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Abstract. This paper presents three possible optimizations of Alloy models,
including how and when to implement these optimizations. Alloy is a formal
light-weight language for performing incremental and automatic analysis.
Analysis is performed within a user-defined scope, which limits the number of
model elements that are considered. When this scope increases, the number of
possible combinations of model elements increases exponentially. Thus the
analysis time escalates rapidly caused by this state-space explosion.
Implementing the optimizations presented in this paper will decrease the
analysis time, and thus make analysis suitable for larger models. We give
concrete examples showing the decrease in analyzation effort and time given
these optimizations.

Keywords. Alloy, analysis, optimization, modeling, Train Control Language.

1 Introduction

Formal analysis of software systems is mainly applied to prove the correctness of
certain properties of systems. Traditionally, this has required extended knowledge of
mathematical techniques, including mathematical notation and theorem proving.
Thus, this has been a time-consuming and tedious process with a high cost. Therefore,
even though such analysis can give valuable findings, especially when applied on
model level in the initial phase of developing software, it is not as widely used, as it
ought to be.

There is tool support for automating the analysis of software systems. Alloy is a
structural modeling language to define software systems precisely through a set of
structural constraints. Such software systems are often defined by domain-specific
languages (DSL). The Alloy Analyzer is a tool that supports incremental and fully
automatic analysis of Alloy models, giving immediate feedback in form of a solution
model that satisfies the constraints specified in the Alloy model. This is performed by
transforming the Alloy model to first-order logic constraints and using a SAT-solver
[6] to perform the analysis. Alloy grows in popularity due to its automatic analyzer
and its uncomplicated notation. Kelsen and Ma [8] have shown that Alloy offers a
more uniform notation for performing analysis than traditional formal methods.
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Alloy is a light-weight declarative language and the Alloy Analyzer only
guarantees for the result up to a user-given scope, which specifies the number of
possible model elements in the solution model. Analysis is performed immediately
when the analyzed model is small. However, when the model grows, the scope must
be increased in order to be able to perform analysis on the model. An increased scope
implies that the number of possible combinations of model elements increases
exponentially. Thus, the analysis time escalates rapidly and the analysis is, in the best
case, not performed immediately. In the worst case, the analyzer can run out of
resources (i.e. computer memory) in the search for a solution.

We have used Alloy to formalize the Train Control Language (TCL) which is a
DSL for modeling train stations. Analysis of the station models, such as simulations
with a given number of trains, is important since TCL represents a safety-domain.
Performing such analysis on relative small station models turned out to be time-
consuming and unfeasible when the number of trains increased in the analysis. An
investigation of the Alloy models implied that Alloy allows certain forms for
optimizations that can be very profitable. These optimizations are not specific for
TCL, but allow more efficient analysis of any kinds of systems.

One obvious optimization of Alloy models is to lower the scope, and thus
decreasing the possible number of objects. Furthermore, the scope can be specified
individually for each kind of object in the model, such that only the required number
of each kind of object is considered. However, this is not always feasible. There are
models that require larger scopes (e.g. TCL models), and thus become time-
consuming or unfeasible to analyze. Another optimization is to use a platform-
specific SAT-solver (e.g. minisat [2. 10]). However, even though this can improve the
analysis time, large Alloy models still require other optimizations to reduce the
analysis time sufficiently.

In this paper we present three optimizations of Alloy models that can reduce the
analysis time substantially. The contribution of the paper is therefore the description
of these three optimizations, when and how to implement them, and their application
on concrete TCL examples. We show the decrease in analysis effort and time when
applying the optimizations on these models. As the example illustrates, the presented
optimizations are useful when developing and analyzing models in DSLs using Alloy.

The outline of the paper is as follows: Section 2 gives further background
information about Alloy and the train control language TCL. Section 3 elaborates
further on the challenges with analyzing TCL models and the analysis effort required.
Section 4 describes the three optimizations, and Section 5 gives a discussion of the
application of such optimizations. Section 6 presents related work, while Section 7
finally gives some concluding remarks and future work.

