SINTEF

SINTEF ICT

Address:

P.0.Box 124, Blindern

0314 Oslo NORWAY

Localion:

Forskningsveien 1

0373 Oslo

Telephone:
Fax:

+47 22 06 73 00
+47 22 06 73 50

Enterprise No.: NO 948 007 029 MVA

SINTEF REPORT

TITLE

Improving Domain-Specific Languages by Analyzing,
Constraining and Enhancing Metamodels

AUTHOR(S)

Andreas Svendsen, @ystein Haugen, Birger Moller-Pedersen

CLIENT(S)

Research Project MoSiS and Research Project VERDE

REPORT NO. CLASSIFICATION CLIENTS REF.
SINTEF A21093|OPEN Research Council of Norway project nr. 180110/140 and 193264/140
CLASS. THIS PAGE 15BN PROJECT NO. NO. OF PAGES/APPENDICES
OPEN 978-82-14-04995-4 90B2497 and 90B274 - 25
ELECTRONIC FILE CODE PR ANAGER ( N) CHECKED BY (NAME, SIGN )

i Hauger Arnor S316&4
EL/E)A:)ODE DATE A ’,RO‘(/ED BY (N,i:ME, POSITION_8IGN.) : 7 éﬁ ot
N/A 2011-11-10 Bjern Skjellaug. Research Dir
ABSTRACT =

We present an approach for improving domain-specific modeling languages (DSML) by automatically
revealing unintended models and subsequently introducing constraints to disallow these. One purpose
with domain-specific modeling is to raise the level of abstraction by restricting application models to be
within a domain. A metamodel, describing the concepts of the language, will typically restrict the type of
concepts and how they are connected. However, these restrictions are not sufficient since the number of
possible illegal models can still be large. Using a formal definition of the static semantics, we generate
arbitrary models of a DSML. Based on these models, we show how to incrementally constrain the
language to prohibit unintended models. We provide a prototype implementation of the approach, and

we apply this prototype to an example in the train domain to illustrate the approach.

KEYWORDS ENGLISH NORWEGIAN
GROUP 1 Modeling Modellering
GROUP 2 Domain-Specific Modeling Domene-spesifikk modellering

SELECTED BY AUTHOR

Metamodeling

Metamodellering

Alloy

Alloy

Train Control Language

Train Control Language







Improving Domain-Specific Languages by Analyzing,
Constraining and Enhancing Metamodels

Andreas Svendsen'?, Gystein Haugen', and Birger Moller-Pedersen”

'SINTEF, Pb. 124 Blindern, 0314 Oslo, Norway
*Department of Informatics, University of Oslo, Pb. 1080 Blindern, 0316 Oslo, Norway
andreas.svendsen@sintef.no, oystein.haugen@sintef.no, birger@ifi.uio.no

Abstract. We present an approach for improving domain-specific modeling
languages (DSML) by automatically revealing unintended models and
subsequently introducing constraints to disallow these. One purpose with
domain-specific modeling is to raise the level of abstraction by restricting
application models to be within a domain. A metamodel, describing the
concepts of the language, will typically restrict the type of concepts and how
they are connected. However, these restrictions are not sufficient since the
number of possible illegal models can still be large. Using a formal definition of
the static semantics, we generate arbitrary models of a DSML, Based on these
models, we show how to incrementally constrain the language to prohibit
unintended models. We provide a prototype implementation of the approach,
and we apply this prototype to an example in the train domain to illustrate the
approach.

Keywords: Metamodel, domain-specific language, Alloy, Train Control
Language.

1 Introduction

Domain-Specific Modeling (DSM) has recently increased in popularity, since it
allows the developer to abstractly express a problem within a given domain by
making models in a language that is specific for the domain. It has been shown that
DSM techniques can increase efficiency of developing software systems [15]. A
system within the domain is modeled using a Domain-Specific Language (DSL),
which is tailored to the domain. The concepts of the domain are captured by a
metamodel, which can be instantiated as models in this DSL. Even though DSLs
usually are quite small, designing a DSL requires several iterations of improvement.
Is it possible to have these steps of improvement assisted by analysis tools?

Since the language is specific to a domain, we should only be allowed to define
meaningful models within the domain. However, the metamodel may not be
restrictive enough, and can consequently allow unintended models. On the other hand
it may be too restrictive, disallowing intended models. Identifying these weaknesses
of a metamodel is normally a manual and tedious process. In this paper we propose an
approach for revealing unintended models and identifying weaknesses of the
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corresponding metamodel. We use the Alloy Analyzer to generate solution models,
which are transformed to DSL models corresponding to a metamodel. These models
can reveal weaknesses of the metamodel in the form of unintended models. We then
discuss how to enhance and constrain the metamodel according to the identified
weaknesses. The approach is illustrated using a concrete example from the train
domain, where we incrementally constrain and enhance the metamodel in question.
Furthermore, the approach is realized by an implementation based on Eclipse and
Ecore, where Ecore metamodels are instantiated and subsequently constrained and
enhanced. Fig. 1 gives an overview of the approach, where we constrain the
metamodel to prohibit the possibility of creating unintended models.

Initial Metamodel Constrained
Metamodel Improver Metamodel
é-“-‘_;” \\‘\\\ “ |"
Intended | | Unintended Generated Intended
Models Models Instance Model Models

Fig. 1. Overview of the approach

The contribution of this paper is as follows: We give an approach for identifying
unintended models by automatically generating models corresponding to a
metamodel. We provide a mapping between an Ecore metamodel and Alloy, and
consequently a generic generation of an Alloy model from a metamodel. Furthermore,
we present how to generically produce a model in a DSL (that is a model according to
the metamodel of the DSL) from an Alloy solution model. In addition we discuss how
to identify the weaknesses of a metamodel, and subsequently how to enhance and
constrain it. A prototype implementation of the approach, including the translation of
constraints between Alloy and the Object Constraint Language (OCL), is also
discussed.

The outline of the paper is as follows: Section 2 gives background information
about DSM, the train DSL, Alloy and OCL. Section 3 describes the approach and
illustrates it on an example (train control DSL), while Section 4 gives details about
the Ecore implementation. Section 5 discusses weaknesses and strengths about the
approach, and also gives some added value of dynamic analysis. Section 6 presents
related work, and finally Section 7 gives some concluding remarks and future work.

