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Abstract—Frequency-dependent transmission line modeling 

by the traveling wave method requires to approximate the 
propagation function with a delayed rational function. Some 
approaches are based on modal decomposition where scalar 
functions are fitted with a rational model plus a single time delay. 
The delay is calculated from the modal velocity and the 
minimum-phase-shift (mps) angle which can be reconstructed 
from the magnitude function. This paper shows that the accuracy 
in the phase reconstruction as calculated by Bode's magnitude-
phase integral relation can be greatly improved by removal of a 
singularity in the integrand, and by prediction of out-of-band 
samples for the magnitude derivative. It is further shown that the 
time delay giving the smallest RMS-error in the final rational 
approximation is often substantially larger than the mps induced 
delay. An improved estimation is calculated via an auxiliary 
magnitude function and used for determining a bracketing 
interval for the true optimum which is identified by searching.  
 

Index Terms—Transmission line model, frequency dependent, 
minimum phase shift, delay calculation.  

I.  INTRODUCTION 
HE simulation of electromagnetic transients in high-
voltage power systems is  usually based on EMTP-type 

simulation tools [1]. The most suitable transmission line 
model for representing overhead lines and underground cables 
is usually the frequency-dependent traveling wave model 
which decomposes voltages and currents at the two line ends 
into forward and backward propagating waves. Here, the 
transmission line is described [2],[3] by its characteristic 
admittance (impedance) which defines the relation between 
voltage waves and current waves, and the propagation 
function which defines the distortion and delay of a wave as it 
travels between the two line ends. The characteristic 
admittance and propagation function are fitted in the 
frequency domain by rational functions, thereby allowing 
efficient time domain simulation via recursive convolution [4].  

 The earliest traveling wave models were formulated within 
a modal framework where each mode (eigenvalue) is 
effectively represented by a single-conductor transmission 
line, again represented by a frequency-dependent traveling 
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wave model [4],[5]. The frequency-dependent modal 
transformation matrix is approximated by a real and constant 
matrix, thereby introducing a modeling error. With some cable 
systems, the frequency dependency can be taken into account 
by introducing another convolution [6],[7].  

The accuracy limitations imposed by the assumption of a 
real and constant transformation matrix has led to the 
development of traveling wave models directly in the phase 
(physical) domain without residing to modal decomposition. 
With the Universal Line Model (ULM) [8],[9], rational fitting 
of modal components is still used as an intermediate step in 
the modeling of the propagation function.  

With both the modal domain and phase domain models 
(ULM), it is necessary to fit each modal component of the 
propagation function with a delayed rational function. The 
calculation can be performed using J. Marti's asymptotic 
fitting method [5] of the propagation magnitude function 
followed by a time delay optimization. More accurate results 
are obtained by application of vector fitting (VF) [10],[11]. 
Here, it is necessary to pre-calculate the time delay to be used 
prior to application of VF. In [7] it was proposed to calculate 
the delay at a single frequency using as information the modal 
velocity at that frequency and the minimum-phase-shift (mps) 
angle associated with the magnitude function of the 
propagation function. The background for the mps angle 
calculation in [7] is related to Bode's work but no details were 
shown. In [12] it was shown that the accuracy of the mps 
angle could be greatly improved by a direct implementation of 
a formula that appeared in Bode's original work . 

In this paper, the formula used in [7] is derived, showing 
that it stems from the original Bode formulae but modified to 
remove a singularity in the integrand so as to improve its 
accuracy when evaluating the integral discretely. In addition,  
an error existing in the presented formula [7] is corrected. The 
resulting formula is compared against the result by direct 
evaluation of Bode's formula for a synthetic example, and the 
significance of integration limits and frequency resolution is 
investigated. Errors due to the upper integration limit are 
reduced by calculating out-of-band samples using a 
polynomial prediction model. Next, it is shown by application 
to a single-conductor line that the mps-delay is generally too 
small when the objective is to find a rational approximation 
with the smallest RMS-error. An improved estimation 
approach is introduced based on an auxiliary magnitude 
function, and a search procedure is proposed based on the 
ideas in [14], for finding the optimal time delays. Finally, the 
approach is demonstrated for the modeling of a cable system.   
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II.  TIME DELAY AND MINIMUM PHASE-SHIFT FUNCTION 
Consider a single conductor transmission line (or a mode of 

