SINTEF

Report

Traceability Handling in Model-based
Prediction of System Quality |

Authors
Aida Omerovic
Ketil Stelen

SINTEF ICT
Networked Systems and Services
2011-07-22

SINTEF

SINTEF IKT

SINTEF ICT R P p 0 l"t

Address:

Postboks 124 Blindern
NO-0314 Oslo
NORWAY

Telephone:+47 73593000

Telefax+47 22067350 Traceab[l[tu Handling in MOdBl-baSEd

postmottak.IKT@sintef.no

Eeose NATNo Prediction of System Quality

NO 948 007 029 MVA

revwll RC_’S‘ VERSION DATE
Traceability, 1.0 Final approved version 2011-07-22
System quality prediction,
Modeling,

Architectura! design,
Change impact analysis,

AUTHOR(S)
Aida Omeravic
Ketil Stalen

Simulation
CLIENT(S) CLIENT'S REF.
Research Council of Norway 180052/570
PROJECT NO. NUMBER OF PAGES/APPENDICES:
g0B245 2212
ABSTRACT
Abstract heading

Our earlier research indicated the feasibility of the PREDIQT method for model-based prediction
of impacts af architectural design changes, on the different quslity characteristics of & system.
The PREDIQT method develops and makes use of a multi-layer madel structure, called
prediction models. Usefulness of the prediction models requires a structured documentation of
both the relations between the prediction models and the rationale and assumptions made
during the model development. This structured documentation is what we refer to as trace-link
information. In this paper, we prapose a traceability scheme for PREDIQT, and an implementation
of it in the form of a prototype tool which can be used to define, document, search for end
represent the trace-links needed. The solution is applied on prediction models from an earlier
PREDIQT-based analysis of a real-life system. Based on a set of success criteria, we argue that
our traceability approach is useful and practicslly scalable in the PREDIQT context.

PREPARED BY NATURE
Aida Omerovic < CQ”A(Z
: R%% \

CHECKED BY SIGNATURE
Bjarnar Solhaug %
APPROVED BY IGNATURE

Bjern Skjellsug

REPORT NO. ISBN CLASSIFICATION

SINTEF A19348 978-82-14-04978-4 Unrestricted Arestricted”

2of 22

SINTEF

Document history

VERSION DATE VERSICON DESCRIPTION

0.1 2017-05-01 First draft version

0.2 2011-06-01 Complete draft version

1.0 2011-07-22 Final approved version

PROJECT ND. REPORT NO, VERSION JiF 3D

LUEZHS SINTEF A19348 10 Final approved version

I Introduction
11 Background on traceability
I The challenge
1HI-A Structure of the prediction models . .
[11-B Success criteria, ...
IV Our solution
IV-A Traceability scheme
IV-B Prototype traceability tool
v Applying the solution on an example
V1 Why our solution is a good one
VI-A Success Criterion 1
VI-B Success Criterion2
VI-C Success Criterion 3
VI-D Success Criterion 4
VII Why other approaches are not better in this
context

CONTENTS

VIII Conclusion and future work

References

Appendix 1: An overview of the PREDIQT method

Appendix 2; Guidelines for application of prediction

models

12
12
12
12
12

Traceability Handling in Model-based Prediction of System Quality

Aida Omerovic*T and Ketil Stplen*t
*SINTEF ICT, Pb. 124, (0314 Oslo, Norway
TUn.iversit)’ of Oslo, Department of Informatics, Pb. 1080, 0316 Oslo, Norway
Email: {aida.omerovic,ketil.stolen} @sintefno

Abstract—Our earlier research indicated the feasibility of
the PREDIQT method for model-based prediction of impacts of
architectural design changes, on the different quality character-
istics of a system. The PREDIQT method develops and makes
use of a multi-layer model structure, called prediction models.
Usefulness of the prediction models requires a structured
documentation of both the relations between the prediction
models and the rationale and assumptions made during the
model development. This structured documentation is what we
refer to as trace-link information. In this paper, we propose a
traceability scheme for PREDIQT, and an implementation of
it in the form of a prototype tool which can be used to define,
document, search for and represent the trace-links needed.
The solution is applied on prediction models from an earlier
PREDIQT-based analysis of a real-life system. Based on a set
of success criteria, we argue that our traceability approach is
useful and practically scalable in the PREDIQT context.

