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ABSTRACT

Cased petroleum wells must be logged to determine the bonding
and hydraulic isolation properties of sealing material and to deter-
mine the structural integrity status. While ultrasonic pitch-catch
logging in single-casing geometries has been widely studied and is
commercially available, this is not the case for logging in double-
casing geometries despite its increasing importance in plug and
abandonment operations. It is therefore important to investigate
whether existing logging tools can be used in such geometries.
Using a finite element model of a double-casing geometry with a
two-receiver pitch-catch setup, we simulated through-tubing log-
ging, with fluid between the two casings. We found that there
appears a cascade of leaky Lamb wave packets on both casings,
linked by leaked wavefronts. By varying the geometry and materi-
als in the model, we examined the effect on the pulse received from
the second wave packet on the inner casing, sometimes known as
the third interface echo. The amplitude of this pulse was found
to contain information on the bonded material in the outer an-
nulus. Much stronger amplitude variations were found with two
equally thick casings than with a significant thickness difference;
relative thickness differences of up to 1/3 were simulated. Finally,
we developed a simple mathematical model of the wave packets’
time evolution to encapsulate and validate our understanding of the
wave packet cascade. This model shows a more complex time evo-
lution in the later wave packets than the exponentially attenuated
primary packet which is currently used for single-casing logging.
This indicates that tools with more than two receivers, which could
measure wave packets’ amplitude at more than two points along
their time evolution, would be able to draw more information from
these later packets. The model was validated against simulations,
finding good agreement when the underlying assumptions of the
model were satisfied.

INTRODUCTION
In plug and abandonment (P&A) operations, a bore well is hydrauli-
cally sealed to prevent leakage from the well structure to the ground
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surface or to underground geological formations in an eternal perspec-
tive. As the production life of more and more oil fields are coming to
an end, the number of upcoming P&Aoperations is quickly increasing,
and expenditures in time and cost are thus set to increase dramatically.
It is therefore essential to look into more efficient P&A procedures
that still maintain safety.

The planning of P&A operations is based on an evaluation of the
well’s hydraulic barriers at the time of the operation, and logging-
based information has a central role in this evaluation. Cement bond
logs may be available, but these may be outdated by several decades,
and may have been performed during well construction with only a
single casing present. In most cases, new logs must therefore be made.

However, existing methods for analyzing log data were typically
developed for single-casing geometries, in particular to evaluate the
interface between the casing and the outside material. To use such
methods in e.g. double-casing geometries as shown to the left in Fig-
ure 1, the inner casings must be removed to gain access to the outer
pipe so that logs can be performed and analyzed. Instead of hav-
ing to perform this time-consuming and costly process, it would be
much preferable to have a method that allows logging throughmultiple
casings, so that the majority of pipes can be left in place.

Unfortunately, little has been published on such multiple-casing
logiging. To achieve these objectives, new techniques must therefore
be developed for logging behind multiple casings with sufficient accu-
racy and azimuthal resolution to provide information on the hydraulic
isolation as specified by e.g. the NORSOK D-010 (2013) standard.
For this reason, we are researching the capabilities of current logging
technologies in this respect. In doing this, we will start with the sim-
plest case possible before moving to more complex cases; if a given
technology does not show potential even for simple cases, there is little
point in proceeding with more complex and realistic cases.

Using the terminology of NORSOK D-010 (2013) and referring
to Figure 1, this simplest case is evaluating the bonding between the
second (i.e. outer) casing and the material in the B-annulus, with fluid
in the inner pipe and in the A-annulus. For simplicity, we call this
through-tubing logging in this article.

A variety of logging systems exists using various physical fields
to measure cased-hole and multiple-casing corrosion, the most well-
known of these being electromagnetic logging systems; see e.g. Brill
et al. (2011) and Arbuzov (2012). However, our interest is restricted
to ultrasonic and sonic logging systems, as their logs are resolved
azimuthally and their logging measurements show clear interactions
from regular third interfaces. This makes interpretation more diffi-
cult as the current ultrasonic and sonic technologies do not provide
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Figure 1: Transverse cross-section of double-casing well geome-
try (left) and sagittal cross-section with pitch-catch setup (right).
The lower half of the latter cross-section was simulated in this work.

sufficient information about hydraulic isolation, and they will need
to be combined with other measurements to more fully evaluate the
hydraulic sealing; see e.g. Donovan et al. (2015). In other words, the
final log interpretationmust involve a complex integration ofmeasured
data, well historical information, and experience.

Because of the requirement of NORSOK D-010 (2013) on high-
resolution azimuthal mapping, our interest lies in the ultrasound tech-
nologies which have been used for decades in the oil and gas industry
for well integrity evaluation of single-cased holes. The technologies
are divided into two main types: pulse-echo techniques where one
transducer acts as a transmitter and receiver—see e.g. Hayman et al.
(1991) and Wright (1993)—and pitch-catch techniques where there
is one transmitting transducer and one or more receiving transducers,
as described by e.g. Zeroug (2002), Zeroug and Froelich (2003), van
Kuijk et al. (2005), and van Kuijk et al. (2006). A recent review of
such ultrasonic techniques is provided by Wang et al. (2014).

In this paper we examine ultrasonic pitch-catch techniques where
an ultrasonic pulse is emitted from a transmitting transducer towards
the casing at an oblique angle. This pulse generates a leaky flexural
Lamb wave packet on the pipe (specifically, the A0 Lamb mode). As
this wave propagates along the pipe, it leaks a continuous pressure
wavefront into the interior and the A-annulus.