2 Background

Before discussing the optimization of Alloy models, we give some background
information. First, we further explain the Alloy language and what kinds of analysis
that can be performed automatically by the Alloy Analyzer. Then we introduce the
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example from the train domain and explain how this example benefits from automatic
analysis using Alloy.

2.1  Alloy

Alloy is a declarative light-weight language for formally modeling a software system.
such that analysis can be automatically conducted by its analyzer tool. The Alloy
Analyzer takes an Alloy model as input, searches for a solution satisfying the
constraints in the Alloy model, and gives a solution model as output. Unlike
traditional theorem proving and model-checking, the Alloy Analyzer only performs
analysis up to a user-specified scope. This scope limits the number of instantiated
model elements such that analysis can be performed efficiently. The scope can even
be set to restrain the number of each kind of model element independently.

An Alloy model usually consists of signatures, fields, facts, predicates and
assertions. A signature defines a type in the model, much like a class in object-
oriented languages, which can be instantiated into model elements (objects). A
signature can extend another signature to form a hierarchy of signatures. Furthermore,
a signature can contain fields, which refer other signatures, much like associations or
references in object-oriented languages. A fact consists of a set of global constraints
that must be satisfied for all kinds of analysis performed on the model. A predicate
consists of a set of constraints that must be satisfied if the predicate is included in the
analysis, much like an operation in object-oriented languages. An assertion is a set of
constraints that are claimed to be satisfied for certain kinds of analysis.

The Alloy Analyzer allows two kinds of analysis to be performed on Alloy models:
Search for a solution model that satisfies a predicate or search for a counter-example
that falsifies an assertion. In both cases, the analyzer will populate each signature,
with corresponding fields, with model elements up to the user-specified scope, and try
all possible combination until all constraints are satisfied. If a solution is found, the
analyzer returns a sofution model providing the solution. This solution model is an
arbitrary solution (or counter-example) and is not guaranteed to be optimal or to have
any other properties.

The Alloy Analyzer is invoked by either using the provided Alloy editor or by
using the provided set of APIs to integrate with Java programs. We will use the Alloy
editor to illustrate the optimizations presented in Section 4. The Alloy model is
transformed into a Kodkod model, which is a SAT-based model finder [9, 15], and a
SAT-solver [6] is used for calculating the solution. The solution is then transformed
back into a solution model in Alloy. We will use the SAT-solver MiniSat [10], which
is platform-specific, to perform the analysis in this paper, since it is supplied with the
Alloy tool and is more efficient than SAT4J [11], which is platform-independent.
However, the optimizations discussed in this paper are Alloy-specific, and do not
depend on a particular SAT-solver.

An example of concrete Alloy syntax is shown in Fig. 1. This example is taken
from the train domain introduced in the next section. A Track represents a physical
part of a train station with a start and end. This is modeled by having a signature
Track with two fields, start and end, where each of the fields refers another signature,
Endpoint. Note that each field can only refer one Endpoint object. Furthermore, a fact



4 Andreas Svendsen, @ystein Haugen, Birger Moller-Pedersen

is specitying that no tracks exist such that the two fields, start and end, refer the same
Endpoint object.

abstract sig Track {
start: one Endpoint,
end: one Endpoint

}

fact |
no t:Track, e:t.start, eZ2:t.end | e in e2
}

Fig. 1. Definition of a Track in Alloy

2.2 Train Control Language

The Train Control Language (TCL) is a DSL for modeling train signaling systems [3.
13]. A DSL captures the concepts of a particular domain and how they are related by
using a metamodel. A metamodel is a model that can be instantiated into models.
describing applications within the domain. Accordingly. the TCL metamodel defines
the concepts of a train station and how these concepts are related. This metamodel can
be instantiated into particular train station models that represent the physical train
stations. The models can be used to generate code using a model transformation. TCL
models are e.g. used as the basis for generating tables, verification documents and
source code for controlling the signaling system on the station. For further
information about DSL and model transformation technology, we refer to [7].