a multi-conductor line) with per-unit-length series impedance 
Z and shunt admittance Y. The modeling of the line by the 
traveling wave methods requires to calculate a rational model 
approximation of the propagation function  
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To calculate the rational model (1), it is necessary to first 
estimate the time delay τ so that the rational factor of (1) can 
be obtained by standard techniques (e.g. VF [10],[11]) by 
solving the least-squares problem 
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It was shown in [7] that the time delay can be calculated as   
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where ϕmps denotes the minimum-phase-shift (mps) angle of 
the magnitude function of the propagation function, |H(ω)|. 
v(ω) and l denote the propagation velocity and line length, 
respectively. The second term in (3) approaches zero with 
increasing frequency, implying that the delay in (3) is also the 
lossless delay, τ=τ∞. 

In principle, any single frequency ω can be used for 
determining τ by (3). In the implementation [9], the delay was 
evaluated at the frequency point where the magnitude function 
had decayed to a value equal to the target error for the RMS-
error.   

III.  PHASE RECONSTRUCTION FROM MAGNITUDE DATA  

A.  Bode's Method 
Bode has shown [13] that the mps function ϕmps at 

frequency ωk can be calculated from the magnitude function 
using the formula 
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This method (4) was used in [12].  

B.  Removal of Singularity 
One challenge with the direct evaulation of (4) using 

discrete samples is that u in (5) approaches zero when ω→ωk, 
thereby causing coth(⋅) to undergo a fast variation while 
approaching infinity. In order to alleviate this difficulty, the 
integrand in (4) can be modified such that the factor in front of 
the log-term approaches zero when ω→ωk. To see how this is 

done, consider the simplified problem of solving 
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where g(x) approaches infinity at some point  x0. This problem 
can be handled by solving the alternative problem  
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provided that a closed form solution exists for the rightmost 
integral in (7). 

For (4) one can write  
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The last integral factor (second line) in (8) can be evaluated 
analytically utilizing the relation [13] 
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It follows that (8) can now be evaluated as 
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Note that the result (10b) was presented in [16] without 
derivation where it incorrectly used absolute values for the 
two terms inside the square brackets. The (incorrect) formula 
was included in [7] and later works, and also found its way 
into the ULM implementation. In [12], the correct form (10b) 
was used but with a different approach for the derivation.  

IV.  NUMERICAL EVALUATION 
Using the discretization scheme in [14], one obtains for the 

band-limited evaluation of (10) with 1Nω −  frequency samples 
the expression 
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Direct evaluation of Bode's formula (4) using a ditto 
discretization scheme gives 
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V.  SYNTHETIC EXAMPLE 

A.  Frequency Response 
To see the advantage of phase reconstruction using (11) 

over the direct approximation of (12), both methods are 
applied to a synthetic frequency response,  
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This example has been adapted from [12] with τ=407.6 µs, 
K=41123.67 and poles and zeros listed in Table I. It is 
observed that all poles and zeros lie in the left half plane. 
Therefore, H(ω) is a mps function when τ=0. Fig. 1 shows the 
magnitude function in the range 1 Hz-100 MHz, with 20 
samples per decade of frequency. 
 

TABLE I.  
POLES AND ZEROS IN (13).  

p z 
-2.13 -2.14 
-12.80 -12.98 
-71.39 -73.65 
-229737.95 -177.22 ± j364.70 
-177.53 ± j365.86 -491141.78 ± j1261050.84 
-264211.31 ± j430308.14  

 
Fig. 1.  Magnitude function of H.   