The wave packet decreases exponentially in amplitude because of
this leakage into the interior and the A-annulus. The amplitude at
each point along the emitted pressure wavefront is connected to the
amplitude of the Lamb wave packet at the time of emission of the
wavefront point. Therefore, the emitted wavefront also decreases
exponentially in amplitude, correspondingly to the wave packet. Thus,
if we have two receivers R1 and R2 placed as shown to the right
in Figure 1, the received pressure pulse amplitudes SR1,1 and SR2,1
indicate the Lamb wave packet’s attenuation in dB per unit length as

α1 =
20
∆z

log10
(

SR1,1
SR2,1

)
, (1)

where ∆z is the distance between the two receivers.
The attenuation α1 is determined by the impedance of the materials

adjacent to the pipe, as stated by van Kuijk et al. (2006) and shown by
van Kuijk et al. (2005) for the case of plate with material on one side
and vacuum on the other. In single-casing logging, the measured α1
can thus be used to find the impedance of the bonded material in the
A-annulus.

This Lamb wave packet, henceforth called the primary Lamb wave
packet, also leaks a wavefront into the A-annulus. The leaked wave
interacts with the outer interface of the A-annulus, causing a reflected
wave that generates a secondary Lamb wave packet (A0 mode) on the
inner casing, also sometimes called a third interface echo (TIE), e.g.
by van Kuijk et al. (2005). The arrival time of this wave packet can
be used to determine the position of the outer interface, as shown by

Zeroug and Froelich (2003) and van Kuijk et al. (2005), and it has been
shown by He et al. (2014) that its amplitude is affected by debonding
in the A-annulus.

In this paper we analyze further effects of changes beyond the A-
annulus on the wave leaked from the secondary wave packet. As done
by e.g. Zeroug and Froelich (2003) and He et al. (2014), we simplify
the geometry by modeling its two-dimensional sagittal cross-section.
The analysis uses the signals from the two simulated pitch-catch re-
ceivers in the double-casing geometry, meaning that the effects demon-
strated in this analysis should also be detectable in a similar physical
transducer setup. Thus, this work can be seen as an examination of
the untapped potential of existing two-receiver ultrasonic pitch-catch
tools, described by e.g. van Kuijk et al. (2005) and Bellabarba et al.
(2008).

In the following, we will first describe the simulation setup and
show and discuss the results. Some of the insights gleaned from this
discussionwill then be encapsulated into a limitedmathematicalmodel
of the physical system, which is then validated against simulations.

SIMULATION SETUP
The simulated double-casing geometry is shown to the right in Fig-
ure 1. The outer diameter of pipe 1 was chosen as 2a2 = 7 in, and its
thickness as a2 − a1 = 0.408 in. For pipe 2, its outer diameter was
2a4 = 9 5

8 in and its thickness was a4 − a3 = 0.545 in. The borehole
diameter was 2a5 = 12 3

4 in. The parameters of the steel and sandstone
materials used for the pipes and the formation, respectively, is given
in Table 2 in Appendix . Unless otherwise is specified, the two annuli
and the interior contained water.

The simulated transducers’ faces (i.e. their active front surfaces)
were all slightly concave, with a curvature radius of 20 cm and a
width of 25mm. All were placed at a 38° angle to normal incidence,
with a distance of 35mm between the pipe and the lower edge of the
transducer face. This choice of angle corresponds e.g. to that of Wang
et al. (2014) and Tian et al. (2011). The distance between the face
center of the transmitter and that of the near and far receivers was
25 cm and 35 cm, respectively, giving a distance ∆z = 10 cm between
the two receivers.

The coordinate system was chosen as shown to the right in Figure 1,
so that z is the coordinate along the well length and x is the coordinate
along the well radius, with x = 0 being the symmetry axis of Pipe
1 and the borehole. The length of the system was chosen as 43 cm,
giving a small space on both sides of the pitch-catch setup.

The simulations themselves were performed in the two-dimensional
sagittal half-cross-section shown to the right in Figure 1. The FEM
software COMSOL Multiphysics was used to perform time-domain
simulations of the system, solving the wave equation in the fluids and
the isotropic linear elastic equations in the solids. COMSOL has been
developed for such simulations, among others, and has been found
to give good results for time-domain simulations of elastic waves by
previous authors such as Hora and Cervená (2012) and McKenna
et al. (2008). Our resulting FEM model could be adapted to various
permutations of the system geometry and materials, with the materials
used listed in Table 3 in Appendix A.

FEM simulations were chosen mainly due to familiarity with the
software, and time-domain simulations were chosen to be able to
easily follow the measurement pulse in time as it passes through the
simulated system. We expect that explicit finite difference simulations
(e.g. He et al. (2014)) or analytical models (e.g. Zeroug (2000)), once
implemented, would be significantly faster and less computationally
demanding. However, as all these methods solve the same equations
in the bulk media, their results would be near-identical.