An excerpt of the TCL metamodel, illustrating the most important concepts and
their relations. is illustrated in Fig. 2. A Station is the top concept containing the other
concepts. A TrainRoute is a route into or out of a Station, which must be reserved by
a train before the train can move. Each TrainRoute refers a set of TrackCircuits,
which model a part of a station where the train can be located. A TrackCircuit refers a
set of Tracks, which can either be a LineSegment or a Switch. These Tracks are
connected through Endpoints, which are again connected to a Sigmal. The concrete
syntax of TCL is illustrated in Fig. 3. Note that TCL also consists of other elements
than the ones illustrated, such as Stillers, Buildings, Derailers, etc., but for simplicity
we have omitted them in this paper. For more information about TCL, we refer to [3,
13].

To perform analysis on TCL models, we have formalized TCL using Alloy. This
yields four Alloy models: Static semantics, dyvnamic semantics, instance specification
and analysis model. The static semantics model defines the structure of the language
and is basically transformed from the metamodel. The dynamic semantics model
defines the behavior of TCL, meaning how trains can move into and out of a station.
The instance specification model extends the static semantics model to define a
particular station model. The analysis model defines a set of predicates and assertions
to simulate and check certain properties of station models.
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Fig. 2, Excerpt of the TCL metamodel
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Fig. 3. TCL concrete syntax annotated with TCL concepts (in red)

More specifically, the static semantics model contains a set of signatures, fields
and global constraints for the TCL language. The instance specification extends these
signatures to represent each object in the particular instance model. Constraints are
used to specify the links between the extended signatures. Thus, the instance
specification is restricting the TCL static semantics to only one instance model. The
dynamic semantics model contains predicates and facts to define the dynamic
behavior of TCL. Intuitively, the behavior consists of three operations: Introduce a
new train on either side of the station, reserve a TrainRoute for a train, and move a
train one TrackCircuit ahead. The kinds of analysis performed on TCL models
include simulation of the station with a particular number of trains, checking for the
maximum number of trains allowed simultaneously, checking whether TrainRoutes
can be allocated when certain TrackCircuits are occupied, etc. For more information
about the formal representation of TCL, we refer to [12].

3  Problem Description

Before describing the optimizations of Alloy models, we first further discuss the
challenge with state-space explosion by illustrating it using a couple of examples. We
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look at two different TCL models, two-track station and three-track station, and
simulation with two, three and four trains on these stations, to investigate the impact
of the optimizations. This section shows the initial analysis effort and time before
applying optimizations.

A typical TCL model. a two-track station. is illustrated in Fig. 4. Note that the
rectangles on the top part of the figure represent TrainRoutes and TrackCircuits. In
the figure there are 1 Station, 8 TrainRoutes, 6 TrackCircuits, 8 Tracks, 10 Endpoints,
6 Signals, 4 Stillers and 2 Buildings. Another TCL model is illustrated in Fig. 5. This
station model has 1 Station, 12 TrainRoutes, 6 TrackCircuits, 11 Tracks, 14
Endpoints, 8 Signals, 5 Stillers and 2 Buildings.

{512 ][BIII ]{LE ][m ”ME ][01 ][mz ][xun ]

L B 01 02 A M
N o}
B o0 o0 A
e
Qo000 2 ) Qo000
£\ " A : Y
¥ —to— . o ML_QB_H
QOO0 [0.80)
Station EL

Fig. 4. TCL model — two-track station
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Fig. 5. TCL model — three-track station

Even though TCL includes integration to Alloy through its APIs, we have decided
to use the editor provided by the Alloy tool. Then we avoid extra overhead from the
TCL editor itself and the results will be more comparable with other attempts to
perform analysis. The result of performing simulation with two and four trains on the
two-track station (Fig. 4), using MiniSat, is illustrated in Fig. 6. Similarly, performing
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the simulations on the three-track station (Fig. 5), also using MiniSat, yields the
results illustrated in Fig. 7.

Executing "Run run$1 for exactly 19 State, 2 Train, 1 Station, 8 TrainRoute, 6 TrackCircuit, 8 Track, 10
Endpoint, 8 Signal, 4 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

140715 vars. 1870 primary vars. 424053 clauses. 25092ms.

