform Work in the Field Supporter,

Perform Work in the Field,

/* One child view (a Decorational View):*/

dv(Windows supporting Perform Work in the Field,

 loosely connected windows,

 /* no date */,

 /* no time */,

 /* visual elements: */

 ves(/* no image */,

 /* heading text: */

 "Perform Work in the Field",

 /* no border colour */,

 /* no graphics */,

 /* no buttons */,

), /* end of visual elements */

 /* no dialog navigation*/,

 /* layout method: */

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

116 of 136

 automatic,

 /* no layout details*/,

 /* pointers to four child views (all Task Supporter Design View):*/

 tsdv(Use Map Design – Icons for map, /* no layout details*/),

 tsdv(Receive Task Request Design, /* no layout details*/),

 tsdv(View Task Design, /* no layout details*/),

 tsdv(Decline Task Design, /* no layout details*/),

) /* end of Decorational View specification */

) /* end of bwsd specification */

4.6.4.2 Semantics of the EBNF Specification

Applying the production rules from Section 4.6.3 on the EBNF specification just presented results in the

following English sentences:

Perform Work in the Field Supporter Design expresses how the Basic Work Supporter Perform Work in

the Field Supporter (supporting a task model having Perform Work in the Field as root) should be rendered

on a mobile phone, tablet or similar mobile device using touch as interaction means using list-based

presentation, showing a number of instances in a list box or in a more complex list using separate user

interface controls for each attribute that is presented, traditional forms-based presentation, typically

exploiting one user interface control per attribute that is presented, as well as map-based presentation,

showing instances as overlays on a map background as presentation styles. Perform Work in the Field

Supporter Design presents these parts:

The Decorational View Windows supporting Perform Work in the Field which represents a set of

loosely connected windows or a number of full screen renderings in which a following content are

presented:

The text "Perform Work in the Field" is used as heading or label.

The entire contents of the Use Map Design – Icons for map.

The entire contents of the Receive Task Request Design.

The entire contents of the View Task Design.

The entire contents of the Decline Task Design.

The layout of this content is determined by a layout algorithm provided by Windows supporting Perform

Work in the Field.

The instances to present are determined separately for each part by the Task Supporter Designs used in the

parts.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

117 of 136

4.7 Aggregated Work Supporter Design

In this section, we provide the syntax and semantics of the aggregated variant of the Work Supporter Design

construct, i.e. Work Supporter Designs that have other Work Supporter Designs as children of their views.

4.7.1 Graphical Syntax

The graphical notation of the content part of an Aggregated Work Supporter Design is similar to the one

used in Basic Work Supporter Designs, Task Supporter Designs and Aggregated Content Presenter Designs.

As for the Basic Work Supporter Designs, the operators are not shown. Figure 4.17 gives an example of an

Aggregated Work Supporter Design, with explanations of certain parts.

Figure 4.17 - An Aggregated Work Supporter in FLUIDE-D

The corresponding FLUIDE-A specification of the design shown in Figure 4.17 is the Aggregated Work

Supporter shown in Figure 3.10. Only the border part of the child supporter designs is shown in the

aggregated one. The names of the child supporter designs are shown in their content part. The specification

in Figure 4.17 also illustrates the use of buttons and dialog navigation.

4.7.2 Abstract Syntax

Figure 4.18 provides a concept model explaining the main concepts used when specifying an Aggregated

Work Supporter Design.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

118 of 136

1

1

has

View

Layout manager
view

1 *

Decorational view

 Composite view

Content
integration view

Platform/modalityUI Style

*

1..*

*

1..*

Work supporter
design

 1

1..*

Aggregated work
supporter design

Work supporter
design view

1

1..*

 **

1

0..1

Task anchor design

Task supporter
design

Task supporter
design view

1

1..*

Figure 4.18 - Concept model describing the means for specifying Aggregated Work Supporter Designs

in FLUIDE-D

The concept model in Figure 4.18 has two parts. The concepts drawn in light blue contain a structure

mirroring part of the structure of the FLUIDE-A concept model for Aggregated Work Supporter while the

concepts drawn in light pink represent the means for specifying the design of each part of the mirrored

structure, plus additional mechanisms for specifying decoration and structure that is needed in a design. The

light pink part contains a subset of the corresponding concept model for views (see Figure 4.8).

When specifying an Aggregated Work Supporter Design using EBNF, most of the specification is expressed

using the View constructs defined in Section 4.2.2. This means that only the first level of the child views is

included in the EBNF definition of Aggregated Work Support Design. To simplify the concept model, only

Task Supporter Design View and Work Supporter Design View are included as the Interactor Design View

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

119 of 136

sub types that may be used, even though also Concept Presenter Design Views may be used as

representatives for Work or Task Supporter Design Views.

aggregated_work_supporter_design = awsd(aggregated_work_supporter_design_identifier, {UI_style}-,

{platform_modality}-, aggregated_work_supporter_identifier, anchor_task_design, {child_view}-);

UI_style = forms based | list based | icons based | map based | graph based | multimedia based;

platform_modality = PC with mouse and keyboard | mobile device with touch | table top with touch |

augmented reality | audio interaction;

anchor_task_design = task_identifier;

child_view = view;