Keywords-traceability; system quality prediction; modeling;
architectural design; change impact analysis; simulation.

1. INTRODUCTION

We have developed and tried out the PREDIQT method
[1] |2] aimed for predicting impacts of architectural design
changes on system quality characteristics and their trade-
offs. Examples of quality characteristics include availability,
scalability, security and reliability.

Important preconditions for model-based prediction are
correctness and proper usage of the prediction models. The
process of the PREDIQT method guides the development
and use of the prediction models, but the correctness of the
prediction models and the way they are applied arc also
highly dependent on the creative cffort of the analyst and
his/her helpers. In order to provide additional help and guid-
ance to the analyst, we propose in this paper a traceability
approach for documenting and retrieving the rationale and
assumptions made during the model development, as well
as the dependencies between the elements of the prediction
models.

The approach is defined by a traceability scheme, which
is basically a feature diagram specifying capabilities of the
solution and a meta-model for the trace-link information. A
prototype tool is implemented in the form of a relational
database with user interfaces which can be employed to
define, document, search for and represent the trace-links
needed. The solution is illustrated on prediction models from
an earlier PREDIQT-based analysis conducted on a real-life

system [3]. We argue that our approach is, given the success
criteria for traceability in PREDIQT, practically useful and
better than any other traceability approach we are aware of.

The paper is organized as follows: Section Il provides
background on traceability. The challenge of traceability
handling in the context of the PREDIQT method is char-
acterized in Section I1l. Our traceability handling approach
is presented in Section 1V, Section V illustrates the approach
on an example. Section V] argues for completeness and
practicability of the approach, by evaluating it with respect
to the success criteria. Section VII substantiates why our
approach, given the success criteria outlined in Section III,
is preferred among the alternative traceabilily approaches.
The concluding remarks and future work are presented in
Section VIII. An overview of the PREDIQT method is
provided in Appendix 1. Guidelines for application of both
the prediction models and the trace-link information are
provided in Appendix 2.

II. BACKGROUND ON TRACEABILITY

Traceability is the ability to determine which documenta-
tion entities of a software system are related to which other
documentation entities according to specific relationships
[4]. IEEE [5] also provides (wo definitions of traceability:

1) Traceability is the degree to which a relationship

can be established between two or more products of
the development process, especially products having
a predecessor-successor or master-subordinate rela-
tionship to one another; for example, the degree (o
which the requirements and design of a given software
component match.

2) Traceability is the degree to which each element in

a software development product establishes its reason
for existing.

Traceability research and practice are most established in
fields such as requirements engineering and model-driven
engineering (MDE). Knethen and Paech [4] argue: “De-
pendency analysis approaches provide a fine-grained impact
analysis bur can not be applied to determine the impact
of a required change on the overall software system. An
imprecise impact analysis results in an imprecise estimate of
costs and increases the effort that is necessary to implement
a required change because precise relationships have 1o be
identified during changing. This is cost intensive and error

prone because analyzing the software documents requires
detailed understanding of the software documents and the
relationships between them.” Aizenbud-Reshef et al. [6]
furthermore state: “The extent of traceability practice is
viewed as a measure of system quality and process maturity
and is mandated by many standards™ and “With complete
traceability. more accurate costs and schedules of changes
can be determined, rather than depending on the programmer
lo know all the areas that will be affected by these changes™,

IEEE [5] defines a trace as “A relationship between two
or more products of the development process.” According to
the OED [7], however, a trace is defined more generally as
a “(possibly) non-material indication or evidence showing
what has existed or happened”. As argued by [8]: “If
a developer works on an artifact, he leaves traces. The
software configuration management system records who has
worked on the artifact, when that persoen has worked on it,
and some systems also record which parts of the artifacts
have been changed. But beyond this basic information, the
changes themselves also reflect the developer’s thoughts and
ideas, the thoughts and ideas of other stakeholders he may
have talked to, information contained in other artifacts. and
the transformation process that produced the artifact out of
these inputs. These influences can also be considered as
traces, even though they are usually not recorded by software
configuration management systems.”