The transmitterwas implemented as a normal acceleration boundary
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condition on the transducer face, applying an apodized Gaussian pulse

∂2un
∂t2

= −B e−(t−tp/2)2/(2σ2
t ) sin

[
2π f0(t − tp/2)

]
sin(sπ), (2)

where un is the normal displacement, f0 is the center frequency,
tp = 4/ f0 is the pulse length, σ2

t ≈ 4.00 µs2 is the time variance for a
Gaussian pulse with a relative bandwidth of 0.75, and s is a spatial pa-
rameter that runs from 0 to 1 over the length of the transducer face. As
all the simulated equations are linear, the amplitude B is arbitrary and
was chosen as B = 1m/s2. Like e.g. He et al. (2014) we have chosen
f0 = 250 kHz, though our pulse is shorter in order to better be able to
separate different wavefronts. Thus, we use the same combination of
frequency and incidence angle as Tian et al. (2011) reported for a real
tool in a specific logging case. From Zeroug and Froelich (2003), this
combination of frequency and incidence angle ensures that the flexural
A0 mode is cleanly excited with little contribution from other modes.
As the reflection coefficient curves shown in that article were made
for plane-wave incidence, our wavefronts mandate an extra margin of
safety in the choice of frequency and transducer angle. This is because
they contain a spectrum of incidence angles as they are emitted from
a finite source.

The receivers recorded unfiltered signals S′R1
(t) and S′R2

(t) as a
weighted integral of the pressure p over their faces,

S′Rn
(t) =

∫ 1

0
p(s, t) sin(sπ) ds. (3)

To reduce low-frequency fluid-borne noise from the transmitter’s side-
lobes, all signals were subsequently filteredwith a zero-phase highpass
filter. The resulting filtered receiver signals SR1 (t) and SR2 (t) were
additionally normalized with the maximum of the filtered transmitter
signal ST(t), which was similarly found through a weighted pressure
integral. The maxima used for normalization were the peak value
of the signal envelope, which was calculated as the absolute value
of the analytic signal found through the Hilbert transform. Due to
this normalization, the signals SRn (t) are dimensionless. This is in
contrast to some previous publications, e.g. by Zeroug (1998), where
the incident pressure is converted to voltage through a more complex
transducer modeling process. Additionally, our transducer surfaces
were modelled as acoustically hard boundaries. The reason for this
simple approach is that detailed modeling of the transducers’ sound
reception is not required to study the propagation of the pulse through
the system as long as both transducers receive sound in the same way.

Quadratic triangular elements were used with a maximum size of
dxmax = (cwater/ f0)/10. The time step dt was chosen from Courant
number considerations so that cp,steel/(dxmax/dt) = 0.4. To validate
that this choice of resolution is sufficient, a higher-resolution simula-
tion with cp,steel/(dxmax/dt) = 0.2 and dxmax = (cwater/ f0)/(10

√
2)

was performed. Comparing the simulation-measured peaks used later
in this article between the higher-resolution and normal-resolution
simulations, we find a relative amplitude error of 0.6% or less and an
absolute arrival time error of 0.15 µs or less. These low errors indicate
that our normal simulation resolution is sufficient.

In order to minimize spurious reflections, the low-reflecting bound-
ary conditions described in COMSOL (2015a) and COMSOL (2015b)
were used on the outer edges of the system. While these boundaries
are noticeably reflective for waves at high incidence angles, these re-
flections were found to arrive much later than the pulses that were
analyzed, and do therefore not affect the analysis. This is discussed
further in the discussion section.

SIMULATION RESULTS
The evolution of the transmitted pulse through the system for a case
with foam cement in the B-annulus is shown in Figure 2, and the
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Figure 2: Snapshots of pressure p (interior and A-annulus) and dis-
placement ux (pipes 1 and 2 and B-annulus) at six different points in
time, for a simulation with foam cement in the B-annulus.

received signals are shown in Figure 3. The generation of the primary
wave packet can be clearly seen from Figure 2b) to c), and in the latter
we see the reflection of the leaked wave off pipe 2. By Figure 2d) we
can see both the primary and secondary wave packet on pipe 1, and
the development of corresponding leaky Lamb wave packets on pipe
2. The moments where the receivers are insonified by the pressure
pulses leaked by the primary and secondary wave packets—henceforth
called the primary and secondary pulses—can be correlated between
Figure 2e) and f) and Figure 3.

Inserting SR1,1 and SR2,1 into equation 1, where SRn ,i is the ampli-
tude of the ith Lamb wave-emitted pulse on the nth receiver, gives an
attenuation of α1 = 0.54 dB/cm. (The same attenuation was found in
all simulations where only pipe 2 and/or the B-annulus was changed.)
Additionally, from the pulse peak arrival times tR1,1 and tR2,1 we can
calculate the group speed of our Lamb wave packets on pipe 1 as

cL =
∆z

tR2,1 − tR1,1
≈ 3180m/s.

This is in line with the group speed curves shown by Zeroug and
Froelich (2003).

The simulations were performed in series. In each series, a small
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Figure 3: Filtered and normalized signals (black) from both receivers
for the case shown in Figure 2. Also shown are the signal envelopes
(gray) and the determined peaks (circles).

number of parameters were varied between simulations. Each series
was performed and analyzed separately.