4.7.3 Semantics

⟦ aggregated_work_supporter_design ⟧ =

⟦ awsd(aggregated_work_supporter_design_identifier, {UI_style}-, {platform_modality}-,

aggregated_work_supporter_identifier, anchor_task_design, {child_view}-) ⟧

⟦ awsd(aggregated_work_supporter_design_identifier, {UI_style}-, {platform_modality}-,

aggregated_work_supporter_identifier, anchor_task_design, {child_view}-) ⟧ =

aggregated_work_supporter_design_identifier expresses how the Aggregated Work Supporter

aggregated_work_supporter_identifier (supporting a task model having anchor_task_design as root)

should be rendered on {⟦platform_modality ⟧} using {⟦UI_style⟧} as presentation styles.

aggregated_work_supporter_design_identifier presents these parts:

{⟦ child_view ⟧}

The instances to present are determined separately for each part by the Work Supporter Designs,

Task Supporter Designs and Content Presenter Designs used in the parts.

4.7.4 Example

In this section, we provide an example of using the abstract syntax (EBNF definitions) and the production

rules defining the semantics for Aggregated Work Supporter Design in FLUIDE-D. The example is a subset

of the specification of the Aggregated Work Supporter Design in Figure 4.17.

4.7.4.1 EBNF Specification

awsd(Manage Missions Supporter Design,

forms based, list based, map based,

PC with mouse and keyboard,

Manage Missions Supporter,

Manage Missions,

/* One child view (a Layout Manager View):*/

lmv(manage missions overall layout,

 vertical,

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

120 of 136

 /* no visual elements*/,

 /* no dialog navigation*/,

 /* no layout details*/,

 /* two child views (Layout Manager Views) */

 lmv(buttons layout,

 horizontal,

 /* three buttons as visual elements*/

 ves(

 /* no image, text, border colour or graphics*/,,,,

 /* the buttons*/

 btn(message button, letterImage, /* no button text*/),

 btn(media button, cameraImage, /* no button text*/),

 btn(sensor button, sensorImage, /* no button text*/)

), /* end of visual elements */

 /* dialog navigation for the buttons: */

 dn(open message reader, open, message button, Receive Mission Design),

 dn(open media viewer, open, media button, Monitor Media Design),

 dn(open sensor viewer, open, sensor button, Monitor Sensor Design)

 /* no layout details*/,

 /* no child views */

), /* end of second layout manager specification */

 lmv(content and content integration views layout,

 horizontal,

 /* no visual elements*/,

 /* no dialog navigation*/,

 /* no layout details*/,

 /* three child views (two layout managers with interactor design view children

 and one Map View) omitted */

) /* end of third layout manager specification */

) /* end of first layout manager specification */

) /* end of awsd specification */

4.7.4.2 Semantics of the EBNF Specification

Applying the production rules from Section 4.7.3 on the EBNF specification just presented results in the

following English sentences:

Manage Missions Supporter Design expresses how the Aggregated Work Supporter Manage Missions

Supporter (supporting a task model having Manage Missions as root) should be rendered on a PC or similar

using mouse and keyboard as interaction devices using traditional forms-based presentation, typically

exploiting one user interface control per attribute that is presented, list-based presentation, showing a

number of instances in a list box or in a more complex list using separate user interface controls for each

attribute that is presented, as well as map-based presentation, showing instances as overlays on a map

background as presentation styles. Manage Missions Supporter Design presents these parts:

The Layout Manager manage missions overall layout which is invisible and presents:

The Layout Manager buttons layout which is invisible and presents:

The button message button with the image letterImage.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

121 of 136

The button media button with the image cameraImage.

The button sensor button with the image sensorImage.

This content is presented side by side horizontally.

Manage missions overall layout is the source for a dialog navigation by which the button

message button in the view opens Receive Mission Design, a dialog navigation by which the

button media button in the view opens Monitor Media Design, and a dialog navigation by which

the button sensor button in the view opens Monitor Sensor Design.

The Layout Manager content and content integration views layout which is invisible and presents:

The Layout Manager buttons layout which is invisible and presents:

[two omitted Layout Manager Views, each with two Interactor Design View children, as well

as one omitted Map View]

This content is presented side by side horizontally.

This content is presented over/under each other vertically.

The instances to present are determined separately for each part by the Work Supporter Designs, Task

Supporter Designs and Content Presenter Designs used in the parts.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

122 of 136

4.8 Category Manager Design

In this section, we provide the syntax and semantics of the Category Manager Design construct. Category

Manager Designs are only provided in a basic variant.

4.8.1 Graphical Syntax

The graphical notation of the content part of a Category Manager Design is similar to the one used in

Aggregated Work Supporter Designs. The main difference is that the children of an Aggregated Work

Supporter Design may be both Work Supporter Designs (basic or aggregated) and Content Presenter Designs

(basic or aggregated). Semantically, the difference is the same as for the corresponding FLUIDE-A

interactors, among other that the implicit task model provides a connection between all children of an

Aggregated Work Supporter Design, while each child of a Category Manager Design is independent of each

other. Figure 4.19 gives an example of a Category Manager Design, with explanations of certain parts.