B.  Phase Reconstruction 
Fig. 2 shows the associated phase angle of H(ω) when τ=0. 

as well as the phase angle reconstructed from the magnitude 
function |H(ω)| using either direct calculation (12) or 
singularity removal (11). The phase reconstruction is 
performed by repeatedly applying (11) and (12) with k varied 
between the first and second last sample. All available 
samples are used in the calculation, with 20 samples per 

decade of frequency. It is observed that the direct application 
leads to higher errors. The improvement of using the 
singularity removal is highlighted in Fig. 3 which shows the 
deviation (absolute value) from the true angle.  

The difference in phase angle reconstruction errors can be 
understood by considering the behavior of the two integrands 
of (11) and (12). Fig. 4 shows the two integrands with a very 
fine frequency resolution when the evaluation frequency ωk is 
chosen where the magnitude function is 0.25 (104 kHz). It is 
observed that usage of singularity removal leads to the 
numerical evaluation of a more well-behaved integrand 
whereas direct evaluation gives an integrand with a sharp peak 
at the evaluation frequency.  

With singularity removal, the error seems to approach zero 
at very high frequencies. This result occurs since in this 
example the magnitude function is almost linear in the loglog 
plot at frequencies above 1 MHz so that Ak and Aj are nearly 
equal. Therefore, ∆(u) in (11a) approaches zero so that only 
the constant term remains, which includes the effect from 
frequencies beyond the 100 MHz limit. It is to be noted that 
when fitting a propagation function, the magnitude function 
will not be linear on a log-log plot and so the error will not 
approach zero.  

 
Fig. 2.  Reconstructed phase angle.   

 
Fig. 3.  Error in reconstructed phase angle. (Logarithmic ordinate scale). 
 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPWRD.2016.2609039

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



 4 

 
Fig. 4.  Integrand with singularity removal (12) and direct evaluation (11). 

C.  Time Delay Removal and Fitting With Rational Functions 
Using the same example, the phase reconstruction is again 

performed at a single evaluation frequency ωk where the 
magnitude has decayed to 0.25, this time using four decades of 
frequency on each side of the evaluation point and 20 samples 
per decade. Following compensation with the time delay, the 
resulting frequency response is fitted using VF [10],[11] with 
N=10 poles. 

The result in Table II shows that the improved accuracy in 
phase reconstruction by singularity removal leads to a more 
precise estimation of the time delay and thereby a smaller 
RMS-error of the final model.  

Table III shows the RMS-error with alternative sampling 
resolutions. It is observed that singularity removal gives a 
consistently more accurate result as the RMS-error quickly 
drops with increasing sampling density. Finally, the sensitivity 
to the integration limits is shown in Table IV. Increasing the 
limit improves the accuracy, as expected.  

 
TABLE II.   

COMPARISON OF DELAY COMPUTATIONS.  
 Correct 

solution 
Singularity 
removal* 

Direct 
evaluation* 

ϕmps [deg] −161.32 −161.33 −156.77 
τ [µs] 407.60 407.59 407.72 

RMS error 3.1E−14 2.5E−9 1.7E−3 
 *By using 4 decades and 20 logarithmic samples per decade. Point of 
evaluation chosen where |H|=0.25. 
 

TABLE III.   
DELAY COMPUTATIONS FOR ALTERNATIVE FREQUENCY RESOLUTIONS.  

 RMS error 
Samples per 

decade 
Singularity 
removal* 

Direct 
evaluation* 

5 5.2E−4 8.4E−3 
20 2.5E−9 1.7E−3 

100 1.1E−12 3.3E−4 
 *By using 4 decades. Point of evaluation chosen where |H|=0.25. 
 

TABLE IV.   
DELAY COMPUTATIONS FOR ALTERNATIVE INTEGRATION LIMITS.  

 RMS error 
Decades Singularity 

removal* 
Direct 

evaluation* 
1 6.5 E−4 3.1 E−3 

2 9.9 E−5 1.8 E−3 
3 6.2 E−7 1.7 E−3 
4 2.5 E−9 1.7 E−3 

 *By using 20 logarithmic samples per decade. Point of evaluation chosen 
where |H|=0.25. 