2 Background

Before describing the approach, we first give background information to explain the
concepts and technologies used in this paper. We give details about domain-specific
modeling and how domain-specific modeling languages (DSML) are specified by
metamodels. Even though our approach is general, the discussion and implementation
use the Eclipse platform with Ecore [6] as a base. Then we introduce the example
from the train domain, which will be used throughout the paper. This is followed by
an introduction to Alloy and how it can be used to perform automatic analysis by
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means of its Analyzer tool. Since we use Ecore as a base when enhancing and
constraining the metamodel, we give an introduction to the Object Constraint
Language (OCL) [19].

2.1 Domain-Specific Modeling

Domain-specific modeling is a software engineering methodology for using models to
specify applications within a particular domain. The purpose of DSM is to raise the
level of abstraction by only using the concepts of the domain and hiding low level
implementation details. This is achieved by using three artifacts: A DSL. a code-
generator and a domain framework [15]. A DSL typically defines concepts and rules
of the domain using a metamodel for the abstract syntax, and a (graphical) concrete
syntax that resembles the way phenomena in the domain usually are depicted. Models
in the DSL are input to the code-generator, which generate product code according to
the domain framework.

A metamodel is a model which defines the abstract syntax of a DSL, which
corresponds to the concepts in a domain and how they are related. An example of a
metamodel is illustrated in Fig. 2a, where the concepts 4. B and C are represented by
class 4, B and C, respectively. These classes relate to each other by containment or
associations. Metamodels can be instantiated into models, and these models are then
models of applications in the domain. A model usually consists of two parts: The
model element objects in form of repository elements (abstract syntax tree) and the
graphical notation (concrete syntax). We will later see that we use both of these in the
example. Fig. 2b illustrates the model hierarchy described here.

a) b)

Domain

b formalize

1.* Metamodel

1 I c instantiate
¢ Model

0.1 generate

Source code

J( use
Framework

Fig. 2. Metamodel example and model hierarchy

There are several DSM environments available. Since the Eclipse Modeling
Framework (EMF) [6] is an open-source platform, this report will use EMF in the
discussion and example. However, the approach is not limited to the EMF platform.
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2.2 Train Control Language

Train Control Language (TCL) is a Domain-Specitic Modeling Language (DSML)
for modeling signaling systems on train stations. These are safety-critical systems,
and the purpose of TCL is to automate the production of interlocking source code.
This code ensures that only safe train movement is allowed. TCL raises the level of
abstraction by defining a graphical concrete syntax that is already familiar for domain
experts and thus hiding the implementation details. Domain experts without
programming or modeling experience can therefore design station models and
generate code from these station models.

TCL is defined by an Ecore metamodel, which captures all the significant concepts
of a station and how they are related (see Fig. 3). The topmost element in the TCL
metamodel is Station, which represents the station, containing the other elements, A
TrainRoute is the route a train must acquire to be able to move into or out of the
station. A TrainRoute consists of several TrackCircuits, which is a group of Tracks.,
where a train can be located. A Track can either be a LineSegment or a Switch, and
these are connected by Endpoints. An Endpoint can either divide two TrackCircuits
(TrackCircuitEndpoint) or be within a TrackCircuit (Middle Endpoint). A TrainRoute
starts at a TrackCircuitEndpoint with a connected MainSignal and ends at another
TrackCircuitEndpoint with a connected MainSignal in the same direction, The
concrete syntax of TCL is illustrated in Fig. 4. In addition TCL contains Stillers,
Buildings, other kinds of Signals etc. Note that Fig. 3 does not show attributes, data
types, and only a few association names. We refer to [27] and [7] for more
information about the details of TCL.

Station
\’,‘1..” \Lt‘]..* \!,'1..‘ \l;1.." xl/‘[.." \|,t“
] ¢ . start 1
TrainRoute | = TrackCircuit >  Track 4 . Endpoint Signal Building
171 0 1 first
I
" b 01 secons | [ 01
: 01 B _'JX I [% : [IX
stiller | P v |
> ; iddle o :
7 LineSegment | | Switch | Endpoint MainSignal Shunting
Porl Iy A Mg e
SLock TrackCircuit L\
[ Endpoint Distant
v o —>{ Manual Remote Ao ;4 Signal
; = Switch Switch : ‘
Derailer 0. Electrical
stat 1 Combined Divert Building
e Signal MainSignal —

Station
Building

Fig. 3. TCL metamodel excerpt
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TrackCircuit
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Fig. 4. The concrete syntax of TCL annotated by TCL concepts

The tool suite for TCL includes a graphical editor, code generator and a model
analyzer to support the modeling of train stations and generation of interlocking
source code. An illustration of the graphical editor with a model of a two-track station
with a side-track is shown in Fig. 5. This figure illustrates how a typical station looks
like. Note that the rectangles on top represent the TrainRoutes and TrackCircuits. The
TCL model analyzer is based upon a formal description of both the static and
dynamic semantics of TCL in Alloy. Dynamic simulation and checking of properties
of a station model are performed automatically by the Alloy Analyzer. For further
information about the analysis of TCL models, we refer to [26].
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Initially, the TCL metamodel does not contain any constraints other than the
association multiplicities in the metamodel. Thus the metamodel allows unintended
models. Since TCL describes a safety-critical domain, it is vital that only syntactically
and static semantically correct models are permitted.

2.3 Alloy

Traditionally, performing formal verification and validation of a computer system has
required the system to be precisely expressed in mathematical terms to be able to
prove the correctness of the system. There are languages and tool support (theorem
provers) that perform such analysis of computer systems [13]. However, complex
proofs cannot be fully automated, and they require assistance from an experienced
user. The required knowledge of mathematical techniques with their complex
notation, such as theorem proving, thus raises the threshold for performing analysis of
computer systems.

Alloy is a light-weight declarative language, based on first-order logic, which
offers automatic and incremental analysis through relational calculus [12]. It has been
shown that Alloy has simpler and more uniform notation to define the formal
semantics of a computer system than traditional formal methods [16]. Through the
Alloy Analyzer, automatic analysis can be performed without the need to carry out
proofs with complex mathematical notation. Unlike traditional theorem proving and
model checkers. the Alloy Analyzer only guarantees the correctness and completeness
of the result of the analysis up to a user-specified scope. This scope defines the
number of instantiated objects of each type. However, the small scope hypothesis
ensures that if a solution exists, it will be within a scope of small size [3].