Figure 4.19 - A Category Manager Design in FLUIDE-D

The corresponding FLUIDE-A specification of the design shown in Figure 4.19 is the Category Manager

shown in Figure 3.12. Only the border part of the child supporter/presenter designs is shown in the Category

Manager Design. The names of the child designs are shown in their content part. In the example in Figure

4.19, the children are a Basic Work Supporter Design, an Aggregated Work Supporter Design, as well as a

Basic Content Presenter Design.

4.8.2 Abstract Syntax

Figure 4.20 provides a concept model explaining the main concepts used when specifying a Category

Manager Design.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

123 of 136

*

*

 *

View

Layout manager
view

1 *

Decorational view

 Composite view

Content
integration view

Platform/modalityUI Style

*

1..*

*

1..*

Work supporter
design

1

1..*

Category manager
design

Work supporter
design view

1

1..*

Content presenter
design

Content presenter
design view

1

1..*

Figure 4.20 - Concept model describing the means for specifying Category Manager Designs in

FLUIDE-D

The concept model in Figure 4.20 has two parts. The concepts drawn in light blue contain a structure

mirroring part of the structure of the FLUIDE-A concept model for Category Manager while the concepts

drawn in light pink represent the means for specifying the design of each part of the mirrored structure, plus

additional mechanisms for specifying decoration and structure that is needed in a design. The light pink part

contains a subset of the corresponding concept model for views (see Figure 4.8).

When specifying a Category Manager Design using EBNF, most of the specification is expressed using the

View constructs defined in Section 4.2.2. This means that only the first level of the child views is included in

the EBNF definition of Category Manager Design. To simplify the concept model, only Content Presenter

Design View and Work Supporter Design View are included as the Interactor Design View sub types that

may be used, even though also Task Supporter Design Views may be used as representatives for Work

Supporter Design Views.

category_manager_design = cmd(category_manager_design_identifier, {UI_style}-, {platform_modality}-,

category_manager_identifier, {child_view}-);

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

124 of 136

UI_style = forms based | list based | icons based | map based | graph based | multimedia based;

platform_modality = PC with mouse and keyboard | mobile device with touch | table top with touch |

augmented reality | audio interaction;

child_view = view;

4.8.3 Semantics

⟦ category_manager_design ⟧ =

⟦ cmd(category_manager_design_identifier, {UI_style}-, {platform_modality}-,

category_manager_identifier, {child_view}-) ⟧

⟦ cmd(category_manager_design_identifier, {UI_style}-, {platform_modality}-,

category_manager_identifier, {child_view}-) ⟧ =

category_manager_design_identifier expresses how the Category Manager

category_manager_identifier should be rendered on {⟦platform_modality ⟧} using {⟦UI_style⟧} as

presentation styles. category_manager_design_identifier presents these parts:

{⟦ child_view ⟧}

The instances to present are determined separately for each part by the Work Supporter Designs,

Task Supporter Designs and Content Presenter Designs used in the parts.

4.8.4 Example

In this section, we provide an example of using the abstract syntax (EBNF definitions) and the production

rules defining the semantics for Category Manager Design in FLUIDE-D. The example is the specification

of the Category Manager Design in Figure 4.19.

4.8.4.1 EBNF Specification

cmd(Resource Manager Category Manager Design,

forms based, map based, list based,

PC with mouse and keyboard, mobile device with touch, table top with touch,
Resource Manager Category Manager,

/* Three interactor design view (of different type) child views:*/
wsdv(Manager Resources Supporter Design, /* no layout details*/),

wsdv(Keep Track of Colleages Supporter Design, /* no layout details*/),

cpdv(Task for Resources Design – Icons in Map, /* no layout details*/)

) /* end of cmd specification */

4.8.4.2 Semantics of the EBNF Specification

Applying the production rules from Section 4.8.3 on the EBNF specification just presented results in the

following English sentences:

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

125 of 136

Resource Manager Category Manager Design expresses how the Category Manager Resource Manager

Category Manager should be rendered on a PC or similar using mouse and keyboard as interaction devices,

a mobile phone, tablet or similar mobile device using touch as interaction means, or a table top or similar

device using touch as interaction means using traditional forms-based presentation, typically exploiting one

user interface control per attribute that is presented, map-based presentation, showing instances as overlays

on a map background, as well as list-based presentation, showing a number of instances in a list box or in a

more complex list using separate user interface controls for each attribute that is presented as presentation

styles. Resource Manager Category Manager Design presents these parts:

The entire contents of the Work Supporter Design Manager Resources Supporter Design.

The entire contents of the Work Supporter Design Keep Track of Colleagues Supporter Design.

The entire contents of the Content Presenter Design Task for Resources Design – Icons in Map.

The instances to present are determined separately for each part by the Work Supporter Designs, Task

Supporter Designs and Content Presenter Designs used in the parts.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

126 of 136

5 The FLUIDE Method

In this section, we give an overview of the parts of the FLUIDE Method that support using the FLUIDE

Specification Languages, i.e. Part 1 focusing on FLUIDE-A and Part 2 focusing on FLUIDE-D.