VI.  EXTENSION OF INTEGRAL TO HIGHER FREQUENCIES 

A.  Unavailable Data at High Frequencies 
With practical use of time delay identification schemes for 

transmission line modeling, one is usually given the frequency 
data within a limited band on a logarithmic base. At the same 
time, one will normally attempt to calculate ϕmps at a relatively 
high frequency where the modes are well-defined, which can 
truncate the upper frequency limit to be much less than four 
decades above the evaluation point. Another difficulty is that 
the strong attenuation of the ground mode  may simply damp 
the magnitude function so much that it cannot be computed at 
high frequencies on a digital computer. This makes it 
necessary to restrict the upper frequency limit for such modes. 

B.  Predictive Model for Magnitude Derivatives  
Consider that at a set of samples is available at 

logarithmically spaced frequencies 1 2( , , )Nω ω ω . The 
following is   observed from (10) and (11)  

1. The integrand is calculated based on derivate estimates 
of the magnitude function, formed by Aj and Ak while 
the magnitude function itself is not used.  

2. The Bj term is constant as function on frequency due to 
the logarithmic spacing, as is also the factor 

1log( / )j jω ω+ .  

The derivatives needed for computing Aj beyond Nω  can 
be calculated using a predictive polynomial obtained from a 
few sample values in the neighborhood of Nω . As an 
example, consider the use of a second order derivative 
prediction based on the last four samples ( ,| |)i iHω , i=N−3, 
N−2, N−1, N. From these samples, three derivative estimates 
are calculated for i=N−3, N−2, N−1,   

  1
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From the derivative estimates (14), a second order 
predictive model (15) is established for calculating the 
derivatives at out-of-band samples kω , 
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The coefficients in (15) are found by solving the linear 
equation 
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The extension to higher or lower orders is straightforward.  

C.  Example: Single Conductor Overhead Line 
As an example we consider a 30-km single-conductor 

overhead line over a lossy ground as shown in Fig. 5. With a 
speed of light in vacuum of 300 m/µs, the lossless time delay 
is τ∞=100 µs. The magnitude function is shown in Fig. 6.  
 

 
Fig. 5.  Single conductor overhead line. 30 km. 

 
Fig. 6.  Propagation function, H(s).  
 

Consider now that samples are available only up to 
10 MHz. Fig. 7 reports the calculation of derivatives at 
frequencies above 10 MHz using predictive models with 
alternative orders. It is observed that better approximations are 
obtained as the model order is increased. The 2nd order 
approximation is the one by (15). For reference, truncation of 
the integral at 10 MHz implies an assumption of a 0th order 
model with the derivative being zero.   

 
Fig. 7.  Magnitude function derivative and model estimates above 10 MHz.  
 

The effect of using the predicted derivatives is investigated 
next. It is assumed that samples are available only between 
1 Hz and 10 MHz with 20 samples per decade. Derivative 
samples above 10 MHz are calculated using the third order 
predictor. All available samples are used in the phase 
reconstruction calculations. 

Fig. 8 reports the relative error with respect to the correct 
time delay τ∞=100 µs, which corresponds to speed of light in 
vacuum (300 m/µs). The errors are shown with alternative 
number of frequency decades above above 10 MHz. It is 
observed that using two or more decades with predicted 
derivatives makes the error decrease from about 1% to below 
0.1%, for frequencies above 100 Hz.   

 
Fig. 8.  Relative error in estimated delay vs. frequency point of evaluation. 
Parameter: additional decades with  predicted derivatives.  

VII.  TIME DELAY OPTIMIZATION 
Proper application of (11) produces a highly accurate 

estimation for the lossless delay of the line, i.e. the delay 
evaluated at infinite frequency. Often, however, the use of a 
larger delay will lead to a substantially more accurate fitting of 
the modes as demonstrated in [14].  

Fig. 9 shows the RMS-error of the fitting error for H(s) for 
the single conductor overhead line example, as function of the 
time delay used for compensation in (2). It is observed that the 
optimal time delay is larger than the lossless delay, and it is 
also dependent on the model order with lower orders implying 
larger delays. 

h=11 m

d=21.66 mm, ρ=4.46⋅10−8 Ωm

ρ=1000 Ωm
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Fig. 9.  RMS-error vs. model order.  