An Alloy model typically consists of signatures. fields, facts, predicates and
assertions. A signature defines a type in the model. which can be instantiated into
objects. A type hierarchy of signatures can be defined by having a signature extending
another signature. A signature contains fields, which refer other signatures, such that
the instantiated objects can be related. Furthermore, a fact consists of a set of global
constraints that must always hold. A predicate consists of a set of constraints that
must hold if the predicate is processed. Finally, an assertion consists of constraints
that are claimed to hold.

The Alloy syntax is illustrated in Fig. 6, which defines a small Alloy model
corresponding to the metamodel in Fig. 2a. Signature 4 has two fields.  and ¢, which
refer at least one object of signature B and exactly one object of signature C
respectively. In addition, signature B also has a field referring to zero or one objects
of signature C. An implicit fact for both signature B and C defines that the object of B
and C has to be referred by exactly one object of A. This fact defines the containment
relation.

Alloy offers two kinds of analysis: Find a solution to a predicate or find a counter-
example to an assertion. Processing a predicate involves populating the signatures
with objects up to the defined scope, to find a solution where all the constraints in the
predicate and the global facts are satisfied. Alloy only guarantees that the solution
satisfies all the constraints, and does not guarantee that this is the optimal solution or
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that it holds any other kind of property. Similarly, finding a counter-example to an
assertion involves populating the signatures with objects up to the defined scope, to
find a model where the constraints in the assertion are not satisfied. The Alloy
Analyzer performs analysis by translating the Alloy model to first-order logic which
is used as input to a SAT solver. The result of the analysis is then translated back to
an Alloy solution model.

sig A {
b: some B,
c: one C

!

sig B |
c: lone C
}{one a:A | this in a.b}

sig C {
}{one a:4 | this in a.c]

Fig. 6. Example model in Alloy

2.4 Object Constraint Language

OCL is a formal declarative language for defining rules and constraints for models in
the Meta-Object Facility (MOF) [17]. OCL was originally developed for the Unified
Modeling Language (UML), which is defined by MOF. However, Ecore is the Eclipse
version of MOF, and consequently there are OCL implementations that support
Ecore. Thus, OCL can define constraints directly on Ecore metamodels, to restrict the
number of legal models according to the metamodel.

An OCL constraint is always defined within a context, such as a class. Since the
purpose of OCL originally was to constrain UML models, it can be used for several
purposes, e.g. specifying invariants on classes, pre- and post-conditions on operations
and constraints on operations. Since we concentrate on Ecore metamodels without
operations, we will apply invariants to the metaclasses.

Fig. 7 illustrates the concrete syntax of two invariants in OCL on the metamodel in
Fig. 2a. Both invariants specify class A as context. The first restricts the number of
contained B objects to be less than three, while the second specifies that for all
contained B objects, their referred C object has to be equal to the contained C object.

context A
inv: self.b->size() < 3

context A
inv: self.b->forAll(b:B | b.c = self.c)

Fig. 7. OCL example
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3 The Approach

To describe our approach, we first give a brief overview before we thoroughly
describe the three steps of the approach applied on TCL. The three steps include
generating models according to a metamodel, searching for unintended structures in
the models, and enhancing and constraining the metamodel.

3.1 Overview of the Approach

Our starting point is a metamodel for a particular DSL. The metamodel describes the
abstract syntax of the DSL, by capturing the concepts of the given domain and how
the concepts are related. The metamodel defines the set of legal models in the DSL, in
terms of model element object structures (that is objects and links between these).
Furthermore, the metamodel can be enriched with logical constraints which can
prohibit undesired structures. Constraints that describe the dynamic behavior of the
language can also be added (see Section 5).

The approach involves three steps: Step 1 of the approach generates a formal
definition (in Alloy) of the static semantics, based upon the metamodel, including
related constraints. We will name this definition the 4/loy model. The Alloy Analyzer
is then used to find a model satisfying the generated semantics, namely a solution
model. This solution model is transformed back into a model in the DSL, which can
be viewed by the DSL editor. Note that all parts of step 1 are performed
automatically. Step 2 involves using the generated DSL model to search for
unintended structures in the model. This is a manual step which requires domain
knowledge to distinguish the models that are unintended. Step 3 involves using this
knowledge to recognize how further enhancements and constraints can be applied to
the metamodel. Adding the constraints and enhancing the metamodel is performed
manually based on the knowledge from step 2. However, the added constraints can be
transformed automatically between Alloy and the metamodel constraint language.
The whole process, including the three steps, is depicted in Fig. 8. Note that step 1
and 3 are divided into sub-step 1.1, 1.2 and 1.3, and 3.1 and 3.2 respectively.

3.2 Generating Models

There are several means for finding weaknesses of a metamodel, e.g. analyzing the
metamodel to prove certain properties of it, and creating a number of models
according to the metamodel to reveal the weaknesses. Our approach focuses on the
latter technique. By studying a set of models the modeler can decide whether they
comply with the intention of the metamodel.

From Metamodel to Alloy Model

Metamodels represent concepts of a domain by classes, their attributes and
associations. Alloy can express complex structural constraints, These constraints can
be used to represent similar structures as the metamodel, such as using signatures to
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express the concepts, fields to express associations, facts to express constraints etc.
We have summarized the mapping between the elements in a metamodel and an Alloy
model in Fig. 9. This is based on the work by Kelsen and Ma and their comparison of
traditional formal methods and Alloy [16].