5.1 Part 1 – Specifying user interfaces with FLUIDE-A

Figure 5.1 shows Part 1 of the method. This part suggests how to develop FLUIDE-A specifications. The

solid arrows and numbering of the steps give their sequence. The vertical dimension indicates which part of

the language that is used, given by the parallelograms (skewed rectangles) in the centre of Figure 5.1.

Step 1.1. Identify users/roles

Step 1.2. Identify work and
task structure

Step 1.3. Determine tasks
that need ICT support

Step 1.4. Determine
information needs for task

per tasks with ICT support

per user/role

May any
existing
Content

Presenters
be used?

no

Step 1.5a. Choose or adapt
Content Presenter

yes

Step 1.5b. Specify Content
Presenter

Content Presenters
Step 1.6. Consolidate Content

Presenters

Step 1.7. Specify Task
Supporters

Task Supporters

Step 1.8. Specify Work
Supporters

Work Supporters

Step 1.9. Consolidate Work
Supporters

Step 1.10. Specify Category
Managers

Category Managers

Figure 5.1. Part 1 of the FLUIDE Method

The steps on the left hand side depict a top down process starting with users, roles, work and tasks, and

ending up with specifying Content Presenters. In these steps, there is a focus on specifying the task and

concept models, and only Content Presenters are specified, adapted or selected. Some of these steps are

performed iteratively per user/role or task. The steps on the right hand side depict a bottom up process when

specifying the higher level interactor instances, to make sure the content of these specifications are specified

before used. In Steps 1.6 and 1.9, Content Presenters and Work Supporters are consolidated. By this we

mean a walkthrough of all such interactor instances to determine or review the connections between basic

and aggregated instances of these constructs.

Below we describe each of the steps in Part 1 of the FLUIDE Method.

5.1.1 Step 1.1. Identify users/roles

When a user interface is specified, it is of paramount importance to know who are going to use it. In an

emergency response setting, the same personnel may have different tasks and responsibilities in different

operations. The user interfaces supporting different sets of tasks may vary. This means that the same

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

127 of 136

personnel may need different user interfaces in different operations, depending on their role in the operation

at hand. Thus, it is often more important to identify the roles than the positions and actual users that may fill

the roles.

Steps 1.2-1.5 should be performed for each of the identified users/roles.

5.1.2 Step 1.2. Identify work and task structure

This step consists of performing a traditional task modelling activity (Wilson and Johnson, 1996; Paternò,

1999). The results should be documented in the notation used in Work Supporters in FLUIDE-A.

In many cases, there exist appropriate task models in the organization that develops a user interface / a user

interface is developed for. Such task models may be reused as they are or they may be used as a basis for

adaptation to new requirements. Before doing this, it should be considered whether adapting the existing

models will require more or less resources than specifying new models from scratch. There may both be a

need for adjusting any existing task model and complementing them. In both cases there may also be a need

for specifying brand new task models from scratch.

In Step 1.2, task models are adapted or made, but the Work Supporters embedding these task models are

specified in Steps 1.8 and 1.9.

5.1.3 Step 1.3. Determine tasks that need ICT support

A task modelling activity may vary quite much with regard to how much it focuses on the role of ICT

support. One extremity is to focus only on the tasks performed by the users in a real-world setting

independently of any available ICT support. Another extremity is to make a task model for an existing or

envisioned ICT solution, where the tasks focus on and relate to different parts of the ICT solution. Step 1.3

consists of identifying which of the tasks from Step 1.2 that indeed should be supported by an ICT solution.

These tasks are the candidates for having Task Supporters, which are specified in Step 1.7. In Step 1.3, the

candidate are just identified, so that the information needs can be further investigated in Step 1.4.

Steps 1.4-1.5 should be performed for each task that is identified having a need for ICT support.

5.1.4 Step 1.4. Determine information needs for task

This step to a large extent consists of performing a traditional concept modelling activity (OMG, 2008). The

results should be documented as UML class models.

In many cases, there exist appropriate concept models in the organization that develops a user interface / a

user interface is developed for. Such concept models may be reused as they are or they may be used as a

basis for adaptation to new requirements. Before doing this, it should be considered whether adapting the

existing models will require more or less resources than specifying new models from scratch. There may

both be a need for adjusting any existing concept model and complementing them. In both cases there may

also be a need for specifying brand new concept models from scratch.

In Step 1.4, concept models are adapted or made, but the Content Presenters embedding these concept

models are specified in Steps 1.5 and 1.6.

5.1.5 Step 1.5. Choose, adapt or specify Content Presenter

This step is performed for each combination of roles from Step 1.1 and tasks needing ICT support from Step

1.3. Thus, when an arbitrary performance of Step 1.5 is conducted, a number of Content Presenters may

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

128 of 136

already have been specified. Therefore, and as can be seen in Figure 5.1, Step 1.5 consists of a choice and

two sub steps, denoted Steps 1.5a and 1.5b.