Series 1: Material variation in B-annulus

For each of the materials listed in Table 3 in Appendix A, a simulation
was performed with that material in the B-annulus, and the result-
ing secondary pulse amplitudes SRn ,2 were determined. These were
used to determine an amplitude ratio of the secondary wave packet
measurements, defined analogously to α1 in equation 1 as

α2 =
20
∆z

log10
(

SR1,2
SR2,2

)
. (4)

The results are shown in Figure 4, where cases of α2 < 0 correspond to
SR2,2 > SR1,2, i.e. the secondary wave packet increasing in amplitude
between the two receivers. The figure separates between “slow” and
“fast” materials, where the latter have a p-wave speed such that cp >
cL. The reason for this separation is that the attenuation radically
changes its character from slower to faster materials, as shown for
a single-frequency time-harmonic case by van Kuijk et al. (2005).
For the results of our time-domain wave packet case, we found cL to
be an appropriate separation point between two differently-behaved
sets of results. This difference comes from a change in the p-wave
coupling between the Lamb wave and the adjacent medium: The
Lamb wave is “supersonic” compared to a slow medium into which
it radiates distinctive wavefronts, while it is “subsonic” compared to
a fast medium in which p-waves will be absent or evanescent. (Note
that the wave packet will also radiate s-waves into solids as seen in the
B-annulus in Figure 2, and these s-waves will be present as long as
cL > cs.)

Series 2: Variation of casing standoff

As can be seen from the left part of Figure 1, the radii an will depend
on the azimuthal angle if the pipes are eccentered. However, if pipe 1
(including the transducers) is eccentered in the plane of the simulated
sagittal cross-section, the simulation geometry is altered only by a
change of the standoff between the two casings, i.e. the A-annulus
width dA = a3−a2. A series of simulations were therefore performed
for various values of dA to investigate the effect of such standoff
variations. (Note, however, that approximating eccentering by standoff
variations neglects any 3D effects due to the curvature of the casings.)
In each simulation, the interior and annuli contained water.
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Figure 4: Secondary pulse amplitudes from both receivers (upper) and
amplitude ratio α2 (lower) with variation of material in B-annulus.
“Slow” and “fast” materials have lower and higher p-wave speeds than
cL ≈ 3180m/s, respectively.

When examining the results, it was found for very small separation
dA that the primary and secondary pulses arrived so close together
that they are nearly indistinguishable, with the lowest resolvable width
around 0.5 cm for water in the A-annulus. For this reason, these
simulations were not analyzed further. The pulse amplitudes and
arrival times found in the other simulations are shown in Figure 5.

Series 3: Variation of pipe 2 thickness and B-annulus ma-
terial

The effect of pipe thickness was examined by performing a run of
simulations over five different materials in the B-annulus and three
different pipe 2 thicknesses dP2 . These three thicknesses were the
original pipe 2 thickness (0.545 in), the same thickness as pipe 1
(0.408 in), and an intermediate thickness (0.477 in). The materials
were all chosen as “slow” materials from Table 3, with cp < cL,
though their impedances (1.13, 1.48, 2.99, 5.28, and 7.13MRayl)
otherwise cover a large part of the impedance spectrum. The pulse
amplitudes and the values of α2 are shown for all 15 cases in Figure 6.

DISCUSSION
In Figure 2 we see that the transmitted pulse generates a complex train
of leaky Lamb wave packets on both pipes. We will now interpret the
individual steps leading to this result.

When the pulse from the transducer insonifies pipe 1, it generates
the primary flexural Lamb wave packet as seen in Figure 2b). This
wave packet leaks distinctive wavefronts into both adjacent media,
given that there is wave coupling between the pipe and each medium.
As the wavefront into the A-annulus is reflected from pipe 2, it starts
setting up a corresponding leaky Lamb wave packet in the outer pipe
as seen in 2c)–d). The leaked wave from the new wave packet on pipe
2 and the reflected wavefront from the primary wave packet together
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Figure 5: Amplitudes (upper) and arrival times (lower) for primary
and secondary pulses with variation of casing standoff.

build up the secondary Lamb wave packet on pipe 1.
The overall behavior is that of a cascade between the Lamb wave

packets. All later wave packets appear due to the continuous leakage
from preceding wave packets; they are not simple reflections of the
original incident pressure pulse. This can be seen from Figure 3 where
the primary wave packet decays significantly from the near receiver
to the far while the secondary wave packet does not, indicating that
the second pulse’s amplitude loss due to leakage is balanced by the
amplitude gain from preceding packets. Therefore, applying the term
“third interface echo” to the secondary pulse may give the wrong idea
as it implies a simple interface reflection.

It should be pointed out that this behavior is dependent on the
material in the A-annulus: If the p-wave speed in this material is
higher than the Lamb wave speed, the p-wave coupling is broken and
wave packets on pipe 1 cannot set up wave packets on pipe 2 in the
same way, unless the A-annulus material is a solid so that the two pipes
may communicate through shear coupling.

Later in this discussion, we will substantiate these interpretations
by building a simple mathematical model based on them. We will
subsequently show that this model can match the evolution of the
wave packet amplitudes.

In addition to the pulses from the Lamb wave packets, the receivers
pick up fluid-borne sound from the transmitter. Most clearly, we see
the reflected pulse from pipe 1 in Figures 2b)–f). The wave propagates
through the fluid and hits receiver R1 around t = 180 µs. This can
also be seen as noise in SR1 (t) in Figure 3, and the measured peak
amplitude SR1,3 should therefore be considered unreliable.