A.  Bracketing Interval for Optimization 
The optimum delay τ* can be found by searching in the 

neighborhood of the mps-delay. A reliable search algorithm 
can be obtained by first defining a bracketing interval [τa, τb] 
for the optimum, followed by a suitable search method within 
the interval. Since one generally has τ*>τ∞, the left limit can 
be taken as τa=τ∞, while the right limit remains to be 
determined. In [14] it was proposed to choose the right limit as  

 
( )b

b

l
v

τ
ω

=  (17) 

where ωb is the frequency where the magnitude function 
|H(ω)| has decayed to the target error for the rational 
approximation to be calculated, i.e. the magnitude of the 
complex deviation between the original H and its rational fit. 
This compensation gives zero phase angle for the 
compensated function at this frequency, H(ωb)exp(jωbτ), and 
is therefore guaranteed to be too large. Table V lists τb for the 
overhead line example, for alternative values of the evaluation 
frequency ωb. It is observed that τb decreases towards the 
lossless delay τ∞=100 µs as ωb increases. 
 

TABLE V.   
SENSITIVITY OF UPPER INTEGRATION LIMIT TO EVALUATION FREQUENCY  

 ωb/(2π) [Hz] |H| bτ [µs] 
103 0.9648 121.41 
104 0.73391 114.69 
105 0.072897 108.61 
106 2.83E-8  103.90 
107 7.30E−36 101.39 

B.  Searching for the Optimum 
With the bracketing interval known, the optimum can be 
found using simple search procedures.  Fig. 10 reports the 
results from application of golden section search  [17] with 
τa=100 µs and alternative values for ωb. It is seen that the 
alternative searches quickly converge to the same result, with 
fastest convergence with a high value for ωb due to the 
narrower search interval. All examples use N=20 poles. The 
optimum is obtained with τ* =102.52 µs.  

 
Fig. 10.  RMS error with golden section search. N=20. Parameter: Frequency 
ωb for calculating right bracketing value. 

VIII.  BRACKETING FOR SEARCH INTERVAL 

A.  Left Bracketing Using Lossless Delay   
The use of the lossless delay (τ∞) for representing the left 

interval bracketing can however be inappropriately small for 
modes with return in earth unless the external inductance is 
much larger than the internal inductance. To see this, consider 
again the overhead line in Fig. 5 but with alternative heights. 
Figs. 11 and 12 show respectively the magnitude and delay of 
the line propagation function |H| as function of frequency. 
Fig. 13 shows the RMS-error of a fitting using N=15 poles. 
With 0.1 meter height, the optimal delay is 162 µs which is 
much larger that the 100 µs lossless delay. 

 
Fig. 11.  Magnitude of propagation function with alternative conductor 
heights.  

 
Fig. 12. Propagation time delay with alternative conductor heights.  
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Fig. 13. RMS error vs. time delay, with alternative conductor heights.  

B.  ULM Bracketing Approach Based on Specified Error Level 
In the original implementation of the ULM and briefly 

outlined in [9], a target error ε is specified for the fitting of 
each mode and the model order is iteratively increased until 
this requirement is met. In each iteration, the optimal time 
delay is determined using optimization with the bracketing 
interval limits determined as follows.  

The evaluation frequency ω1 is selected as the frequency 
sample where the magnitude function |H| is closest to the 
specified ε. In the case that |H(ω)| is greater than ε in the entire 
frequency range, ω1 is selected as the highest frequency 
sample. The right bracket is chosen as 1/ ( )b l vτ ω=  as 
mentioned in Section VII-A. The left bracket τa is evaluated at 
ω1 using (3) with ϕmps(ω1) calculated from the magnitude 
function. In principle, this approach produces the lossless 
delay, aτ τ∞≅  in Fig. 13. 