DSL Metamodel (Ecore) JL;:; Alloy Model
Transformation
abstract sig Track extends Element |
e A 3.1:
3.2 ! Add
Export OCL fi::; t:Track, eit.start, e2:t.end | e in e? ConStraints
; =
i " 2. - 1.2
' conformsTo Fix Solve /
% ofesiies VGenerate
DSL Model Alloy Solution Model
5L, Track Creut TrackCrout_5_0 ¥
& Track Oramt TrackCreuk_6_0
gmw LnsSegment_{_0 use
Hine Segroenk LineSegment_2_0
Line Segment LineSegment_3_0
Line Segmant LineSsgment_4_0 Y
Line Segment LineSegment, 5_0
Line Segment LineSegment_6_0 <
& Pacen o et S ;
liﬂtmﬂ_ emokeSwitch,_2_{ 13 :
m::mnmw_u Java ' R s L:___r =
Track Circuit Endooint TrackircuitEndooink_2_0 A
Tk Gret Endpokt TradCrestEndport 3.0 Transformation
Initialize / Arrange
W
DSL Diagram Model
i Note:
(ortreyd 20 enrepd 10 % o ;
ot g =gy, @ ! Steps 2 and 3.1 are performed manually
i Step 2 requires domain knowledge
o
E=lE ]
L

Fig. 8. Processes and artifacts of the approach

The transformation to an Alloy model is generic and transforms each class of the
metamodel to a signature, each association to a field within the corresponding
signature, and the association multiplicities to the corresponding Alloy multiplicities
(lone, some etc.). To illustrate the generation of an Alloy model, we have applied this
generator to the initial TCL metamodel (see Fig. 10). The hierarchy of the Alloy
model follows the hierarchy of the metamodel, with Station as the root element, For
each signature, we add a constraint for correctly representing containment
associations.
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Ecore Metamode] Alloy Model
Class Signature
Association Field

Signature E

EnumE(A, B, ...) | One Signature A extends E

One Signature B extends E
Attribute ---

Constraint (OCL) Fact

Fig. 9. Mapping between Ecore metamodel and Alloy model

one sig Station { trainRoutes: some TreinRoute, trackCircuitsInStation: some TrackCircuit,
tracksInStation: scme Track, buildings: set Building, endpcoints: some Endpoint,
signals: scme Signal, stillersInStation: set Stiller, sLocksInStation: set SLock,
derailersInStation: set Derailer]

sig TrainRoute { trackCircuits: some TrackCircuit, start: ome TrackCircuitEndpoint,
end: one TrackCircuitEndpoint, direction: one Direction}
{one st:Station | this in st.trainRoutes)

sig TrackCircuit | stillers: lone Stiller, tracks: some Track)
| one st:Station | this in st.trackCircuitsInStation]

sig Stiller {} {one st:Station | this in st.stillersInStation)

abstract sig Building [} {one st:Station | this in st.buildings)

sig StatBuilding extends Building ()

sig ElectricalBuilding extends Building ()

abstract sig Track { start: one Endpoint, end: one Endpoint}
{ one st:Station | this in st.tracksInStation)

sig LineSegment extends Track [derailer: lone Derailer)

abstract sig Switch extends Track [ cneSidePort: one MiddleEndpoint,
direction: one Direction, diversionDirection: one DiversionDirection}

abstract sig Endpoint { connectedMainSignal: lone MainSignal, first: lone Track,
second: lone Trackl { ome st:Station | this in st.endpoints)

sig TrackCircuitEndpoint extends Endpoint {

sig MiddleEndpoint extends Endpoint {

sig RemoteSwitch extends Switch {}

sig ManualSwitch extends Switch [}

abstract sig Signal {direction: one Directionl {one st:Station | this in st.signals)

sig MzinSignal extends Signal {)

sig DistantSignal extends Signal {maindistantSignal: some MainSignal)

sig Shunting extends Signal {)

sig CombinedSignal extends MainSignal {mainDistantSignal: some MzinSignal)

sig DiverthMzinSignal extends MainSignal {)

sig Derailer {} {one st:Station | this in st.derailersInStation)

sig SLock { lockDerailer: lome Derailer, lockSwitch: ome ManualSwitch}
{ one st:Station | this in st.sLocksInStation

abstract sig DataType {)

abstract sig Direction extends DataType {}

abstract sig DiversionDirection extends DataType {(}

one sig Left extends Direction {}

one sig Right extends Direction {)

one sig Up extends DiversionDirection {}

one sig Down extends DiversionDirection {}

pred showl)
run show for 20

Fig. 10. Initial Alloy model of TCL

Constraints may already be applied to the metamodel prior to the initial generation
of the Alloy model. OCL is a widely used constraint language for both UML and
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Ecore. These constraints may restrict the number of possible models according to the
metamodel, and should therefore also be translated to Alloy facts. Anastasakis et al.
[1] present a correspondence table between OCL and Alloy in their work on analyzing
UML models using Alloy. We use a subset of this correspondence table between OCL
and Alloy to make a small parser that parses OCL syntax and generates Alloy
constraints. Consequently, the restrictions already defined on the metamodel can be
transformed to also restrict the generated Alloy model. It is worth noticing that this
transformation is quite restricted and does not support full OCL.

From Alloy Model to DSL Model

Using the generated Alloy model as input, we invoke the Alloy Analyzer to produce
an arbitrary solution model satisfying the structure and constraints in the Alloy model.
Fig. 11 illustrates an arbitrary generated solution model from the Alloy model in Fig.
10. Note that the object diagram in the figure is used for illustration purposes, and the
details of it are not significant. The object diagram can be used to search for
unintended structures. However, it is a tedious process to study all the objects and
follow all the links to check the correctness of the model. Representing the model in
the syntax of the DSL itself is therefore important, and we consequently transform the
solution model into a DSL model according to the original metamodel.

Station

C Batio
frackgcits INGratiol SignaTs~.
butigi bul Track enfe HatARAes track “\%\ \\“-éﬂ na

&

(lsmsuumng "Eiacm:alﬂuildlng 1TmckCIr:um TrainRouta0 Tra:kCImE| LineSegment [Tra!anum] Cnmblnedalgnalri DlslamSiqnaFI 19rys
SrApGints tragkeffeunsingl =iy : ARG \ signals
s{ll\uls}f atian trackCircuits s ¥ trackCirc| “ﬁ't‘/ my Signal o
= stan "__l‘* Indis{aqysignal
n Y
Rignt [ 17 ITraekcmum J'nackcmunu A/ | TrackCireutie 1 )) L l i Ral
"\\ ﬁ{ i e <. iglagtSignal
stilfe \stlu ars s \ ks /,: ‘\:‘,.T'ﬁm— Tacksi gnmm al I ks rection
cipn
stiller RemoteSwitch Comhlnsdsmnaru mainDistantSlgnal (lesrmalnslgnal\} ﬂ v
hnsctadMainSianal u ey c
iy and fgersionDusction / mamDistantSignal - f
Bnesidepbn g /
Ry / '
Ty A v
( MiddisEndpointd ] |MIddieEndpaInﬁ Up Cnmblnadsiunzlz mainQistantSignal ,/m;u-:n /:uﬁg_/

direction e e / //-"
E

Fig. 11. Alloy solution model for TCL

To perform this transformation we require the user to import the metamodel to
extract information about all the necessary classes. This information is used to
instantiate the appropriate classes using dynamic EMF [24]. Dynamic EMF allows an
Ecore-based model to be built at runtime, without the need for implementation classes
from the metamodel. The transformation is divided into two steps: First the objects
are instantiated, and then the associations between the objects are specified properly.