A traceability link is a relation that is used to interrelate
artifacts (e.g., by causality, content, etc.) [8]. In the context
of requirements traceability, [8] argues that “a trace can in
part be documented as a set of meta-data of an artifact (such
as creation and modification dates, creator, modifier, and
version histery), and in part as relationships documenting
the influence of a set of stakeholders and artifacts on an
artifact. Particularly those relationships are a vital concept
of traceability, and they are often referred to as traceability
links. Traceability links document the various dependencies,
influences, causalities, etc. that exist between the artifacts. A
traceability link can be unidirectional (such as depends-on)
or bidirectional (such as alternative-Tor). The direction of a
link, however, only serves as an indication of order in time or
causality. It does not constrain its (technical) navigability, so
traceability links can always be followed in both directions”.

In addition to the different definitions, there is no com-
monly agreed basic classification [8]. A taxonomy of the
main concepts within traceability is suggested by [4].

An overview of the current state of traceability research
and practice in requirements engineering and model-driven
development is provided by [8], based on an extensive
literature survey. Another survey [9] discusses the state-of-
the-art in traceability approaches in MDE and assesses them
with respect to five evaluation criteria: representation, map-
ping, scalability, change impact analysis and tool support.
Moreover, Spanoudakis and Zisman [10] present a roadmap
of research and practices related to software traceability

6

and identify issues that are open for further research. The
roadmap is organized according to the main topics that have
been the focus of software traceability research.

Traces can exist between both model- and non-model
artifacts. The means and measurcs applied for obtaining
traceability are defined by so-called traceabilily schemes. A
traceability scheme is driven by the planned use of the traces.
The traceability scheme determines for which artifacts and
up o which level of detail traces can be recorded [8]. A
traceability scheme thus defines the constraints needed to
guide the recording of traces, and answers the core ques-
tions: what, who, where, how, when and why. Additionally,
there is tacit knowledge (such as why), which is difficult 1o
capture and to document. A traceability scheme helps in this
process of recording traces and making them persistent.

As argued by [6], the first approach used to express
and maintain traceability was cross-referencing. This in-
volves embedding phrases like “see section x™ throughout
the project documentation. Thereafter, different techniques
have been used to represent traceability relationships in-
cluding standard approaches such as matrices, databases,
hypertext links, graph-based approaches, formal methods,
and dynamic schemes [6]. Representation, recording and
maintenance of traceability relations are by Spanoudakis
and Zisman [10] classified into five approaches: single
centralized database, software repository, hypermedia, mark-
up, and event-based.

According to Wieringa [11], representations and visual-
izations of traces can be categorized into malrices. cross-
references, and graph-based representations. As elaborated
by Wieringa, the links, the content of the one artifact,
and other information associated with a cross reference, is
usually displayed at the same time. This is however not the
case with traceability matrices. So, compared to traceability
matrices, the user is (in the case of cross-references) shown
more local information at the cost of being shown fewer
(global) Tinks. As models are the central element in MDE,
graph-based representations arc the norm. A graph can be
transformed to a cross-reference. Regarding the notation,
there is, however, no common agreement or standard, mostly
because the variely and informality of different artifacts is
not suitable for a simple, yet precise notation. Requirements
traceability graphs are usually just plain box-and-line dia-
grams [11].