C.  Improved Estimation of Left Bracket  
The left bracket delay can be improved by considering the 

largest phase angle that can be supported by a rational model 
of a given order N. A real-valued auxiliary function haux(ω) is 
introduced (18) which is equal to |H(ω)| at frequencies below 
the evaluation frequency ω1. At frequencies above ω1, haux(ω) 
is specified to decay with N decades per decade of frequency, 
which is the fastest magnitude decay that is achieveable with 
an Nth order model.  
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| ( ) | | ,
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h
h

h

ω ω ω
ωω

ω ω ω
ω

≤
  =  > 

 

 (18) 

This is illustrated in Fig. 14 for an example with N=4 and 
ω1=2π⋅105 Hz. From the auxiliary magnitude function, a 
modified mps angle mpsϕ  is evaluated at ω=ω1 and used for 

determining the time delay τ∞  by (3). The final delay to be 
used is chosen as  

 max( , )τ τ τ∞ ∞=  .  (19) 

Fig. 15 shows the left and right interval for the bracketing 
interval for the example in Fig. 14 with mpsϕ  calculated from 

|Hω1(ω)| by (11). The calculation assumed ε=10−5 and the 
parameter (N) denotes the resulting order. It is observed that 
the left bracket delay is larger than the lossless delay, leading 
to faster and more reliable searching for the optimum value.  

 
Fig. 14.  Auxiliary magnitude function used for determining mpsϕ . 

 
Fig. 15.  Bracketing intervals [τa, τb] and identified optimum τ* using auxiliary 
magnitude function and golden section search, with prescribed RMS-error of 
ε=10−5.  

D.  Estimation of Left Bracket With Given Model Order  
In other situations, only the model order may be known 

without requirements for the RMS-error. The concept of an 
auxiliary function in Fig. 15 may also be used in this case. It is 
only required that the evaluation frequency ω1 is chosen such 
that the value |H(ω1)| is smaller than the expected model error, 
or equal to the upper frequency limit of the fitting band if this 
condition cannot be met.  

E.  Pseudo-Code for Delay Optimization 
The steps for delay optimization are summarized in Fig. 16, 
assuming that a specified error level is used.  
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Fig. 16.  Steps in delay optimization. 
 

IX.  EXAMPLE: CABLE MODELING 
As an application example, consider the cable system in 

Fig. 17 with parameters given in Table VI.  Fig. 18 shows the 
magnitudes of the six modes of propagation. The left  bracket 
for the search interval is calculated as described in Sections 
VIII-B and VIII-C with ε=10−4. 

Fig. 19 shows the fitting results for the ground mode (H1), 
two inter-sheath modes (H2, H3), and one of the coaxial modes 
(H4). The true minima are seen to be located inside the pre-
calculated intervals and identified using golden section search. 

 

 
Fig. 17. Cable system.  

 
TABLE  VI.  

SC  CABLE DATA.  
Item Property 

Core OD=39 mm , ρ= 3.365E–8 Ω⋅m  
Insulation t=18.25 mm, εr=2.85 
Sheath t=0.22 mm , ρ= 1.718E–8 Ω⋅m 
Jacket t=4.53 mm, εr=2.51 

 
Fig. 18.  Modal propagation functions.  

 
Fig. 19.  RMS-error when fitting modal propagation functions with required 
accuracy of 1E−4.  

X.  DISCUSSION 
In practice, the CPU time of the delay calculation is 

dominated by the final optimization where a rational model 
must be fitted to the propagation function repeatedly. In most 
implementations of ULM in EMTP-type programs, the user 
specifies a target for the fitting error. The program starts with 
a low-order approximation and increases the order n1 times 
until the target error is reached. For each order, delay 
optimization is used which results in n2 calls to the fitter, 
which is usually vector fitting (VF). Since VF is based on 
iteratively relocating poles to better positions, another n3 calls 
to VF is needed for the poles to converge. Although VF is 

Estimate lossless delay, τ∞ in two alternative ways:
a) - Calculate ϕmps(ω1) by (11) using samples for |H(ω)| in 

the range                                      Use predictive model
(15) for obtaining Ak at unavailable samples, if any. 