Transforming an Alloy solution model for TCL yields a TCL model according to
the TCL metamodel. This TCL model only describes the model elements and their
properties. Since TCL is a language with a graphical syntax, the result ought to be
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shown using the graphical syntax. GMF provides the opportunity to initialize the
diagram based on the model, however, without specified position of the elements. The
TCL tool therefore includes functionality to arrange stations by calculating the
graphical positions of the elements on the diagram. The initial solution station yields
the arrangement result shown in Fig. 12.

DivertMainSignal_1 DivertMainSignal_2 DivertMainSignal_3 DivertMainSignal_4
(e'0] o0 o0 o0
ManSignal_6 MainSignal_7 MainSignal_8 MainSignal_9 DivertMainSignal_D
00 o0 000 OO0 o0
DistantSi@ﬁﬁﬁhﬂj@islgﬁt MainSignal_1 MainSignal_2 MainSignal_3
00 000 0O o000 000 oo
Trackdir
DivertMainSignal_!
o MainSignal_S
o000
MainSignal_4
o00
Station | |EL
Shunting_0

® & 6 & = -

Fig. 12. Initial TCL model

®

As expected, the figure demonstrates that we are able to use TCL to model clearly
irrational and unintended stations. This model basically contains a random set of
objects within the scope, with a random set of associations satisfying the metamodel.
The figure illustrates that there is a need for restricting how the model elements are
related to each other.

3.3 Finding the Issues

As illustrated in Fig. 12, the initial TCL metamodel (without constraints) allows
unintended TCL models to be created. By a careful examination of the generated
model, we can find the issues and constrain the metamodel to exclude them. We give
four steps on how to discover the issues leading to the unintended models. Note that
these four steps require domain knowledge to distinguish unintended structures in the
generated models.

The first step is to check the basic connectivity between the elements in the model,
to see if the model element objects are related as expected. The question is whether all
objects are referred and contained as expected for an intended model. For instance, a
model may have loops or indirect loops, even though this is not intended by the DSL
designer. E.g. TCL is not supposed to contain loops or indirect loops (other than
stations with more than one track, which are connected by switches). However, as
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illustrated in Fig. 12, a LineSegment is referring the same Endpoint for the s/art and
end association. Furthermore, a TrainRoute is always supposed to start at a
TrackCircuitEndpoint with a single connected MainSignal. Since the generated model
contains more than 10 MainSignals and only 1 TrackCircuitEndpoint, we can clearly
see that there are MainSignals without this connection.

The second step considers the meaning of the relations between objects in the
model beyond the relations between single objects. We search for semantic
duplication of objects, whether the references of referred objects are as intended and
whether values of data types are as expected. Semantic duplication of objects involves
having two or more objects referring the same set of objects. E.g. in TCL a
TrainRoute is supposed to start at one TrackCircuitEndpoint and end at another
TrackCircuitEndpoint. However, the TCL metamodel allows two TrainRoutes to start
and end at the same places, which is not intended. Furthermore, it is necessary to
confirm that the values of data-types are as intended. E.g. switches in TCL have a
direction, which can be LEFT or RIGHT.

The third step involves looking for the number of objects relative to each other. As
illustrated in Fig. 12, there are only one TrainRoute, but more than 10 MainSignals.
Since a TrainRoute starts at a TrackCircuitEndpoint with a connected MainSignal, the
number of MainSignals is restricted to be equal or less than the number of
TrainRoutes and the number of TrackCircuitEndpoints. It is worth noticing that by
constraining the connectivity of the objects in the previous steps, some of the number
issues may be implicitly solved.

The fourth step involves an overall view of a set of the generated models to see if
the metamodel is not restrictive enough, if it is too restrictive and whether it performs
as intended. We add restrictions that go beyond the constraints on single objects and
their references. An example in TCL is as follows: For each TrainRoute into a station
there must be a subsequent TrainRoute out of the station in the same direction.
However, these TrainRoutes are not directly related, and thus require constraints that
take the overall structure of the station into account.

To figure out whether the metamodel is too restrictive or not restrictive enough, we
use assertions to check certain properties. This allows us to check if models exist with
the asserted structures. If the metamodel allows such a structure, the Alloy Analyzer
returns a counter-example in the form of a model with this structure, which is
transformed to a DSL model.

Fig. 13 summarizes the steps in the approach. It begins with an initial DSL model,
suggests what to look for in each step, and ends with a final DSL model. For each
revealed issue, constraints should be added and the DSL model regenerated. The
intermediate models illustrated in the figure (e.g. Second model) are a fraction of all
the intermediate models generated during the procedure.

3.4 Enhancing and Constraining the Metamodel

Based on the issues revealed by following the procedure described in Section 3.3, we
enhance and constrain the metamodel incrementally. The result of the first part of the
approach is an Alloy model, which is used to generate solution models that are
transformed back to DSL models. Based on inspections of these DSL models
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performed by domain experts, issues with the metamodel are revealed. To solve these
issues, we add constraints to the Alloy model. We then generate a new solution model
that is transformed back to a DSL model. This procedure continues until we have
walked through the process of revealing issues, and are thus satisfied with the
generated models. Then we transform the constraints, represented in Alloy, to
constraints in the metamodel constraint language. In this approach we have used
Ecore as a base, and thus we provide a translation from Alloy constraints to OCL
constraints. As we will see in Section 4, DSL models can be validated to ensure that
they satisfy the inserted constraints.