In Figures 2e)–f) we can also see that this wave is partly reflected
off the boundary at x = 0. This is an unphysical effect caused by
the imperfect nature of the applied boundary condition, which causes
waves at high outgoing angles to be reflected back into the system. As
we can see in Figure 2f), this wave is again reflected off the inner pipe.
It hits R1 around t = 242 µs, causing a strong pulse in SR1 (t) visible
in Figure 3. However, this unphysical pulse arrives much too late to
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Figure 6: Secondary pulse amplitudes from both receivers (upper) and
amplitude ratio α2 (lower) with variation of the pipe 2 thickness dP2
and the material in the B-annulus.

affect any of the peaks SR1,i used in this work.
A third fluid-borne wave is the initial pulse’s reflection off pipe 1

and the transducer. We can see this wave in Figures 2d)–f). It ar-
rives roughly simultaneously with the previously mentioned unphysi-
cal pulse.

Discussion of the simulation series

Series 1: Material variation in B-annulus

Figure 4 shows that when the B-annulus impedance ZB is varied, the
received secondary pulse amplitudes SR1,2 and SR2,2 clearly vary with
it. This shows that the bonding quality on the fourth interface may in
principle be detected through the amplitude of the secondary pulse.

For low values of ZB we see that SR2,2 > SR1,2, which means that
the Lambwave packet increases in amplitude as it propagates from one
receiver to the next, leading to negative values of α2. This behavior is
reversed for higher values of ZB, where the wave packet decreases in
amplitude.

While SR1,2 and SR2,2 evolve fairly linearly with impedance for the
“slow” materials, the “fast” materials break this trend. This change is
in accordance with van Kuijk et al. (2005), who show that the Lamb
wave attenuation changes drastically from slower to faster materials.
In Figure 4, all the fast materials but the highest-impedance one show
similar behavior, suggesting that their attenuation falls in the high-Z
region of slowly varying attenuation α(Z ) shown by van Kuijk et al.
(2005).

Series 2: Variation of casing standoff

Figure 5 clearly shows that the arrival time of the secondary pulse
depends linearly on standoff, though this has already been well estab-
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Figure 7: Schematic overview of the interaction between leaky Lamb
wave packets on two parallel pipes, as seen in Figure 2e). Arrows
show the influence from earlier wave packets on later ones.

lished by e.g. Zeroug and Froelich (2003) and van Kuijk et al. (2005).
When the two pipes are so close as to be almost touching, it becomes
difficult to distinguish the primary and secondary pulses. This might
also be the case when control lines in the annulus are nearly touch-
ing the pipe, allowing detection of the azimuthal position of these
control lines. More interesting is the variation of amplitudes. The pri-
mary pulses are fairly constant in amplitude except at small dA where
they interfere with the secondary pulses. Similarly SR2,2 is also fairly
constant except for this interference.

However, the amplitude SR1,2 varies strongly for large dA. Looking
at the corresponding arrival time, we can see that there is strong
variation around t = 180 µs, where we have already established that
the fluid-borne direct sound hits receiver R1. Consequently, this strong
variation is likely due to interference. As explained by Haldorsen
et al. (2006), avoiding such interference between fluid-borne waves
and formation-path waves is a basic principle of sonic tool design. We
see here that this principle must be extended to the secondary Lamb
waves when they are to be used in ultrasonics. Even so, the fluid-
borne waves will be weakened in strongly attenuating muds, possibly
diminishing the interference.

Series 3: Variation of pipe 2 thickness and B-annulus material

Figure 6 shows that the effect of varying the pipe 2 thickness can
be very significant. For equal pipe thicknesses and low impedances,
the results differ strongly from the rest. This can be explained by
the dispersion relations on both pipes being very similar in this case.
When the dispersion relations are similar, the wave packets on pipe
2 go more slowly out of phase with the incoming leaked waves from
pipe 1, so that the interference between the incoming wave and the
wave packet becomes more constructive.

Even for inequal pipe thickesses, we can see that the effect of thick-
ness variation is strong. The effect on pulse amplitudes and α2 is of
similar significance to the effect of ZB variation shown in Figure 4.

Limited mathematical model

Some of the physical insights gained in this study can be encapsulated
and verified as a heuristic mathematical model. The aim of this model
is to track the evolution of the wave packets’ amplitudes Bn (t) in a
double-pipe geometry, as shown in Figure 7. These amplitudes Bn (t)
can be found in the simulations as the peak of the envelope of each
wave packet’s displacement ux .

Themodelwill be derived under the following limiting assumptions:

• Two-dimensionality, like in the simulations presented above

• Equal thickness on both pipes and therefore equal dispersion
relations, so that wave packets on both remain in the same
relative phase

• Noexternal reflecting surfaces such as transducers or a formation

• The pipes are perfectly parallel

• There is fluid between the pipes, so that they only interact
through pressure waves

• Allwave packet amplitudes Bn (t) are zero until a simple primary
wave packet B1(t) enters the system at time t0

• The pipes are far enough apart that individual wave packets
remain spatially well-separated

Derivation

From van Kuijk et al. (2006) we know that the attenuation of a flexural
Lamb wave packet is approximately proportional to the sum of the
impedances of materials in contact if these materials are “slow”, i.e.

α1 ∝ ZI + ZA. (5)

ZI, ZA, and ZB are the impedances of the interior, the A-annulus and
the B-annulus, respectively. We can show that this behavior can be
captured by describing the decay of the primary wave packet B1(t)
through the ordinary differential equation (ODE)

dB1(t)
dt

= −(λI + λA)B1(t), (6)

where λI ∝ ZI, λA ∝ ZA, and λB ∝ ZB are decay constants for wave
radiation into the interior fluid, the A-annulus, and the B-annulus,
respectively. Applying the initial condition that the primary wave
packet enters the system at t = t0 with a given amplitude, the solution
of this ODE is

B1(t) = B1(0) e−(λI+λA)t H (t − t0), (7)

where B1(0) is the extrapolated amplitude at t = 0 and H (t) is the
Heaviside function given by

H (t) =



0 for t < 0,
1 for t ≥ 0.