- Calculate τ∞ from ϕmps(ω1)  using (3), with ω =ω1 . 
b) - Calculate                  by (11) where samples above ω1 

have been replaced using auxiliary function (18). 
- Calculate      from                 using (3), with ω =ω1 . 

dec dec
1 1[ 10 10 ].N Nω ω−⋅ ⋅

Specify search interval for delay optimization
- Select left bracketing interval using (19) as 

max( , )aτ τ τ∞ ∞= 

mps 1( )ϕ ω

τ∞

- Select right bracketing interval as  1/ ( )b l vτ ω=

Calculate optimal delay:
Find delay which gives minimum fitting error by 
searching within interval               , e.g. using golden 
section search.

[ , ]b bτ τ

mps 1( )ϕ ω

Input:
- Target error, ε.  
- |H(ω)| at logarithmically spaced frequencies
- Number of frequency decades to be used, Ndec.

Determine evaluation frequency, ω1 :
- Locate frequency sample ω1 where |H| becomes

smaller than ε. Use upper frequency limit if this
condition cannot be met.

1.0 m

0.3 m
ρsoil=100 Ω⋅m
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very fast and requires only a fraction of a second to evaluate, 
the use of n1∙n2∙n3 calls can make the whole process take a few 
seconds which can be an issue for a simulation case which 
involves many overhead lines and cables. It is therefore of 
practical interest to reduce the number of iteration steps n2 in 
the optimization as much as possible. Such reduction of n2 is 
achieved by using a narrow search interval and a good 
procedure for optimization. In the first development of ULM 
[9], a simple search procedure was adopted as shown in 
Fig. 20 with initial step length chosen equal to half the interval 
length, ∆. That approach is more robust than Golden section 
search (Section VII.B) as it will also search outside the 
bracketing interval if necessary. However, the step length is 
less optimal and so it generally needs more steps to locate the 
optimum. Also, the additional robustness is not needed if the 
bracketing interval has been calculated in a reliable way. 
Another option is Brent's method as applied in [14]. That 
approach requires even fewer steps by combining Golden 
section search with a parabolic local model. .  
 

 
Fig. 20.  Alternative method for locating the delay optimum [18].  

XI.  CONCLUSION 
In the Universal Line Model (ULM), the modeling of the 

propagation function with rational functions requires 
precalculation of the time delays. In current ULM 
implementations, the delay calculation is based on estimating 
the lossless delay τ∞ from the minimum-phase-shift angle 
associated with the propagation magnitude function, followed 
by an optimization process.  

This paper derives the discrete integral formula that was 
used in the first implementation of ULM for estimating the 
lossless delay τ∞, showing that it has an error. When using the 
corrected formula, a very precise estimation of τ∞ is achieved. 
Application to a synthetic example with given frequency 
resolution shows that the accuracy of the corrected formula is 
even higher than that by direct application of Bode's classical 
formula.  

One significant source of error in practical applications is 
the truncation effects due to the finite upper frequency limit. It 
is shown that by using a predictive model of the out-of-band 
samples, truncation effects on the estimated τ∞ can be 
substantially reduced. 

The lossless time delay is not the optimal time delay to be 
used when the objective is to minimize the fitting error. It is 
demonstrated that the optimal delay can be substantially 
bigger than the lossless delay, in particular for overhead 

conductors in close proximity to earth. It is therefore 
necessary to search for the optimal delay within a bracketing 
interval, which is also the practice in the current 
implementations of ULM. This paper shows that the search 
interval can be made substantially more narrow by introducing 
an auxiliary magnitude function that restricts the high-
frequency phase shift to comply with the maximum phase shift 
that can be supported by the rational model.  

XII.  REFERENCES 
[1] EMTP Theory Book, prepared by H.W. Dommel. Bonneville Power 

Administration, Portland, Oregon, U.S.A. August 1986. 
[2] L.M. Wedepohl, "Transient analysis of underground power-transmission 

systems. System-model and wave-propagation characteristics", Proc. 
IEE, vol. 120, no. 2, pp. 253-260, February 1973. 