The choice consists of determining whether any Content Presenters that are specified already fit to the

information needs for the task at hand. If this is the case, Step 1.5a. Choose or adapt Content Presenter

should be conducted for each Content Presenter that is identified. This sub step consists of investigating

candidate Content Presenters, and for the ones that fit just note this down. For the ones that fit only partly, it

should be considered whether it is possible to extend them in a way that makes them fit the needs of the

task(s) to which the candidate presenters are specified. Such an extension may involve adding entities,

attributes, methods and relations to the concept model of existing Content Presenters, as well as adjusting or

adding annotations. Possible adjustments should not include changing the anchor. If this is not possible, the

candidates should be abandoned for reuse, and Step 1.5b should be performed.

If none of the Content Presenters that are specified already fit to the information needs for the task at hand,

or if the ones chosen or adapted in Step 1.5a do not cover all the information needs, Step 1.5b. Specify

Content Presenter should be conducted one or more time. In this sub step a Content Presenter is specified

from a concept model made in Step 1.4. This primarily consists of identifying the anchor and adding

annotations.

To reduce the number of Content Presenters, and to avoid having redundant specifications, it should be a

goal to conduct Step 1.5a whenever possible, and Step 1.5b only when needed. Even though the Content

Presenters are to be specified on the basis of the information needs connected to each task, it should be a goal

to make them task independent. Through this, the Content Presenters may be exploited in many tasks.

In Step 1.5, it is primarily Basic Content Presenters that are specified. The aggregated variant is primarily

specified in Step 1.6.

5.1.6 Step 1.6. Consolidate Content Presenters

The information needs for a number of tasks may overlap, either because one task needs a subset of the

information needed by another or because a number of tasks need different subsets of a larger connected

concept model. Clear overlaps and extensions should ideally be handled in Step 1.5, but it may still be

valuable to view the Content Presenters from Step 1.5, which are mainly occurrences of the basic variant,

together and compare them to identify overlapping and redundant presenters. Thus, Step 1.6 consist of a

walkthrough of all the Content Presenters to identify the best possible structure among them.

One particular focus in Step 1.6 is to determine whether some of the Basic Content Presenters may be

specified as aggregations of a number of other Basic or Aggregated Content Presenters. On the other hand,

the Basic Content Presenters should not be disintegrated down to a too low level. One might envision that

doing Step 1.6 too thoroughly could result in a set of Basic Content Presenters containing exactly one entity

each. To avoid this, a main principle for specifying Basic Content Presenters is that occurrences should be

useful in their own right or be exploited in a number of aggregated occurrences. Furthermore, one should

keep in mind that an Aggregated Content Presenter has an implicit concept model fragment, and that this

model fragment needs to be connected. If the implicit concept model fragment is not connected, the

aggregation should be done when specifying Task Supporters in Step 1.7.

When Steps 1.5 and 1.6 are performed, it is important to keep track of the connections to the tasks the

Content Presenters specify the information need for.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

129 of 136

5.1.7 Step 1.7. Specify Task Supporters

When this step is performed, all needed Content Presenters should have been specified (Step 1.5) and

consolidated (Step 1.6). Step 1.7 consists of specifying Task Supporters for the tasks identified in Step 1.4. If

the connections to the tasks are kept when the Content Presenters are specified and consolidated (Steps 1.5

and 1.6), Step 1.7 is quite simple. If not, it may involve some considerations to identify the Content

Presenters that are most appropriate to aggregate into each Task Supporter being specified. Task supporters

are the "glue" between task and concept models.

When specifying Task Supporters, it is also important to keep in mind the difference between Task

Supporters and Aggregated Content Presenters, particularly that they aggregate Content Presenters in

fundamentally different ways. When aggregating one or more Content Presenters into an Aggregated

Content Presenter, the connected concept model fragments of the Content Presenters being aggregated are

also implicitly merged through their anchors. This is not the case for Task Supporters. A Task Supporter may

thus aggregate a number of Content Presenters with associated model fragments that are independent of each

other.

5.1.8 Step 1.8. Specify Work Supporters

When this step is performed, all needed Task Supporters should have been specified (Step 1.7). Step 1.8

consists of specifying Work Supporters from the task models made in Step 1.2, as well as coupling Task

Supporters (specified in Step 1.7) to the tasks that need ICT support (identified in Step 1.3). In Step 1.8 it is

primarily Basic Work Supporters that are specified. The aggregated variant is primarily specified in Step 1.9.

In the same way as the connection between Task Supporters and Content Presenters, one Task Supporter

may be used in different Work Supporters, but as Task Supporters may not aggregate other Task Supporters

the structure is simpler.

5.1.9 Step 1.9. Consolidate Work Supporters

The task models identified in Step 1.2 are made iteratively for different roles and users. This may result in

different task models, and thus corresponding Work Supporters (specified in Step 1.8) that overlap to a

certain degree. Such overlaps may have been handled in Step 1.2 and/or Step 1.8, but it may still be valuable

to view the Work Supporters from Step 1.8, which are mainly the basic variant, together and compared them

to identify overlapping and redundant supporters. Thus, Step 1.9 consist of a walkthrough of all the Work

Supporters to identify the best possible structure among them.