Knethen and Pacch [4] argue that the existing traceability
approaches do not give much process support. They specify
four steps of traceability process: 1) define entities and
relationships, 2) capture ftraces, 3) extract and represent
traces, and 4) maintain traces. Similarly, Winkler and Pilgrim
[8] state that traceability and its supporting activities are
currently not standardized. They classify the activities when
working with traces into: 1) planning for traceability, 2)
recording traces, 3) using traces, and 4) maintaining traces.
Traceability activities are generally not dependent on any

particular soflware process model.

Trace models are usually stored as separate models, and
links to the clements are (lechnically) unidirectional in
order 1o keep the connected models or artifacts independent.
Alternatively, models can contain the trace-links themselves
and links can be defined as bidirectional. While embedded
trace-links pollute the models, navigation is much easier
[8]. Thus, we distinguish between exiernal and internal
storage, respectively. Anquetil at al. [12] argue: “Keeping
link information separated from the artifacts is clearly better;
however il needs to identify uniquely each artifact, even
fined-grained artifacts. Much of the recent research has
tocused on finding means to automate the creation and
maintenance of trace information. Text mining. information
retrieval and analysis of trace links techniques have been
successfully applied. An important challenge is to maintain
links consistency while artifacts are evolving. In this case,
the main difficulty comes from the manually created links,
but scalability of automatic solution is also an issue.”

As outlined by [6], aulomated creation of trace-links may
be based on text mining, information retrieval, analysis of
existing relationships 1o obtain implied relations, or analysis
of change history to automatically compute links.

Reference models are an abstraction of best praclice and
comprise the most important kinds of traceability links.
There is nothing provably correct about reference models,
but they derive their relevance from the slice of practice they
cover. Nevertheless, by formalizing a reference model in an
appropriate framework, a number of elementary desirable
properties can be ensured. A general reference model for
requirements traceability is proposed by [13], based on
numerous empirical studies.

Various tools are used to set and maintain traces. Surveys
of the tools available are provided by [4], (8], [10] and
16]. Bohner and Arnold [14] found that the granularity of
documentation entities managed by current traceability tools
is typically somewhat coarse for an accurate impact analysis.

I11. THE CHALLENGE

The PREDIQT process consists of three overall phases:
Target modeling, Verification of prediction models, and Ap-
plication of prediction models. Three interrelated sets of
models are developed during the process of the PREDIQT
method: Design Model which specifies system architecture,
Quality Model which specifies the system quality notions,
and Dependency Views (DVs) which represent the interre-
lationship between the system quality and the architectural
design.

Trace-link information can be overly detailed and ex-
tensive while the solution needed in a PREDIQT context
has to be applicable in a practical real-life setting within
the limited resources allocated for a PREDIQT-based anal-
ysis. Therefore, the traceability approach should provide
sufficient breadth and accuracy for documenting, retrieving

and representing of the trace-links, while at the same time
being practically applicable in terms of comprehensibility
and scalability. The right balance between the completeness
and accuracy of the trace information on the one side,
and practical usability of the approach on the other side,
1s what characterizes the main challenge in proposing the
appropriate solution for traceability handling in PREDIQT,
Therefore, the trace-link creation cfforts have to be concen-
trated on the traces necessary during the application of the
prediction models.

A. Structure of the prediction models

Figure 1 provides an overview of the elements of the
prediction models, expressed as a UML [15] class diagram,
A Quality Model is a set of tree-like structures which clearly
specify the system-relevant quality notions, by defining and
decomposing the meaning of the system-relevant quality ter-
minology. Each tree is dedicated to a target system-relevant
quality characteristic. Each quality characteristic may be
decomposed into quality sub-characteristics, which in turn
may be decomposed into a set of qualily indicators, As in-
dicated by the relationship of type aggregation, specific sub-
characteristics and indicators can appear in several Quality
Model trees dedicated to the different quality characteristics.
Each element of a Quality Model is assigned a quantitative
normalized metric and an interpretation {qualitative meaning
of the element), both specific for the larget system. A
Design Model represents the relevant aspects of the system
architecture, such as for example process, dataflow, structure
and rules.