Equation 7 implies that the amplitude decays spatially as e−(λI+λA)x/cL ,
which is consistent with Equation 5 since λI ∝ ZI and λA ∝ ZA. Thus,
we have shown that Equation 6 captures the behavior of Equation 5.

The amplitude leaked from B1(t) into the A-annulus is proportional
to λAB1(t). When this leaked wave hits pipe 2, we assume that it is
partly transmitted into B2(t) with a transmission coefficient T . Thus,
B2(t) changes because of two factors: The gain due to the incoming
wave, and the loss due to the wavefronts leaked into both annuli.
Mathematically, this gain is expressed through the time-delayed loss
in B1(t), such that

dB2(t)
dt

= TλAB1(t − ∆t) − (λA + λB)B2(t), (8)

where ∆t is the time-of-flight between adjacent wave packets.
We assume that part of the leaked wave from B1(t) is also reflected

off pipe 2 with a reflection coefficient R. Thus, the secondary Lamb
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Figure 8: Snapshots of the stripped simulation with water outside
and between the pipes, showing pressure p (interior and annuli) and
displacement ux (pipes 1 and 2) at three different points in time. The
simulation-measured wave packet amplitude evolution is shown in the
upper axes of Figure 9.

wave amplitude B3(t) is affected by this reflected wave, the wave
leaked from B2(t), and the loss due to leakage, as

dB3(t)
dt

= RTλAB1(t − 2∆t)

+ TλAB2(t − ∆t) − (λI + λA)B3(t).
(9)

Higher-order reflections come into play for laterwave packets. Thus,
any wave packet is affected by all preceding wave packets and its own
leakage. This can be expressed through the general ODE

dBn (t)
dt

= TλA
n−1∑
i=1

Rn−(i+1) Bi [t − (n − i)∆t] − λnBn (t), (10)

where

λn =



(λI + λA) for n odd,
(λA + λB) for n even,

is the total decay constant for wave packet n. This model assumes
that T and R are the same on both casings, which neglects any effect
that the casing curvature might have. However, for the purposes of
this article this is not an issue as the model will only be applied to a
two-dimensional simulation.

Thus, equations 7 and 10 thus model the evolution of all wave
packet amplitudes, given the model parameters t0, B1(0), λI, λA, λB,
∆t, T , and R. Considerations on the continuity of amplitude suggest
a stability criterion R + T ≤ 1. (There is an inequality rather than an
equality here as other Lamb modes may be excited). This suggestion
is confirmed by solving the ODE system and seeing that the amplitude
sum

∑
n Bn (t) diverges otherwise. Additionally, the amplitude sum

oscillates divergently for T > 2.

0 50 100 150

0

0.2

0.4

0.6

0.8

Time t (µs)

W
av

e
pa

ck
et

am
pl

itu
de

s
|B

n(
t)
|(

di
m

.le
ss

) |B1|sim |B2|sim

|B3|sim |B4|sim

|B5|sim |B6|sim

|B1|mod |B2|mod

|B3|mod |B4|mod

|B5|mod |B6|mod

0 50 100 150
0

0.2

0.4

0.6

0.8

Time t (µs)

W
av

e
pa

ck
et

am
pl

itu
de

s
|B

n(
t)
|(

di
m

.le
ss

) |B1|sim |B2|sim

|B3|sim |B4|sim

|B5|sim |B6|sim

|B1|mod |B2|mod

|B3|mod |B4|mod

|B5|mod |B6|mod

Figure 9: Simulation-measured (solid) and modeled (dashed) ampli-
tude evolution of the six first wave packets for Case 1 (upper) and
Case 2 (lower). The amplitudes are normalized by that of the imposed
displacement boundary condition.

Comparison with stripped simulation

The simulation model presented above was adapted for comparison
with this model. The transducers and formation were removed, the
thickness of pipe 2 was set equal to that of pipe 1, and the Lamb wave
packet was introduced as a time-dependent boundary condition on pipe
1 at z = 0, where a displacement pulse ux (t) was imposed given by
the right-hand-side of equation 2. The purpose of this stripped model
is to be able to detect the wave packets more clearly; in Figure 2c)–f)
significant displacements not related to the wave packets are visible
on the pipes.

Two cases were simulated:

Case 1: The only applied material was water, with ZI = ZA = ZB =
1.48MRayl.

Case 2: Three different materials from Table 3 were applied, with
ZI = 1.13MRayl, ZA = 1.48MRayl, and ZB = 2.46MRayl.

The evolution of this model for case 1 is shown in Figure 8. Weaker
leaked waves from excited A1 Lamb modes can also be seen in front
of the wave packets themselves. Similar leaked waves can also be
faintly seen in Figure 2, though these are actually from S0 Lamb
modes. (The excitation in the simulations underlying Figure 2 and 8,
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Table 1: Optimized model parameters for Case 1 and Case 2.