Instance found. Predicate is consistent. 1486ms.

Executing "Run run$1 for exactly 37 State, 4 Train, 1 Station, 8 TrainRoute, 6 TrackCircuit, 8 Track, 10
Endpoint, 6 Signal, 4 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

490335 vars. 4362 primary vars. 1718602 clauses. 100191ms.

Instance found. Predicate is consistent. 168092ms.

Fig. 6. Analysis effort when simulating a two-track station

Executing "Run run$1 for exactly 19 State, 2 Train, 1 Station, 12 TrainRoute, 7 TrackCircuit, 11 Track, 14
Endpoint, 8 Signal, 5 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

315599 vars. 2818 primary vars. 898980 clauses. 86110ms.

Instance found. Predicate is consistent. 7814ms.

Executing "Run run$1 for exactly 37 State, 4 Train, 1 Station, 12 TrainRoute, 7 TrackCircuit, 11 Track, 14
Endpoint, 8 Signal, 5 Stiller, 2 Building, 0 SLock, O Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

1074682 vars. 6022 primary vars. 3508706 clauses. 352068ms.

Instance found. Predicate is consistent. 122367ms.

Fig. 7. Analysis effort when simulating a three-track station

The figures illustrate the number of objects of each signature in the analysis. The
analysis is performed with all options set to default, except the SAT-solver, which is
specified to be MiniSat. Furthermore, we see the number of variables and clauses
needed to perform the analysis, the time needed to transform the Alloy model to
Conjunctive Normal Form (CNF), which are Boolean formulas, and the time required
to find an arbitrary solution to the formulas. Note that the time required to find a
solution (solving-time) is relatively arbitrary. It can vary dependent on the kind of
SAT-solver used, what kinds of constraints that restrict the model and what kind of
analysis that are performed. However, the number of variables and clauses define the
complexity of the Boolean formulas, and can therefore be a good measurement for
improvement. We will therefore use these to measure the optimizations in Section 4.
but we also advice noticing the analysis time, since it gives an indication. Note that
the simulation of the three-track station model with four trains requires more than 1M
variables and 3.5M clauses (and about 8 minutes).

4  Optimizing Alloy Models

As illustrated in the last section, performing rather simple analysis requires quite a lot
of analysis effort. Further increasing the size of the stations or the number of trains in
the simulation will escalate the required analysis effort and time. There are huge
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benefits to gain from using optimizations that are rather straightforward to implement.
In this section we present three such optimizations, which consist of reducing the
complexity of Alloy expressions, introducing partial instances to model fixed parts of
the model being analyzed, and hinting the number of instantiated objects of each
signature by using subsets.

4.1 Reducing the Complexity of Expressions

Reducing the complexity of Alloy expressions (constraints) can reduce the overall
complexity of the Alloy model and thus the analysis effort required. A straightforward
method for reducing the complexity is to minimize the use of unnecessary variables,
meaning that variables used only in sub-expressions, should also only be defined
within the sub-expressions. This will avoid populating and checking solutions where
the variables have different values but are not used in other sub-expressions. An
example from the TCL dynamic semantics is illustrated in Fig. 8. The constraint
shown in the figure restricts all trains to be related to only one TrainRoute and
TrackCircuit simultaneously. More specifically, for all states s, trains ¢, TrainRoutes #r
and #’, and TrackCircuits /¢ and tc¢’, if the relation between t and tr exists in
s.trainOnRoute and the relation between t and tr* also exists in s.trainonRoute, then tr
must be equal tr’, and similar for TrackCircuits.

fact one_allocatedRoute_and occupiedTC_per train|
all s:S8tate, t:Train, tr, tr':TrainRoute, tc,tc':TrackCircuit {
t->tr in s.trainOnRoute && t->tr' in s.trainOnRoute => tr in tr'
t->tc in s.trainOnTrack && t->tc' in s.trainOnTrack => tc in tc!