[3] A. Ametani, "A general formulation of impedance and admittance of 
cables", IEEE Trans. Power Apparatus and Systems, vol. 99, no. 3, pp. 
902-910, 1980.  

[4] A. Semlyen and A. Dabuleanu, “Fast and accurate switching transient 
calculations on transmission lines with ground return using recursive 
convolutions”, IEEE Trans. Power Apparatus and Systems, vol. 94, pp. 
561-575, March/April 1975. 

[5] J.R. Marti, “Accurate modelling of frequency-dependent transmission 
lines in electromagnetic transient simulations”, IEEE Trans. Power 
Apparatus and Systems, vol. 101, no. 1, pp. 147-157, January 1982. 

[6] L. Marti, “Simulation of transients in underground cables with 
frequency-dependent modal transformation matrices” IEEE Trans. 
Power Delivery, vol. 3, no. 3, pp. 1099-1110, July 1988. 

[7] B. Gustavsen and A. Semlyen, “Simulation of transmission line 
transients using vector fitting and modal decomposition”, IEEE Trans. 
Power Delivery, vol. 13, no. 2, pp. 605-614, August 2002. 

[8] A. Morched, B. Gustavsen, and M. Tartibi, “A universal model for 
accurate calculation of electromagnetic transients on overhead lines and 
underground cables”, IEEE Trans. Power Delivery, vol. 14, no. 3, pp. 
1032-1038, July 1999. 

[9] B. Gustavsen, G. Irwin, R. Mangelrød, D. Brandt, and K. Kent, 
“Transmission line models for the simulation of interaction phenomena 
between parallel AC and DC overhead lines”,  Proc. International 
Conference on Power Systems Transients (IPST), Budapest, Hungary, 
June 20-24, 1999, pp. 61-67. 

[10] B. Gustavsen and A. Semlyen, “Rational approximation of frequency 
domain responses by vector fitting”, IEEE Trans. Power Delivery, vol. 
14, no. 3, pp. 1052-1061, July 1999. 

[11] B. Gustavsen, “Improving the pole relocating properties of vector 
fitting”, IEEE Trans. Power Delivery, vol. 21, no. 3, pp. 1587-1592, July 
2006. 

[12] I. Kocar and J. Mahseredjian, "New procedure for computation of time 
delays on propagation functions for transient modeling of cables", IEEE 
Trans. Power Delivery, available online: ieeeXplore. 

[13] H.W. Bode, Network analysis and feedback amplifier design, D. Van 
Nostrand, New York, 1945. 

[14] B. Gustavsen, “Time delay identification for transmission line 
modeling”, Proc. 8th IEEE Workshop on Signal Propagation on 
Interconnects Heidelberg, Germany, pp. 103-106, May 9-12, 2004. 

[15] H.W. Bode, Network analysis and feedback amplifier design, D. Van 
Nostrand, New York, 1945. 

[16] Jens G. Balchen, Reguleringsteknikk. Bind 1, Tapir Forlag, 1984. 
[17] W. Press, S. Reukolsky, W. Vetterling, B. Flannery, Numerical recipes, 

Cambridge University Press, third edition, 2007. 
[18] B. Gustavsen, and J. Nordstrom, “Pole identification for the universal 

line model based on trace fitting”, IEEE Trans. Power Delivery, vol. 23, 
no. 1, pp. 472-479, January 2008. 

XIII.  BIOGRAPHY 
Bjørn Gustavsen (M'94–SM'2003–F'2014) was born in Norway in 1965. He 
received the M.Sc. degree and the Dr.Ing. degree in Electrical Engineering 
from the Norwegian Institute of Technology (NTH) in Trondheim, Norway, in 
1989 and 1993, respectively. Since 1994 he has been working at SINTEF 
Energy Research where he is currently Chief Scientist. His interests include 
simulation of electromagnetic transients and modeling of frequency dependent 
effects.  

for n=1:NG
rmserr0 = fit(poles,taun)
for iter=1:Niter
taun = taun +∆
rmserr = fit(poles,taun)
if rmserr > rmserr0

∆=–∆/2
end
rmserr0=rmserr

end
end
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