Parameter Case 1 Case 2
B1(0) 9.04 8.82
t0 (µs) 6.2 6.5
λI (s−1) 1.03 × 104 0.76 × 104
λA (s−1) 1.03 × 104 1.01 × 104
λB (s−1) 1.03 × 104 1.68 × 104
∆t (µs) 16.5 16.7

T 1.85 1.95
R −0.99 −0.98

causing different methods to be excited.) This is also shown but not
commented elsewhere in the literature; see e.g. Zeroug and Froelich
(2003) and Wang et al. (2014).

The displacement ux (z, t) was measured along the centerlines of
the two pipes for each microsecond. From the envelopes of ux (z, t),
the time evolution of the wave packet amplitudes were determined
by picking the peak value of each wave packet at various time steps.
The peak amplitudes |Bn (t) |, presented for case 1 and 2 in Figure 9,
were also normalized by the amplitude B of the pulse imposed on the
boundary. Noticable oscillations can be seen in the amplitudes: the
peaks exhibited a variation due to background noise (no filtering was
applied) and dispersion.

Determining the ODE model parameters such that the resulting
modelled amplitudes from equation 10 fit the measured wave packet
amplitudes is an optimization problem. This was solved using an
unconstrained nonlinear optimizationmethod as described by Lagarias
et al. (1998). The optimization objective function was chosen as the
RMS value of the difference between the simulated and the modeled
amplitudes, discarding areas where the amplitudes fell below a certain
threshold in order to avoid a perceived noise floor in the measurements
ux (z, t). Thus, the fit between simulated and modeled amplitudes was
optimized in a least-squares sense. In case 1, the optimization was
constrained so that λI = λA = λB.

Figure 9 compares the amplitude evolution measured in each sim-
ulation and the corresponding modeled amplitudes found through pa-
rameter optimization of the ODE model. The optimized parameters
for each case can be found in Table 1.

The fit between the simulation measurements and the modeled am-
plitudes is generally very good, showing that there is merit to the
model. However, we observed that the optimization algorithm can
reach somewhat different sets of parameters depending on the initial
condition. While these parameter sets all resulted in similar values of
the objective function and a similarly visually good fit, the parameters
reported in Table 1 do not necessarily represent a global optimum.

Some discrepancies between the two sets of curves are visible,
however. Most obvious is the fact that the modeled values |Bn (t) | go
to zero when the wave packet experiences a change in its sign. The
simulation-measured |Bn (t) | do not reach zero, and we attribute this
to a noise floor on each pipe. In addition, the simulation-measured
amplitude |B1(t) | does not cleanly rise at t ≈ t0 because of the peak
detection algorithm used.

For both cases, the resulting parameters t0, λA, ∆t, and R were
as expected very similar, in addition to the initial pulse amplitude
B1(t0). The decay constants in case 2 fulfil λI/λA ≈ ZI/ZA and
λB/λA ≈ ZB/ZA, as could be expected from equations 5 and 6.
The wave packet evolution from this model can be connected with

the full model described previously in this paper. For instance, the
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Figure 10: For case 1, the signed modeled wave packet amplitudes
showing the zero crossings (upper), and the components of the time
derivative of B3(t) (lower).

attenuation α1 can be found from the decay constants as

α1 = (λI + λA)
20 log10 e

cL
= 0.56 dB/cm.

This is very similar to the value 0.54 dB/cm determined above from
SR1,1 and SR1,2. As the amplitude at a point on the leaked wavefront
is linked to the amplitude of the wave packet when the wavefront point
was emitted, we expect that a setup with additional receivers Rn would
yield curves of e.g. {SRn,2} against time similar to the |B3(t) | curves
shown in Figure 9.

This model may also give some more insight on the evolution of
the evolution of each wave packets. Figure 10 shows the signed wave
packet amplitudes Bn (t); the wave packets that are initially of opposite
sign are set up through odd numbers of reflections of the leaked wave
from the primary wave packet. The figure shows that later wave
packets can change their sign as the weight of influence changes from
one wave packet to another. From Figure 9 we can see that this also
happens in the simulations, taking into account the noise floor that
prevents the simulation-measured amplitudes |Bn (t) | from reaching
to zero.

Figure 10 also shows the influences on the evolution of the secondary
wave packet B3(t), which was the focus of our investigation of the full
simulation. At first, the influence from the primary wave packet B1(t)
dominates, but as this packet decays and B2(t) increases in amplitude,
the latter becomes the major influence on B3(t). This leads us to
a possible explanation for the influence on ZB on SRn,2 as seen in
Figures 4 and 6: Increasing ZB will cause B2(t) to decay faster,
diminishing its influence on B3(t), from which SRn,2 are measured.

The behavior of the primary wave packet is quite simple: It decays
exponentially, and this decay can be measured using as little as two
receivers. However, we have seen here that the later wave packets’
behavior is more complex, indicating that more receivers would be
very useful to draw out information from these packets’ evolution.
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While this model gives us some insight on the evolution of wave
packets in some particular cases, its limitations as listed above re-
strict its usefulness. We also attempted to simulate a case with pipes
of inequal thickness as shown in Figure 2 using a stripped model as
shown in Figure 8, and the resulting simulation-measured packet am-
plitudes Bn (t) proved impossible to fit with modeled amplitudes like
in Figure 9. However, as a difference in pipe thickness gives different
flexural propagation speeds in the two pipes, the assumptions under-
lying the derivation of the ODE system in Equation 10 are not valid
in this case. Thus, it is unlikely that this explanatory model can be
directly applied in practical situations.