Fig. 8. Expression with six variables (s, t, tr, tr’, tc and t¢")

Note that there are two sub-expressions in the a//-expression: one for TrainRoutes
and one for TrackCircuits. The variables for TrackCircuit are not used by the sub-
expression for TrainRoutes, and similar for the TrainRoute variables and the
TrackCircuit expression. Since all variables are defined in the all-expression, all
possibilities have to be populated, even though the value of the variables may not be
significant (i.e. in the TrainRoute sub-expression the values for the TrackCircuit
variables are not significant, but still have to be evaluated). Reducing the complexity
of this fact yields the fact illustrated in Fig. 9. Note that the TrainRoute variables and
TrackCircuit variables now are defined locally in the sub-expressions. Further notice
that this optimization does not have any side-effects, since it simply re-factors the
original expression, and should therefore be implemented in all kinds of Alloy models
when possible.

The results of running the simulations presented in Section 3 with this optimization
implemented are illustrated in Fig. 10 for the two-track station and in Fig. 11 for the
three-track station. Note that the number of variables and the number of clauses used
in the analysis have been reduced (i.e. for the three-track station simulated with 4
trains, the number of variables has reduced from 1M to 652k and the number of
clauses has reduced from 3.5M to 2.6M). Note that this optimization is only
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performed on one expression (fact) in the TCL dynamic semantics model. Therefore,
the potential benefit from further re-factoring other such expressions can be larger
than the results illustrated in this paper.

fact one_allocatedRoute_and occupiedTC per train(
all s:S5tate, t:Train {
all tr, tr':TrainRoute {
t->tr in s.trainOnRoute && t->tr' in s.trainOnRoute => tr in tr'

1

all tec,te': TrackCircuit |
t=>tc in s.trainOnTrack && t->tc' in s.trainOnTrack => tc in tc'

}

Fig. 9. Expression with reduced complexity

Executing "Run run$1 for exactly 19 State, 2 Train, 1 Station, 8 TrainRoute, 6 TrackCircuit, 8 Track, 10
Endpoint, 6 Signal, 4 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

107313 vars. 1870 primary vars. 358731 clauses. 22883ms.

Instance found. Predicate is consistent. 3733ms.

Executing "Run run$1 for exactly 37 State, 4 Train, 1 Station, 8 TrainRoute, 6 TrackCircuit, 8 Track, 10
Endpoint, 6 Signal, 4 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

360243 vars. 4362 primary vars. 1464190 clauses. 95627ms.

Instance found. Predicate is consistent. 109341ms.

Fig. 10. Analysis effort with reduced complexity for simulation of two-track station

Execuling "Run run$1 for exactly 19 State, 2 Train, 1 Station, 12 TrainRoute, 7 TrackCircuit, 11 Track, 14
Endpoint, 8 Signal, 5 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

207109 vars. 2818 primary vars. 685154 clauses. 83110ms.

Instance found. Predicate is consistent. 2954ms.

Executing "Run run$1 for exactly 37 State, 4 Train, 1 Station, 12 TrainRoute, 7 TrackCircuit, 11 Track, 14
Endpoint, 8 Signal, 5 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat{jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

652142 vars. 6022 primary vars. 2675910 clauses. 337256ms.

Instance found. Predicate is consistent. 84838ms.

Fig. 11. Analysis effort with reduced complexity for simulation of three-track station

4.2  Partial Instances

The introduction of partial instances is one of the main benefits of the use of Kodkod
as the model finder for Alloy version 4 [1]. This optimization allows the modeler to
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express associations between objects using static functions. These static functions
represent a particular type of a relation, from one signature to another signature, and
return a union of all the relations that exist between these signatures.

The benefit of using static functions to represent associations is that the relations
represented by the functions can be computed without the need to populate all
possible models that do not satisfy the relations. If parts of the model being analyzed
are fixed, the use of partial instances can improve the analysis effort by an order of
magnitude. In general, this optimization is to be used when the structure (or parts of
the structure) of the model is known. Then the Alloy Analyzer does not have to
calculate all possible models and discard the invalid ones. Instead it can just select the
ones that are correct. Partial instances are particularly useful when analyzing a given
model instance (e.g. a two or three track station model), since the model elements and
their references are fixed.