One particular focus in Step 1.9 is to determine whether some of the Basic Work Supporters may be

specified as aggregations of a number of other Basic or Aggregated Work Supporters. On the other hand, the

Basic Work Supporters should not be disintegrated down to a too low level. One might envision that doing

Step 1.9 too thoroughly could result in a set of Basic Work Supporters containing exactly one task each. To

avoid this, a main principle for specifying Basic Work Supporters is that occurrences should be useful in

their own right or be exploited in a number of aggregated occurrences. Furthermore, one should keep in mind

that an Aggregated Work Supporter has an implicit task model fragment, and it is important to make sure

that the hierarchical structure from the one task added in an Aggregated Work Supporter to the anchors of its

member Work Supporters make sense. If not, the aggregation should be done when specifying Category

Managers in Step 1.10.

5.1.10 Step 1.10. Specify Category Managers

When this step is performed, all Work Supporters and Content Presenter should have been specified in the

prior steps. But while the aggregation of Content Presenters into Task Supporters, as well as the aggregation

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

130 of 136

of Task Supporters into Work Supporters to a large extent are given by Steps 1.1-1.5, there is no results from

earlier steps that direct which Category Managers that should be specified.

A number of approaches may be used to choose which Category Managers to use. These approaches may

well give similar results, and could thus be combined. Before sketching some possible approaches, it should

be emphasized that a Category Manager should specify a user interface supporting a category of

functionality. It is also important to keep in mind that Category Managers primarily aggregate Work

Supporters. They may also aggregate Content Presenters, but this option is to be used to supplement the

Category Managers if the Work Supporters that are aggregated do not support all aspect of some category of

functionality, as well as in cases where the user interfaces and/or the task structures are so simple that Task

and Work Supporters are not needed/used.

Based on this, a good starting point to choose which Category Managers to use is to look into related Work

Supporters having related task models. One approach for finding such Work Supporters is to consider Work

Supporters for one or a number of related roles/users. Another approach is to consider the information that is

presented, as this may overlap across roles and users. A third approach is to use the categories of

functionality from Nilsson and Stølen (2011) as a starting point or inspiration, i.e.:

1. Operational picture

2. Incident details

3. Logging

4. Information services

5. Resource management

6. Actions and plans

7. Transmission

8. Monitoring

9. Automatic reasoning

10. Communication management

11. Special interaction mechanisms

Furthermore, there should be a limited number of Category Managers. If the number of chosen Category

Managers exceed 15, the choice may be reconsidered.

With an appropriate set of chosen Category Managers, determining which interactor occurrences (Work

Supporters and Content Presenters) that should be part of the Category Managers is normally a manageable

task, particularly if a grouping of Work Supporters is used when choosing Category Managers.

When specifying Category Managers, it is also important to keep in mind the difference between Category

Managers and Aggregated Work Supporters, particularly that they aggregate Work Supporters in

fundamentally different ways. When aggregating one or more Work Supporters into an Aggregated Work

Supporter, the task model fragments of the Work Supporters being aggregated are also implicitly merged

through their anchors. This is not the case for Category Managers. A Category Managers may thus aggregate

a number Work Supporters with associated task models that are independent of each other.

A Category Manager aggregating only Content Presenters is semantically identical to a Task Supporter

aggregating the same Content Presenters.

5.2 Specifying user interfaces with FLUIDE-D

Figure 5.2 shows Part 2 of the method. This part suggests how to develop FLUIDE-D specifications.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

131 of 136

Step 2.1. Choose platforms,
modalities and styles to use

for each role

Step 2.2. Determine
platforms, modalities and
styles deviations for work

Step 2.3. Determine
platforms, modalities and
styles deviations for tasks

per platform, modality and style

Step 2.4. Specify Content
Presenter Designs

Content Presenter

Designs

Step 2.5. Specify Task
Supporter Designs

Task Supporter Designs

Step 2.6. Specify Work
Supporter Designs

Work Supporter Designs

Step 2.7. Specify Category
Manager Designs

Category Manager

Designs

Content Presenters

Task Supporters

Work Supporters

Category Managers

Figure 5.2. Part 2 of the FLUIDE Method

The steps on the left hand side depict a top down process starting with identifying the platforms/modalities as

well as the user interface styles to use for each role. These choice are then adjusted by finding out any

deviations to these choices in particular work or tasks, ending up with specifying the necessary Content

Presenter Designs for the platform, modality and style choices for the different task and work structure.

The steps on the right hand side depict a bottom up process when specifying the higher level interactor

design instances, to make sure the content of these specifications are specified before used. For Basic

Content Presenter Designs, it is important to choose which part of the concept model to include in the design,

and which views to use for wrapping different part of the model. For the other interactor design constructs,

there are three choices to make. The first is which child interactors from the corresponding FLUIDE-A

specification to include designs for. The second is which designs to use for these (if more than one is

available). The third is which views to use for wrapping the child designs.

Below we describe each of the steps in Part 2 of the FLUIDE Method.

5.2.1 Step 2.1. Choose platforms, modalities and styles to use for each role

Each interactor design occurrence must be aimed at a specific target (an arbitrary combination of platform,

type, style and modality used in a running user interface). In Step 2.1 the main targets are chosen for each

role/user that are to exploit the user interface being specified. As these choices may both be restricted and

augmented in the consecutive steps, this choice should reflect the default targets to use for each role. Despite

the choices being a default, they may well include more than one target for each role.