Approach for Identifying Metamodel Issues
b5 Inilial Check for connectivity of Check for loops and Second
2 model containment and associations ’ indirect loops ! model
w
z

o Second Check for semanlic Check that references of Check values Third

_% model dublication of abjects referred objects are correct of data fypes model
7]

2 Third / | Check the relative " ./ Fourth
2 model 7| number of objects i '/ model
(7]

by Fourth .| Check if metamodel is Check if metamodel is ‘ Final

& model 7| restrictive enough too restriclive " model
@

Fig. 13. Approach for identifying metamodel issues

Adding constraints to a DSL is not trivial, and this approach requires that the DSL
developer is either familiar with Alloy or the metamodel constraint language (e.g.
OCL). With Alloy knowledge the constraints can be directly added to the Alloy
model, and later transformed to the metamodel constraint language. With only
knowledge of the metamodel constraint language, specified constraints have to be
transformed to Alloy before the generation of solution models. Whether to use Alloy
or OCL to define the constraints is dependent on the preference of the developer.

We follow the procedure from Section 3.3 to add constraints to the initial Alloy
model. Fig. 14 shows a list of the constraints we have added to TCL. We will only
show the implementation and result of adding some of them.

The first step in the procedure is to define constraints to improve the connectivity
of the elements in Fig. 12. We show two constraints that have been added to improve
how the objects are related (see Fig. 15). The first Alloy constraint ensures that all
MainSignals are placed at the start of a TrainRoute. In other words, for all
MainSignals, there exist at least one TrainRoute which is connected to this
MainSignal through its start TrackCircuitEndpoint. The second constraint guarantees
that we do not have any direct loops of Tracks. In other words, no Track exists such
that start and end refer the same objects.
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Step 1:

Stiller can only be referred by one TrackCircuit.

Track can only be referred by one TrackCircuit.

MainSignal can only be referred by one TrackCircuitEndpoint.
ManuelSwitch can only be referred by one SLock.

Derailer can only be referred by one LineSegment.

Derailer can only be referred by one SLock.

TrainRoute start/end should refer different Endpoints.
Correspondance between the references between Endpoint and LineSegment.
Correspondance between the references between Endpoint and Switch.
Track start/end should refer different Endpoints.

Endpoint first/second should refer different Tracks.

DistantSignal and referred MainSignal have the same direction.
CombinedSignal and referred MainSignal have the same direction.
CombinedSignal should not refer itself.

All MainSignals are referred from a TrainRoute start.
MiddleEndpoint should not refer a MainSignal.

= = <R =R - =

Step 2:

Specify the left side of the station.

Specify the right side of the station.

TrackCircuitEndpoints should divide a TrackCircuit.

MiddleEndpoints should not divide a TrackCircuit.

Only one TrainRoute can start and end at a given place.

All TrackCircuits must be connected in a TrainRoute.

The TrackCircuits after TrainRoute start and before TrainRoute end
are in the TrainRoute.

Correspondance between the direction of Switch pairs.

Step 3:

The number of TrainRoutes is restricted to 4, and 4 more per
RemoteSwitch pair.

Maximum two buildings per Station.

Step 4:

An ingoing TrainRoute is ending at the same place as another cutgoing
TrainRoute is starting.

MiddleEndpoint should have a LineSegment in one end.

Fig. 14. TCL constraints

After adding a few of the constraints in step 1 in Fig. 14 we generate a new
solution model which is transformed into a DSL model. From this DSL model the
diagram is initialized and the station arranged. The result is illustrated in Fig. 16,
where we can see that there are e.g. no loops and all MainSignals are referred by a
TrainRoute through a TrackCircuitEndpoint. However, there are still some challenges
with the connectivity and the relative number of objects. For instance, there are
several Endpoints without any Tracks between them, and the number of TrainRoutes,
DistantSignal (signals at the top left) and Endpoints are relatively high. Furthermore,
when arranging the station in TCL, we get a message telling us that the algorithm
could not find the left or right ends of the station.
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fact {
all ms:MainSignal {
some tr:TrainRoute | tr.start.connectedMainSignal = ms
}
'
fact {
no t:Track, e:t.start, eZ:t.end | e = &2

}

Fig. 15. All MainSignals starts a TrainRoute and no direct loops of Tracks
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Fig. 16. Second version of the generated TCL model

Even though it may be quite clear for a modeler that an Endpoint to the left on the
diagram is the left of the station, the model does not have a precise definition of the
left or right ends of the station. Therefore, there is no general possibility for
expressing how the left and right side of the station should be by using constraints.
Consequently, we have extended the TCL metamodel to also define the left and right
sides of the station by adding two associations, left and right, from Station to
TrackCircuitEndpoint.

After adding the rest of the constraints in the first step, in addition to the left and
right associations (step 2), we end up with the station illustrated in Fig. 17. We can
identify the left and right of the station and the objects seems to be related. However,
there are only three TrackCircuits (squared boxes), while there are five Tracks that are
divided by TrackCircuitEndpoints. We therefore continue with the next step, to
identify the meaning of the relations between objects in the model. Note that the
model illustrated in the figure is smaller than the previous generated model, because
Alloy generates arbitrary models.

Continuing further on the second step, we add constraints for correctly dividing the
Tracks into TrackCircuits (see Fig. 18). This constraint uses TrackCircuitEndpoints to
divide TrackCircuits. In other words, for all TrackCircuitEndpoints except the left and
right side of the station, there exist one TrackCircuit 7c and one TrackCircuit f¢2, such
that the Track to the left of the TrackCircuitEndpoint is related to #c, and the Track to
the right of the TrackCircuitEndpoint is related to 1c2.
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Fig. 17. Third version of the generated TCL model

fact {
all st:Station, tce:TrackCircuitEndpoint - st.left - st,right {
one tc, tc2:TrackCircuit {
toe.. first i fd.vracks
tce.second in tcZ2.tracks

Fig. 18. Divide TrackCircuits correctly

Adding the other constraints of the second step, and also implementing the
constraints in the third step, yields the model illustrated in Fig. 19. As we can see, the
number of objects and the structure now seems to be more as expected. There is,
however, a gap between the two Switches. Furthermore, the MainSignals are not
correctly placed, as can be seen from the left side of the station where two
MainSignals are placed after each other. Thus, the TrainRoutes are not starting at the
right places. We therefore follow the procedure in the fourth step and add a couple of
more constraints to properly connect ingoing and outgoing TrainRoutes, such that an
outgoing TrainRoute starts where an ingoing TrainRoute ends. The result of adding
these constraints is illustrated in Fig. 20, which finally seems to be a reasonable
station model.