Consider the TCL example where we analyze a particular TCL model by extending
the signatures of the static semantics model. Fig. 12 represents a TrainRoute with a
set of fields defined by the static semantics model. This TrainRoute signature is
extended to a particular TrainRoute and restricted to refer to and being referred by
other objects in the model (see Fig. 13). Note that using fields to represent
associations require the analysis to populate all possible solution models and discard
the ones that do not satisty the constraints representing the fields. Therefore, the
analysis effort by using fields to represent associations, even though the associations
are fixed, greatly escalates the analysis effort required.

abstract sig TrainRoute {
trackCircuits: some TrackCircuit,
start: one TrackCircuitEndpoint,
end: one TrackCirculitEndpoint,
direction: one Direction

}

Fig. 12. A TrainRoute defined by the static semantics (not optimized)

one sig tr L2 extends TrainRoute{} {#trackCircuits = 2}
fact {all tr:tr L2, st:StationZT | tr in st.trainRoutes}
fact {all tr:tr L2, e:ep TCEZ | e in tr.start)

fact { all tr:tr_ L2, e:ep StationA | e in tr.end}

fact { all tr:tr L2, tc:tc B | tc in tr.trackCircuits)
fact {all tr:tr 12, tc:tc_L | tc in tr.trackCircuits}
fact {all tr:tr L2, dir:Left | dir in tr.direction

Fig. 13. Constraints defining TrainRoute L2 (not optimized)

Since the instance semantics model is representing a particular model with known
associations, we implement static functions to represent these associations. This
involves removing the fields and replacing them by static functions. The redefined
TrainRoute signature is illustrated in Fig. 14. Static functions representing the
associations in the model is illsutrated in Fig. 15. For each field, we have created a
particular function with the same name as the field. Furthermore, a function defines a
particular relation (i.e. TrainRoute->TrackCircuitEndpoint). and a union of all the
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possible relations between these kinds of signatures. Note that Fig. 15 only represents
two of the functions involving TrainRoute, but that these functions correspond to all
instances of TrainRoute.

Fields are normally used by modeling the relational join operator “.”, and these
static functions can be used in the same manner. E.g. by using relational join on a
TrainRoute and a function, representing a relation from the TrainRoute, the result will
be the related object defined by the function. Thus, implementing these functions does
not require big changes to other Alloy models using the signatures and fields. The
only change that may be needed is according to the name-collision of functions. Since
Alloy only has one namespace. function names need to be unique. Thus, if fields of
different signatures have the same name, the name of the functions, representing the
fields, have to be updated (i.e. names of functions trStart and trEnd in Fig. 15 are
updated because of name-collision with functions representing the Track fields in Fig.
1). The TCL dynamic semantics model, which uses the signatures and fields from the
static and instance semantics model, does not need to be updated if no name-
collisions occur,

abstract sig TrainRoute {}

Fig. 14. A TrainRoute defined by the static semantics (optimized)

one sig tr_LZ extends TrainRoute(}

fun trStart[]: TrainRoute->TrackCircuitEndpoint |
tr BI2->ep TCEl +
tr BIIl->ep_TCEl +
tr L2->ep TCEZ2Z +
tr_ Nl->ep TCE3 +
tr_M2->ep TCE4 +
tr Ol->ep TCES +
tr_AlIZ2->ep TCE6 +
tr AIIl->ep TCEG
}

fun trEnd[]: TrainRoute->TrackCircuitEndpoint {
tr BI2->ep TCE4 +
tr BIIl->ep _TCES5 +
tr_LZ->ep_StationA
tr_Nl->ep StationA
tr M2->ep StationC
tr Ol->ep StationC
tr AIZ2->ep TCEZ +
tr_AlTl->ep TCE3

+ o+ o+ o+

)

Fig. 15. Static functions defining the TrainRoute relations (optimized)

The results of running the simulations presented in Section 3 with the partial
instance optimization implemented are illustrated in Fig. 16 for the two-track station
and in Fig. 17 for the three-track station. Note that the number of variables and
clauses in are greatly reduced (i.e. the number of variables of the simulation of the
three-track station with 4 trains is reduced from 1M to 681k and the number of
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clauses is reduced from 3.5M to 2.1M). Also note that the analysis time is reduced
from about 8 minutes to about 40 seconds.