A DV is a weighted dependency tree dedicated to a
specific quality characteristic defined through the Quality
Model. As indicated by the attributes of the Class Node, the
nodes of a DV are assigned a name and a QCF (Quality
Characteristic Fulfillmenr). A QCF is value of the degree
of fulfillment of the quality characteristic, with respect to
what is represented by the node. The degree of fulfillment is
defined by the metric (of the quality characteristic) provided
in the Quality Model. Thus, a complete prediction model has
as many DVs as the quality characteristics defined in the
Quality Model. Additionally, as indicated by the Semantic
dependency relationship, semantics of both the structure and
the weights of a DV are given by the definitions of the
quality characteristics, as specified in the Quality Model.
A DV node may be based on a Design Model element,
as indicated by the Based on dependency relationship. As
indicated by the self-reference on the Node class, one node
may be decomposed into children nodes, Direcled arcs
express dependency with respect to quality characteristic
by relating each parent node to its immediate children
nodes, thus forming a tree structure. Each arc in a DV is
assigned an EI (Estimated Impact), which is a normalized
value of degree of dependence of a parent node, on the
immediate child node. Thus, there is a quantified depen-

N -

Semanlic:)

Quality
characteristic

Quality o
Sub-characterislic <>
¢

M Qualiﬂ

Quality Indicalor

Node
Dependency * 1| -name- Slring 1 Dependency
-El'NormalizedFloat “GIGE: Floal ! View
-(PropagationFunclion) 1 —
1.
1 T] T
Decomposed
Based on ;
A into
| L d
1
1 .
‘ Design Mode! ! Pr::::;:[on
‘ Process ‘ ‘Dalaflow‘ ‘Siructure H Rule ‘
Figuie 1.

dency relationship from each parent node, to its immediate
children. The values on the nodes and the arcs are referred
10 as parameter estimates. We distinguish between prior and
inferred parameter cstimates. The former ones are, in the
form of empirical input, provided on leaf nodes and all arcs,
while the latter ones are deduced using the DV propagation
model for PREDIQT [3].

The intended application of the prediction models does
not assume implementation of change on the target system,
but only simulation of effects of the independent architec-
tural design changes quality of the system (in its currently
modelled state). Since the simulation is only performed
on the target system in its current state and the changes
are simulated independently (rather than incrementally),
versioning of the prediction models in not necessary. Hence,
maintenance of both prediction models and trace information
is beyond the scope of PREDIQT. A more detailed overview
of the PREDIQT method and the prediction models, is
provided in Appendix 1.

B. Success criteria

It is, as argued by [8]. an open issue to match trace usage
and traceability schemes, and to provide guidance to limit
and fit traceability schemes in a such way that they match a
projects required usage scenarios for traces. One of the most
urgent questions is which requirements a single scenario
imposes on the other activities (in particular planning and
recording) in the traceability process.

Moreover, it is argued by Aizenbud-Reshef et al. [6] that
the lack of guidance as to what link information should
be produced and the fact that those who use traceability
are commonly not those producing it, also diminishes the
motivation of those who create and maintain traceabil-
ity information. In order to avoid this trap. we used the
PREDIQT guidelines (as documented in Appendix 2) for the
analyst as a starting point, for deriving the specific needs for
traceability support. The guidelines are based on the authors’

An overview of the elements of the prediction models, expressed as a UML class diagram

experiences from industrial trials of PREDIQT [3] [2]. As
such, the guidelines are not exhaustive but serve as an aid
towards a more structured process of applying the prediction
models and accommodating the trace information during the
model development, based on the needs of the “Application
of prediction models™-phase.