5.2.2 Step 2.2. Determine platforms, modalities and styles deviations for work

In this step, each part of the work for the different roles, as expressed in the task models related to the Work

Supporters specified in Part 1 should be considered to identify any deviations from the default choices made

in Step 2.1. Such deviations may include both limiting and augmenting the choice of targets to use. Limiting

should typically be done if some kind of work is only expected to be supported by a subset of the default

targets. Augmenting should typically be done if some kind of work is expected to be conducted using

platforms, modalities and styles that are not among the default. The choice of not including these targets

among the default ones is natural if such deviations are identified for a minority of the kinds of work

supported by the specification.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

132 of 136

5.2.3 Step 2.3. Determine platforms, modalities and styles deviations for tasks

Step 2.3 is similar to Step 2.2, except that the individual tasks are considered instead of the task models. The

deviations may either be from the default choice from Step 2.1 or from the deviations identified in Step 2.2

for the work that a given task is part of. Step 2.3 may include limiting and augmenting the choice of targets

to use in the same way as in Step 2.2. Such deviations may include both limiting and augmenting the choice

of targets to use. Limiting should typically be done if some tasks are only expected to be supported by a

subset of the default targets. Augmenting should typically be done if some tasks are expected to be

conducted using platforms, modalities and styles that are not among the default. The choice of not including

these targets among the default ones is natural if such deviations are identified for a minority of the tasks

supported by the specification. Similar considerations may be conducted towards the kinds of work whose

task model the tasks with deviating targets are part of.

5.2.4 Step 2.4. Specify Content Presenter Designs

Step 2.4 should be performed for each combination of platform, modality and style.

Normally, Content Presenter Designs should use the same targets as the tasks needing the information

presented in the Content Presenter Designs. Some Content Presenter Designs may use only a subset of the

platforms, modalities and styles identified for these tasks. Content Presenter Designs should not exploit

additional targets that are not identified for these tasks.

There may be a need for a number of designs for each Content Presenter in the FLUIDE-A specification.

This is the case if different tasks needing the information presented in the Content Presenter Design are to

exploit different targets. It may also be the case if different tasks needing the information presented in some

Content Presenter Design use the same targets but still need to have the content presented in different ways.

Given the needs of the tasks and the chosen targets, specifying each Content Presenter Design consists of

wrapping one of more subsets of the connected concept model fragment of the corresponding Content

Presenter into a hierarchy of views. For Basic Content Presenter Designs such a hierarchy must include at

least one Content View. For Aggregated Content Presenter Designs, the hierarchy will usually include at

least one Content Integration View. When specifying an Aggregated Content Presenter Design, it is also

possible to omit the designs for one or more of the member presenters from the corresponding FLUIDE-A

specification. The possible choices of Content Views/Content Integration Views to exploit may be dependent

of the chosen target for a given design. The choice of Content Integration View to use is also influenced by

the Content (Integration) Views used in the children.

5.2.5 Step 2.5. Specify Task Supporter Designs

Even though the aggregation structure specifying which Content Presenters that are member of a Task

Supporter is given from the FLUIDE-A specification, there are still three main choices that must be made

when specifying a Task Supporter Design.

First, it is possible to omit the design for some of the child Content Presenters. For Aggregated Content

Presenters that are member of a Task Supporter, it is possible to include the designs for only some of the

Aggregated Content Presenters' children (recursively). On the other hand, it is not possible to add designs for

presenters that are not part of the Task Supporter or any of its children.

Second, there may exist more than one design for the child presenters whose designs should indeed be

included in a Task Supporter Design. Only one of these may be used in the Task Supporter Design. This

choice may be given by the target(s) for the Task Supporter Design, but in cases with a number of designs

for the same target(s), the most appropriate one should be used.

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

133 of 136

Third, the chosen child presenter designs must be wrapped into a hierarchy of views. This hierarchy will

usually include at least one Content Integration View. The possible choices of Content Integration Views to

exploit may be dependent of the chosen target(s) for a given design. The choice of Content Integration View

to use is also influenced by the Content (Integration) Views used in the children.

Normally, the targets for a Task Supporter Design is determined in Steps 2.1-2.3. Still, it should be checked

whether the Task Supporter Design has any child presenter designs deviating from the choices in Steps 2.1-

2.3. If this is the case, it should first be asserted that the child presenter designs indeed are appropriate for the

Task Supporter Design. If this is not the case, the Task Supporter Design should be adjusted. If the children

indeed are appropriate, the targets for the Task Supporter Design should be extended so that the sum of its

children's targets are included.

5.2.6 Step 2.6. Specify Work Supporter Designs

Even though the aggregation structure specifying which Task Supporters that are member of a Basic Work

Supporter, as well as the Task and Work Supporters that are members of an Aggregated Work Supporter are

given from the FLUIDE-A specification, there are still three main choices that must be made when

specifying a Work Supporter Design.