Executing "Run run$1 for exactly 19 State, 2 Train, 1 Station, 8 TrainRoute, 6 TrackCircuit, 8 Track, 10
Endpoint, 6 Signal, 4 Sliller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

79573 vars. 1146 primary vars. 219504 clauses. 3078ms.

Instance found. Predicate is consistent. 282ms.

Executing "Run run$1 for exactly 37 State, 4 Train, 1 Station, 8 TrainRoute, 6 TrackCircuit, 8 Track, 10
Endpoint, 6 Signal, 4 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni} Bitwidih=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

304117 vars. 3638 primary vars. 1022035 clauses. 12985ms.

Instance found. Predicate is consistent. 12033ms.

Fig. 16. Analysis effort with partial instances for simulation of two-track station

Executing "Run run$1 for exactly 19 State, 2 Train, 1 Station, 12 TrainRoute, 7 TrackCircuit, 11 Track, 14
Endpoint, 8 Signal, 5 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

176848 vars. 1507 primary vars. 462105 clauses. 6877ms.

Instance found. Predicate is consistent. 609ms.

Executing "Run run$1 for exactly 37 State, 4 Train, 1 Station, 12 TrainRoute, 7 TrackCircuit, 11 Track, 14
Endpoint, 8 Signal, 5 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

681795 vars. 4711 primary vars. 2100857 clauses. 31253ms.

Instance found. Predicate is consistent. 8937ms.

Fig. 17. Analysis effort with partial instances for simulation of three-track station

4.3  Subsetting

The last optimization we look at in this paper is the use of subsets of signatures to hint
about the number of instantiated objects. Since the analysis effort searching all
possible instances and discarding illegal solutions is huge, a hint about the number of
objects in the solution can reduce the effort by a large amount. E.g. if we know that a
TCL model contains eight TrainRoutes, this optimization involves making eight sub-
signatures of TrainRoute, where each signature only can be instantiated once (using
the one keyword in from of the sub-signature). This is illustrated in Fig. 13 and Fig.
15, where 1 L2 extends TrainRoute, and only one instantiation of tr L2 is allowed.
As for partial instances, subsetting requires the model to be partly fixed, and is
therefore in particular applicable when analyzing a given instance model.

We have chosen to use this optimization in this paper due to the analysis effort
without using it. Therefore the TCL instance semantics model extends the signatures
in the static semantics model and only allows them to be instantiated once. Omitting
the keyword one in the instance semantics model leads to the results illustrated in Fig.
18. This figure shows that the simulation performed in Section 3 with a two-track
station and two trains was not practically solvable, and was stopped after two hours of
generating the CNF.
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Executing "Run run$1 for exactly 19 State, 2 Train, 1 Station, 8 TrainRoute, 8 TrackCircuit, 8 Track, 10
Endpoint, 8 Signal, 4 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

Generating CNF ...

Solving Stopped.
(Stopped after 2 hours).

Fig. 18. Analysis effort without proper subsets for simulation of two-track station

5  Discussion

As we have seen in Section 4, optimizations of Alloy models can greatly reduce the
analysis effort required. In this paper, we have focused on applying these
optimizations to TCL models to illustrate how to use them. However, the
optimizations are not specific to TCL, but can be applied to Alloy models in general.
We have implemented these optimizations to examples in other domains with similar
results. Therefore, we believe that the results presented in this paper should apply for
examples in other domains.

The examples presented in this paper are used to illustrate how optimizations can
lead to reduced analysis effort. They illustrate that even with relatively small models
the analysis effort can be large. As we have seen, increasing the station models
slightly, i.e. adding another track, greatly escalates the analysis effort required. Using
a platform-specific SAT-solver can reduce the analysis time. However, the analysis
time and effort will grow exponentially when the model grows. Therefore,
optimizations of the Alloy models, which show huge potential, are significant for
being able to analyze larger models.