The specific needs for traceability support in PREDIQT
are summarized below:

1) There is need for the following kinds of trace-links:

« links between the Design Model elements to
sapport identification of dependencies among the
elements of the Design Model

o links from the Design Model elements to DV
clements to support identification of DV nodes
which are based on specific elements of the De-
sign Model

e links from DV elements 1o Quality Model ele-
ments to support acquisition of traces from the
prior estimates of the DV to the relevant quality
indicators

« links to external information sources (documents,
measurement, domain experts) used during the
development of DV structure and estimation of
the parameters to support documenting the traces
from the DV 1o the more detailed information
sources available outside the prediction models.

o links to rationale and assumptions for: Design
Model clements, the semantics of the DV ele-
ments, as well as structure and prior parameter
estimates of the DVs to support documenting
the parts of the process of development of the
prediction models, particularly the understanding
and interpretations that the models are based on

2) The traceabilily approach should have facilities for
both searching with model types and model elements
as input parameters, as well as for reporting linked

Trace Link

Ralionale for Trace Link =<}—

i - Design Model Element
OmR Dedign Model o Design Mode!
ol n’ Element
Origin |*
Origin
Target * ,
Dependency |Orgin [Design Model Element
Orgin| View Elemenl £ lo Dependency View
* Orign |7 Element

L Target |
— Quality Model Dependency View
Elemenl Element lo Quality [

Model Element

I~ 3 +’— v

Struclure or Parameter of
Dependency View Element
documented through Exlernal
Information Source

External

Information
Source

Design Model Element Lo
Ralionale and Assumptions

==

Rationale and

Target Structure, Parameter or
Semantics of Dependency View
Element documented through
Rationale and Assumptions

Assumptions

Figure 2. A meta model for trace-link information, expressed as a UML
class diagram

elements and the link properties
3) The traceability approach should be {lexible with re-
spect to granularity of trace information
4) The traceability approach should be practically appli-
cable on real-life applications of PREDIQT
These needs are in the sequel referred to as the success
criteria for the traceability approach in PREDIQT.

IV. OUR SOLUTION

This section starts by presenting our traceability scheme
for PREDIQT. Then, a prototype tool for trace-link man-
agement, implementing the needs specified through the
traceability scheme, is presented.

A. Traceability scheme

We propose a traceability scheme in the form of a meta-
model for trace-link information and a feature diagram
for capabilities of the solution. The types of the trace-
links and the types of the traceable elements are directly

extracted from Success Criterion 1 and represented through
a meta-model shown by Figure 2. The Element abstract
class represents a generalization of a traceable element. The
Element abstract class is specialized into the five kinds of
traceable elements: Design Model Element, DV Element,
Quality Maodel Element, External Information Source, and
Rationale and Assumptions. Similarly, the Trace Link ab-
stract class represents a generalization of a trace-link and
may be assigned a rationale for the trace-link. The Trace
Link abstract class is specialized into the six kinds of trace-
links.

Pairs of cerfain kinds of traceable elements form binary
relations in the form of unidirectional trace-links. Such rela-
tions are represented by the UML-specific notations called
association classes (a class connected by a dotted line to a
link which connects two classes). For example, trace-links of
type Design Model Element to Design Model Element may
be formed from a Design Model Element to a Dependency
View Element. The direction of the link is annotated by
the origin (the traceable clement that the trace-link goes
from) and the target (the traceable element that the trace-link
goes to). Since only distinct pairs (single instances) of the
traceable elements (of the kinds involved in the respective
trace-links defined in Figure 2) can be involved in the
associated specific kinds of trace-links, uniqueness (property
of UML association classes) is present in the defined trace-
links. Due to the binary relations (arity of value 2) in the
defined trace-links between the traceable elements, only (wo
elements can be involved in any trace-link. Furthermore,
multiplicity of all the traceable elements involved in the
trace-links defined is of type “many”, since an element can
participate in multiple associations (given they are defined
by the meta-model and unique).

The main capabilities needed are represented through a
feature diagram [8] shown by Figure 3. Storage of trace-links
may be internal or external, relative 1o the prediction models.
A raceable clement may be ol type prediction model
element (see Figure 1) or non-model element. Reporting
and searching functionality has to be supported. Trace-link
info has to include link direction, link meta-data (e.g. date,
creator, strength) and cardinality (note that all links are
binary, but a single element can be origin or target for more
than one trace-link), Typing at the origin and the target ends
of a trace-link as well as documenting rationale for trace-
link, are optional.