First, it is possible to omit the design for some of the child Task and Work Supporters. Furthermore, it is

possible to include the designs for only some of the Task and Work Supporters' children (recursively). On

the other hand, it is not possible to add designs for supporters and presenters that are not part of the Work

Supporter or any of its children.

Second, there may exist more than one design for the child supporters and presenters whose designs should

indeed be included in a Work Supporter Design. Only one of these may be used in the Work Supporter

Design. This choice may be given by the target(s) for the Work Supporter Design, but in cases with a number

of designs for the same target(s), the most appropriate one should be used.

Third, the chosen child supporters and presenter designs must be wrapped into a hierarchy of views. This

hierarchy may include one or more Content Integration Views. The possible choices of Content Integration

Views to exploit may be dependent of the chosen target(s) for a given design. The choice of Content

Integration View to use is also influenced by the Content (Integration) Views used in the children.

Normally, the targets for the Work Supporter Design is determined in Steps 2.1-2.2. Still, it should be

checked whether the Work Supporter Design has any child supporter or presenter designs deviating from the

choices in Steps 2.1-2.2. If this is the case, it should first be asserted that the child supporter and presenter

designs indeed are appropriate for the Work Supporter Design. If this is not the case, the Work Supporter

Design should be adjusted. If the children indeed are appropriate, the targets for the Work Supporter Design

should be extended so that the sum of its children's targets are included.

5.2.7 Step 2.7. Specify Category Manager Designs

Even though the aggregation structure specifying which Work Supporter and Content Presenters that are

member of a Category Manager Design is given from the FLUIDE-A specification, there are still three main

choices that must be made when specifying a Category Manager Design.

First, it is possible to omit the design for some of the child Work Supporters and Content Presenters.

Furthermore, it is possible to include the designs for only some of the Work Supporters' and Content

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

134 of 136

Presenters' children (recursively). On the other hand, it is not possible to add designs for supporters and

presenters that are not part of the Category Manager or any of its children.

Second, there may exist more than one design for the child supporters and presenters whose designs should

indeed be included in a Category Manager Design. Only one of these may be used in the Category Manager

Design. This choice may be given by the target(s) for the Category Manager Design, but in cases with a

number of designs for the same target(s), the most appropriate one should be used.

Third, the chosen child supporters and presenter designs must be wrapped into a hierarchy of views. This

hierarchy may include one or more Content Integration Views. The possible choices of Content Integration

Views to exploit may be dependent of the chosen target(s) for a given design. The choice of Content

Integration View to use is also influenced by the Content (Integration) Views used in the children.

Normally, the targets for the Category Manager Design is determined in Step 2.1. Still, it should be checked

whether the Category Manager Design has any child supporter or presenter designs deviating from the

choices in Step 2.1. If this is the case, it should first be asserted that the child supporter and presenter designs

indeed are appropriate for the Category Manager Design. If this is not the case, the Category Manager

Design should be adjusted. If the children indeed are appropriate, the targets for the Category Manager

Design should be extended so that the sum of its children's targets are included.

Specifying a design for a Category Manager that only aggregates Content Presenters is similar to specifying

a design for a Task Supporter (Step 2.5).

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

135 of 136

References

Borchers, J: A Pattern Approach to Interaction Design 2001; John Wiley & Sons.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L. and Vanderdonckt, J.: A unifying reference

framework for multi-target user interfaces; Interacting with Computers 15(3) 2003, p. 289-308;

Elsevier/Oxford Journals.

CAMELEON: CAMELEON glossary; Deliverable 1.1 Companion in the CAMELEON project, 2003;

Available at: http://giove.isti.cnr.it/projects/cameleon/glossary.html

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.: Design Patterns: Elements of Reusable Object Oriented

Software 1994; Addison-Wesley.

Nilsson, E.G.: Tasks and information models for local leaders at the TYR training exercise; SINTEF Report

A16007, 2010a; ISBN 978-82-14-04479-9.

Nilsson, E.G. and Stølen, K.: Generic functionality in user interfaces for emergency response; Proceedings

of the 23rd Australian Computer-Human Interaction Conference (OZCHI'11) 2011; ACM.

Nilsson, E.G. and Stølen, K.: A case-based assessment of the FLUIDE framework for specifying emergency

response user interfaces; Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive

Computing Systems (EICS '16) 2016a; ACM.

Nilsson, E.G. and Stølen, K.: The FLUIDE framework for specifying emergency response user interfaces

employed to a search and rescue case; Proceedings of the 13th International ISCRAM Conference 2016b.

OMG: OMG unified modeling language (OMG UML), superstructure, V2.1.2; 2008; Available at:

http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

Paternò, F.: Model-based design and evaluation of interactive applications 1999; Springer.

Wilson, A. and Johnson, P.: Bridging the generation gap: from work tasks to user interface designs;

Proceedings of Computer-Aided Design of User Interfaces (CADUI) 1996; Presses Universitaires de Namur.

http://giove.isti.cnr.it/projects/cameleon/glossary.html
http://www.omg.org/spec/UML/2.1.2/Superstructure/PDF/

PROJECT NO.
90B261

REPORT NO.
A27972

VERSION
Final

136 of 136

Technology for a better society

www.sintef.no