When the fourth step, with several iterations, is finished, the constraints can be
transformed and appended to the metamodel. We use a subset of the correspondence
table from [1] to define a small parser, which parses Alloy syntax and generates OCL
constraints. Note that we only use parts of the correspondence table, since one
statement in Alloy can be translated to more than one kind of statement in OCL (e.g.
Alloy statements with the iz construction). Also notice that we have extended the
table with two statements to support the Alloy quantifiers one and lone (see Fig. 21).

The transformed OCL version of the first constraint in Fig. 15 and the constraint in
Fig. 18 is illustrated in Fig. 22. In Section 4 we show how these constraints can be
added to an Ecore metamodel to constrain the models accordingly.
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Fig. 19. Fourth version of the generated TCL model
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Fig. 20. Final version of the generated TCL model
OCL Expression Alloy Expression

col ->exists(obj|exp)=>size()=1 [one obj:col|exp

col -> exists(obj | exp)->size() <=1 |lone obj:col|exp

Fig. 21. Extra mapping between OCL and Alloy

context Station
inv: self.signals->select(s | s.oclIsKindOf(MainSignal))-> forAll (ms |
self.trainRoutes—>exists(tr | tr.start.connectedMainSignal = ms))

context Station

inv: self.endpoints->select(ep | ep.ocllsTypeOf(TrackCircuitEndpeoint))->
excluding(self.left)-> excluding(self.right)->forAll(tce |
self.trackCircuitsInStation—> exists(tc | self.trackCircuitsInStaticn->
excluding(tc)-> exists(tc2 |
includes (tce.second) }->size() = 1)->size() = 1)

Fig. 22. OCL constraints

tec.tracks->includes (tce.first) and tc2.tracks->
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4 Implementation

The approach for improving metamodels is generic, however, the discussion and
implementation in this paper is based on the Eclipse platform and Ecore. We have
implemented a prototype to support the approach as an Eclipse plug-in. This plug-in
supports generic generation of Alloy models from Ecore metamodels (with OCL
constraints), generic generation of DSL models from an Alloy model and
transformation of Alloy constraints to OCL. This prototype plug-in therefore supports
the procedure defined in Section 3.

The generation of an Alloy model from an Ecore metamodel is implemented in
Java using the EMF Framework. By traversing all classes, associations and data-
types, we generate equivalent Alloy signatures, fields and implicit facts. In addition,
the OCL constraints in the metamodel are parsed and translated to Alloy. This is,
however, a restricted parser to show the feasibility of this transformation, and does
not consider the full OCL language. The plug-in extends the popupMenus extension
point to extend the Eclipse user interface with a new menu item for initiating the
generation of Alloy models. Fig. 23 illustrates this user interface integration when
selecting an ecore-metamodel. The result of this generation is a new file containing
the generated Alloy model.
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Fig. 23. Interface for generating Alloy model

The Alloy model can be enhanced with constraints according to the procedure
discussed in Section 3. Furthermore, the tool allows the user to select an Alloy model
for generating a DSL model (see Fig. 24). The Alloy Analyzer is then invoked and the
solution model is traversed to extract all the objects and how they are related. The tool
uses dynamic EMF [24] to instantiate the proper objects based on the Alloy model
and the Ecore metamodel. Note that this generates a repository model, and if the DSL
has a graphical syntax, the diagram model has to be initialized using the DSL tools.
TCL provides tool support for initializing the diagram model and arranging stations.

Using the user interface provided by the tool, OCL constraints can be exported
from an Alloy model. The result of exporting the OCL constraints is a file with the
constraints listed. These constraints can then be appended to the context element in
the Ecore metamodel using the OCL for Ecore plug-in [20]. Regenerating the model
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code for the editor will then yield validation code for automatic validation of DSL
models. E.g. TCL models can be validated, where a violation of a constraint will yield
an error message (see Fig. 25).
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Fig. 24. Interface for generating DSL models and OCL constraints
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Fig. 25, Violation of an OCL constraint in an EMF editor

5 Discussion

The approach described in this paper relies on the generation of arbitrary models to
uncover unintended characteristics of a metamodel. A DSL designer would typically
design the metamodel with the most obvious constraints. This approach is then useful
to reveal further restrictions needed on the metamodel. Even though the approach
does not guarantee that all issues will be solved, the generation of models is generic
and automatic, and thus several models can be generated to maximize the probability
of finding important constraints. Furthermore, since the models are arbitrarily created,
there is no user-knowledge to guide the construction of the model, leading to a higher
possibility of generating an unintended model. Our experience shows that during the
procedure of improving the TCL metamodel, a great majority of the generated models
are not as intended, even after adding a large amount of constraints. The approach can
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therefore assist the developer to improve the metamodel, but will not guarantee an
optimal result.

Another concern is that specifying constraints in Alloy, or in another constraint
language, is not trivial. However, the need for expressing constraints on languages is
inevitable, and whether to use Alloy or the metamodel constraint language (e.g.
OCL), depends on the preference of the developer. We provide a transformation
between a restricted set of Alloy and a restricted set of OCL to avoid forcing the use
of one of them. The approach allows the developer to generate models automatically,
such that the developer can experiment with the effect of different kinds of
constraints. This can increase the confidence in the added constraints.

The Alloy Analyzer will find and return a solution model satisfying all the
constraints in the model. It is, however, possible to add constraints that are
conflicting, such that no legal model can be instantiated. The approach described in
this paper encourages incremental constraining and enhancement of the metamodel,
meaning that models should be generated for each added constraint. Modifying the
most recent added constraints can therefore solve this issue. Another concern is when
over-constraining leads to a subset of the intended models being prohibited. In this
case, we suggest the use of assertions to confirm that some characteristics of the
metamodel still are permitted.

Alloy is based on first-order logic and the Alloy Analyzer will search for all
possible solutions within the user-specified scope. When the DSL models grow in
size, this scope becomes larger and the number of possibilities grows exponentially.
Optimizing the Alloy model by reducing the complexity of the expressions and using
partial instances, which involves using constant functions to resolve associations, can
reduce the analysis time needed. However, such optimizations should be used with
care, since they can implicitly restrict the associations in the model.