CONCLUSION
In the work presented in this article, we used a FEM model of a
ultrasonic pitch-catch setup in the double-casing geometry shown in
Figure 1 to simulate the propagation of the pulse from the transmitter
to the two receivers. In this way, we found that applying existing pitch-
catch methods in this geometry results in a train of Lamb wave packets
appearing on both casings as shown in Figure 2. We have shown that
later-arriving wave packets are not merely caused by reflections of the
wave leaked from the primary wave packet, but that there is rather a
more complex behavior at play where later wave packets are affected
by all the preceding ones.

We showed in Figure 4 that the B-annulus impedance ZB affects
the amplitude of the secondary wavefront, meaning that the recorded
pitch-catch waveforms contain information about the bonding behind
the outer casing in through-tubing situations.

Standoff variation of the pipes in our two-dimensional cross-section
was shown to have a well-behaved effect on the arrival time as seen in
Figure 5, though this has already beenwell established in the literature.
The effect of standoff variations was not strong on the pulse ampli-
tudes, unless the primary and secondary pulses arrived close enough
to interfere, or if the secondary pulses arrived simultaneously with a
fluid-borne direct pulse. Given a particular tool design, such consid-
erations may place restrictions on the range of applicability of logging
methods based on the secondary pulse. However, only the effect of
eccentering on the casing standoff in a two-dimensional cross-section
was evaluated here, and the effect of eccentering is bound to be more
complex in three dimensions.

We saw a clear effect on the received pulses when the thickness of
the casings was changed, as shown in Figure 6. Thus, it may perhaps
also be possible to determine the thickness of the outer casing from
such pitch-catch measurements, although this would require being
able to separate this effect from that caused by the variation of ZB. If
this is not possible, perhaps it may be possible to measure the outer
casing thickness using another approach and use that measurement to
compensate.

Some insight on the system’s behavior can be gleaned through the
mathematical model presented here, which models the time evolution
of each wave packet on each pipe. This model shows how the later
packets are influenced by the preceding packets’ attenuation and leaked
wavefronts. However, this model is still quite limited. Notably, the
model does not work in cases where the pipes are of inequal thickness
because it assumes equal dispersion properties of both pipes so that the
different wave packets preserve their relative phase and interfere per-
fectly constructively or perfectly destructively. For this mathematical
model to be more generally useful, it must be developed further. Still,
it does already show us that the evolution of the later packets is more
complex than that of the primary packet. This indicates that a tool
with more than two receivers would be able to draw more information
from the later packets, as it would be able to measure the relative wave
packet amplitudes at more than two points along their time evolution.

Table 2: Density ρ, Young’s modulus E, and Poisson’s ratio ν of basic
solids in the model.

Material ρ [kg/m3] E [GPa] ν

Steel 7850 205 0.28
Sandstone 2200 38.8 0.26

Table 3: P-wave speed cp, density ρ, and impedance Z of simulated
materials. The five first materials were treated as fluids.

Material cp [m/s] ρ [kg/m3] Z [MRayl]
Scree 300 1700 0.51
Oil 1250 900 1.13
Water 1481 1000 1.48
Mud 1400 1300 1.82
Saturated shales and clays 1200 2050 2.46
Foam cement 2250 1330 2.99
Sat. shales and sand sect. 1750 2150 3.76
Chalk (1) 2400 1900 4.56
Marls 2400 2200 5.28
Porous and sat. sandstn. (1) 2600 2300 5.98
Class G cement 3700 1800 6.66
Porous and sat. sandstn. (2) 3100 2300 7.13
Chalk (2) 2600 3000 7.80
Limestone 3600 2400 8.64
Dolomite 3650 2500 9.13
Salt 4600 2150 9.89

The benefits of additional receivers should be investigated in future
work, as well as the benefits of drawing information from even later
wave packets.

The through-tubing cases presented here are quite idealized. Fu-
ture work should consider the effects of material variation in the A-
annulus, corroded casings, casings that are not perfectly parallel, and
debonding. Additionally, our two-dimensional simulations may miss
certain three-dimensional physical effects. Therefore, future work on
this topic must also include three-dimensional simulations to support
these two-dimensional results. In particular, the effects that eccenter-
ing the outer casing at various angles relative to the pitch-catch setup
can have on the received signals must be studied in detail.

We showed that several effects may affect the measured amplitude
of the secondary pulses, and we expect that other effects we did not
consider heremay be relevant. It remains to be seen how these different
effectsmay be separated in order to get unambiguous results. While the
work presented here cannot yet be used in practical logging situations,
it does indicate that it is possible to log beyond the second casing using
ultrasonic pitch-catch tools.
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APPENDIX A
SIMULATED MATERIAL PARAMETERS

The basic simulation model contained casings of steel and a formation
of stone, with material parameters as given in Table 2. In all cases,
the interior and A-annulus contained water.

Different materials were used in our simulations for the material
in the B-annulus. Instead of using a smoothly varying artificial con-
tinuum of materials as was partly done by van Kuijk et al. (2005),
we chose a wide variety of realistic materials to simulate even though
many of themwould not typically be found in a well annulus. This was
done so that the simulated materials had a large spread in properties,
in order to ensure that our results are valid even for widely varying
materials. The materials used are shown in Table 3. However, mea-
surements of the solids’ shear speed cs were not available. Instead we
used an empirical expression from Castagna et al. (1985),

cs =
cp − 1360m/s

1.16
. (A-1)

Materials where this would lead to a negative shear speed were treated
as fluids.
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