B. Prototype traceability tool

We have developed a prototype tool in the form of a
database application with user interfaces, on the top of MS
Access [16]. The prototype tool includes a structure of tables
for organizing the trace information, queries for retrieval of
the trace info, a menu for managing work flow, forms for
populating trace-link information, and facilities for reporting
trace-links. A screen shot of the entity-relationship (ER)

| Tracingin PREDIQT |

egend

Traceable element

Repoﬁ?ﬁgﬂ

Model element | |Non-m0del elemenl‘ I Link direction

Trace-link info

mandatory

o—
optional

:} alternative

[Rationale Tor trace link

\

Link meta-data| ‘Typin@ Cardinality 0..*

|Extema| information sourcel Ralionale| | Assumptions

S a
Figure 3.

Main capabilities ol the traceability approach. expressed as a feature diagram

TergetElements
¥ TracelinkName
= 7 ElementName
Hyperlink ‘
Object }
B Attach i r L =y
N ; 1 Tracelink :
rTr_aceab{eEfeme_n_;r ' AmdcIEisDala 3 44 ¥ TraceLinkD
e e 1 Attach.FileName | .
¥ EfementD — i TracelinkName
Attach.FileType . oo
ElementName TracelinkType |
Comments
Contents Date |
Creator Creator
Date —) Dependency I
2] Destination ,OIWIQ‘!PEJEE%EE,,, L Rationale for trace link |
H ElementType g T“ ntnN ame Comment |
Version 5 E;::rlinkam TraceLinkStrength TracekinkType
TraceabléElementType e Object ¥ Inatliiined
Yo 1 Hyperlink TracelinkType
ElementTypelD Object Bl Attath Scope
ElementType B Atach Attach.FileData Dat:
gr:t:tor Attach FileData Attach.FileName | Creator
oo Atach.FileName 2 A"’::'F"’m“ Comment
. omments
Comment Attach.FileType =
Figure 4. Entity-relationship diagram of the trace-link database of the prototype traceability tool

diagram of the trace-link database is shown by Figure 4.
The ER diagram is normalized, which means that the data
are organized with minimal needs for repeating the entries
in the tables. Consistency checks are performed on the
referenced fields. The data structure itself (represented by the
ER diagram) does not cover all the constraints imposed by
the meta-model (shown by Figure 2). However, constraints
on queries and forms as well as macros can be added in order
to fully implement the logic, such as for example which
element Lypes can be related to which trace-link types.

The five traceable element types defined by Figure 2
and their propertics (name of creator, date, assumption
and comment), are listed in Table TraceableElementType.
Similarly, the six trace-link types defined by Figure 2 and
their properties (scope, date, creator and comment), are listed
in Table TraceLinkType. Table TraceableElement specifies
the concrete instances of the traceable elements, and assigns
properties (such as the pre-defined element type. hyperlink.
creator, dale, etc.) to each one of them. Since primary

10

key altribute in Table TraceableElenentType is foreign key
in Table TraceableElemens, multiplicity between the two
respective tables is one-to-many.

Most of the properties are optional, and deduced based on:
1) the core questions to be answered by traceability scheme
[8] and 2) the needs for using guidelines for application
of prediction models, specified in Appendix 2. The three
Tables TurgetElements, OriginElements and TraceLink lo-
gether specify the concrete instances of trace-links. Each
link is binary, and directed from a concrete pre-defined
traceable element — the origin clement specified in Table
OriginElements, 10 a concrete pre-defined (raceable element
— the target element specified in Table TargetElements. The
trace-link itsell (between the origin and the target element)
and ils properties (such as pre-defined trace-link type) are
specified in Table TraceLink. Attribute TraceLinkName (as-
sociated with a unique TraceLinkld value) connects the three
tables TraceLink, OriginElements and TargetElements when
representing a single trace-link instance, thus forming a