In this paper we have applied the approach to TCL, which has a graphical nature.
The approach has proved to be useful for this DSL, and we expect that it has similar
effect on other graphical and textual DSLs. However, case-studies using the approach
in other DSLs in other domains are necessary for confirming this expectation. Yet, we
do not see big differences between TCL and other DSLs that will significantly affect
the usefulness of this approach.

We have so far concentrated on the use of the static semantics of the DSL.
Svendsen et al. [26] propose an approach for performing simulations and dynamic
analysis of TCL models. They propose a formalization of the static and dynamic
semantics of TCL in Alloy. The dynamic semantics defines a state-machine by
defining a set of states and how the properties of a station change in the transition
between each state. The Alloy Analyzer is used to find a trace through the state-
machine for a particular behavior of the station.

We see an added value of using such dynamic semantics to further validate the
generated solution models and thus the metamodel. The generated solution models
can then be simulated or analyzed using the dynamic semantics. Other issues with the
metamodel can be discovered than for the pure static analysis. However, this requires
the developer to use Alloy to model the dynamic semantics of the DSL, which is not a
trivial task. Our experience from the TCL example shows that this can be a useful
fifth step of the approach.



22  A. Svendsen, @. Haugen, and B. Moller-Pedersen

6 Related Work

Herrmannsdoerfer et al. [11] present an approach for improving metamodels by
analyzing a large set of models to gather information about the usage of the
metamodel concepts. Based on the metamodel expectations, defined automatically
and manually, the information is used to suggest metamodel improvement. While they
use statistics gathered from a set of models, based on user experience, to suggest
improvements, our approach generates models automatically to reveal necessary
improvements. Thus, our approach does not rely on a large set of models being
manually created.

Gogolla et al. [10] present an approach for generating snapshots (an instance model
at a given position in a trace) of UML models. They extend the UML Specification
Environment (USE) with the language ASSL (A Snapshot Sequence Language) for
automating the generation of snapshots based on some specified properties. They use
the snapshots to test the UML models, with corresponding OCL. Their approach
requires the user to specify procedures for how to generate the objects and links using
ASSL. Our approach generates models automatically, and is not limited to UML.

Sen et al. [22] propose an approach for extracting a required subset of a large
metamodel. Based on a large metamodel and a set of required classes and properties,
their algorithm finds all mandatory dependencies between the required concepts, and
generates an output metamodel with only these concepts. Our approach is more
general, and is concerned with restricting the metamodel to avoid unintended models.

Instead of suggesting improvements to a particular metamodel, some works discuss
guidelines to follow when developing metamodels. Kelly and Pohjonen [14] discuss
common pitfalls of domain-specific modeling and guidelines to follow to avoid them.
Kelly and Tolvanen [15] give a thorough introduction to domain-specific modeling.
They discuss the fundamentals of domain-specific modeling and present several
examples of how domain-specific modeling can be applied.

There are several works concerned with the generation of models according to a
metamodel. Anastasakis et al. [1] transform UML models, with OCL constraints, to
Alloy to perform automatic analysis on these models. They provide a mapping
between UML and Alloy using a UML profile, and between OCL and Alloy, and a
tool prototype. Shah et al. [23] extend the approach with a transformation of Alloy
solution models to UML object models, which correspond to the original UML class
diagram models. In comparison, our approach considers general metamodels, and
offers a generic transformation between the metamodel and Alloy and back to the
model corresponding to the metamodel. Furthermore, our approach does not focus on
the analysis of UML models, but rather on metamodel improvement. Note that our
implementation of the transformation between OCL and Alloy is based on the
mapping presented in their work.

Ehrig et al. [5] introduce an approach for generating instance models using
instance-generating graph grammars, They derive graph grammar rules from the
metamodel, to create an instance of each class and associations between them. These
rules are executed an arbitrarily number of times to get all possible models within a
certain scope. Their work has been extended by Winkelmann et al. [29] to support a
restricted set of OCL. Instead of formulating graph grammar rules, we transform the
metamodel into an Alloy model, and execute the Alloy Analyzer to generate models.
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This also gives opportunities to perform other kinds of analysis, such as checking for
certain properties of the metamodel by defining assertions or dynamic simulations.

Sen et al. [21] present an approach for automatically generating models for black-
box testing. They transform a metamodel to Alloy, generate solution models, both
random and guided models, and transform these models back to the DSL for use as
input in black-box testing. Their approach is similar and performing many of the same
steps as our approach. However, our approach is concerned with improvements of
metamodels, and thus also gives a procedure for how to identify unintended models
and subsequently improve the metamodel.

Mougenot et al. [18] address the challenge of validating industrial tools and
approaches. They suggest an approach, which is based on the Boltzmann method, for
generating huge metamodel instances for this purpose. However, even though our
approach also generates metamodel instances, it presents the instance model for
inspection, such that flaws in the metamodel can be detected and improved.

There are several other works using Alloy for analysis of models and metamodels.
Wegmann et al. [28] define a metamodel in Alloy to validate the models created by
their tool. Van Der Straeten [25] uses Alloy to analyze UML models to find
inconsistencies. Kelsen and Ma [16] present a comparison between traditional
techniques and an Alloy approach for formalizing modeling languages. Georg et al.
[8] give a comparison between the application of Alloy and OCL. Baresi and
Spoletini [4] propose an approach for using Alloy to analyze graph transformation
systems. Anastasakis et al. [2] describe an approach for using Alloy to analyze a
model transformation and the well-formedness of the target model. Gheyi et al. [9]
specify a theory for feature models in Alloy.

7 Conclusion and Future Work

This paper has presented an approach for improving DSLs by revealing unintended
models, and subsequently improving the constraints and enhancements of the
metamodels. We use Alloy to generate models corresponding to a metamodel, give a
procedure for identifying unintentional models and show how to further constrain and
enhance the metamodel. The approach has been demonstrated on an example DSL
from the train domain, the Train Control Language. Furthermore, we walked through
a prototype supporting our approach, before we discussed the approach and presented
related work.

Performing case studies on other examples in other domains is important as future
work to further evaluate the approach. We also see that an analysis of constraints may
suggest metamodel improvements based on constraint patterns, which will be tried
out in future work. For instance if a constraint restricts the use of an association, this
association should probably be re-factored in the metamodel. Furthermore,
automation of the search for unintended models, and a framework for simpler
specification of constraints would be beneficial. Extension of the transformation
between Alloy and OCL is also valuable future work.
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