In Section 4 we presented the difference in analysis effort for each optimization.
We have combined the optimizations, leading to the results illustrated in Fig. 19 for
the two-track station and Fig. 20 for the three-track station. Note that the number of
variables and clauses are reduced even more than earlier when we applied only a
single optimization.

Executing "Run run$1 for exactly 19 State, 2 Train, 1 Station, 8 TrainRoute, 6 TrackCircuit, 8 Track, 10
Endpoint, 6 Signal, 4 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

46171 vars. 1146 primary vars. 154182 clauses. 1922ms.

Instance found. Predicate is consistent. 469ms.

Executing "Run run$1 for exactly 37 State, 4 Train, 1 Station, 8 TrainRoute, 6 TrackCircuit, 8 Track, 10
Endpoint, 6 Signal, 4 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

174025 vars. 3638 primary vars. 767623 clauses. 8984ms.

Instance found. Predicate is consistent. 21889ms.

Fig. 19. Analysis effort with optimizations for simulation of two-track station
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Executing "Run run$1 for exactly 19 State, 2 Train, 1 Station, 12 TrainRoute, 7 TrackCircuit, 11 Track, 14
Endpoint, 8 Signal, 5 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

68358 vars. 1507 primary vars. 248279 clauses. 3860ms.

Instance found. Predicate is consistent. 219ms.

Executing "Run run$1 for exactly 37 State, 4 Train, 1 Station, 12 TrainRoute, 7 TrackCircuit, 11 Track, 14
Endpoint, 8 Signal, 5 Stiller, 2 Building, 0 SLock, 0 Derailer"

Solver=minisat(jni) Bitwidth=4 MaxSeq=4 SkolemDepth=1 Symmetry=20

259255 vars. 4711 primary vars. 1268061 clauses. 18781ms.

Instance found. Predicate is consistent. 7469ms.

Fig. 20. Analysis effort with optimizations for simulation of three-track station

6 Related Work

The Alloy Analyzer performs analysis by translating the Alloy model to Kodkod
formulas, which are used to search for a solution. Kodkod allows several forms of
optimizations. such as symmetry breaking, partial instances etc. A comparison of
Kodkod and Alloy 3 (without Kodkod) is performed by Torlak and Jackson [15],
leading to the use Kodkod in Alloy 4. Torlak and Dennis [14] present Kodkod and its
optimizations, including partial instances on a sudoku example. They show the
difference between Alloy formulas and Kodkod formulas. However, their motivation
is to explain Kodkod, while in this paper we have focused on how to apply
optimizations to Alloy models and the concrete impacts on example models and
simulations.

Frias and Galeotti [4] present an optimization to the analysis of DynAlloy models.
DynAlloy is an extension to Alloy for adding dynamic properties (see [5]). The
optimization is based on dividing the objects into two sets, mutable (objects whose
state can change) and non mutable. They are thus able to reduce the scope necessary
to perform analysis. As a comparison, our paper is based on standard Alloy, and
present general optimizations for Alloy models.

7 Conclusion and Future Work

In this paper we have presented three optimizations to Alloy models, and shown that
the benefit of optimizing Alloy models is huge. We also discussed when and how to
apply the optimizations. Calculating all possible solutions and discarding the illegal
ones is quite expensive. Thus, reducing the complexity of expressions or specifying
directly the structure of the model being analyzed, through proper subsets or partial
instances, can lead to a large performance gain. This is especially important when the
models being analyzed grow in size, since then even changing to a more efficient
SAT-solver will not be beneficial enough. The optimizations were illustrated on
concrete TCL example models, showing the performance gains of performing the
simulations on these models.
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The optimizations have been applied to and evaluated by several TCL models and
models of other domains. Further study of the optimizations using larger models in
other domains is important future work. Other significant future work involves
analysis of Alloy models to automate the process of finding and suggesting how and
where to apply the optimizations.

Acknowledgements. The work presented here has been developed within the MoSi$
project ITEA 2 —ip06035 and the Verde project ITEA 2 — ip8020 parts of the Eureka
framework.
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