(@sin Gl
rrraceable element type] { Trace link I
[Trace link type } [Origin element]

Target element —I

’ I Traceable element] ‘ [

Trace link report

A screen shot of the start menu of the prototype traceabiliry

Figure 5.
tool

cross-product when relating the three tables. The MS Access
environment performs reference checks on the cross prod-
ucts, as well as on the values of the foreign key attributes.
Target elements and origin elements participating in a trace-
link, are instances of traceable clements defined i Table
TraceableElement. They are connected through the Attribute
Elementld (displayed as ElementName in the tables where it
has the role of foreign key). Thus, multiplicity between Table
TraceableElemenr and Table TargetElements, as well as
between Table TraceableElement and Table OriginElements,
is one-to-many. Similarly, since primary key attribute in
Table TraceLinkType is foreign key in Table TraceLink,
multiplicity between the (wo respective tables is one-to-
many.

A screen shot of the start menu is shown by Figure 5.
The sequence of the buttons represents a typical sequence
of actions of an end-user (the analyst), in the context
of defining, documenting and using the trace-links. The
basic definition of the types of the traceable elements and
the trace-links are provided first. Then. concrete traceable
clements are documented, before defining specific instances
of the trace-links and their associated specific origin and
larger elements, involved in the binary trace-link relations.
Finally, reports can be obtained, based on search parameters
such as for example model types, model elements, or trace-
link types.

V. APPLYING THE SOLUTION ON AN EXAMPLE

This section exemplifies the application of our solution for
managing traces in the context of prediction models earlier
developed and applied during a PREDIQT-based analysis [3]
conducted on a real-life system.

The trace-link information was documented in the proto-
type tool, in relation to the model development, The trace-
links were applied during change application, according to
the guidelines for application of prediction models, specified
in Appendix 2. We present the experiences obtained, while

Trace-link Report

Design Model

Element to Design

Model Element
Signature Signature Signature
Verification Verification Verification
Comp- Comp- Comp-
Interface Interface Interface
Signature Signature Signature
Verification Verification Verification
Components Components Interface-Port
Signature Signature VA Root Node
Verification Verification Semantics
Interface-Port Interface-Port

Figure 6. A screen shot of an extract of a trace-link report from the

prototype traceability tool

the process of documentation of the trace-links is beyond
the scope of this paper.

The prediction models involved are the ones related 1o
“Split signature verification component into two redundant
components, with load balancing™, corresponding to Change
I in [3]. Three Design Model diagrams were affccted, and
one, two and one model element on each, respectively.
We have tried out the protolype traceability tool on the
Design Model diagrams involved, as well as Availability
(which was one of the three quality characteristics analyzed)
related Quality Model diagrams and DV. Documentation
of the trace-links involved within the Availability gquality
characteristic (as defined by the Quality Model) scope, took
approximately three hours. Most of the time was spent on
actually typing the names of the traceable clements and the
trace-links.

18 instances of traceable elements were registered in the
database during the trial: seven Quality Model elements,
four DV elements, four Design Model elements and three
elements of type “Rationale and Assumptions”. 12 trace-
links were recorded: three trace-links of type “Design Model
Element to Design Model Element”, three trace-links of type
“Design Model Element to DV Element”, one trace-link of
type “Design Model Element to Rationale and Assump-
tions”, three trace-links of type “DV Element to Quality
Model Element”, and two trace-links of type “Structure,
Parameter or Semantics of DV Element Documented through
Rationale and Assumptions”, were documented.

An extract of a screen shot of a trace-link report (obtained
from the prototype tool) is shown by Figure 6. The report
included: three out of three needed (i.c., actually existing,
regardless if they are recorded in the trace-link database)
“Design Model Element to Design Model Element” links.

three out of four needed “Design Model Element to DV
Element™ links, one out of one needed “Design Model
Element to Rationale and Assumptions™ link, three out
of six needed "DV Element to Quality Model Element”
links and one out of one needed “Structure, Parameter or
Semantics of DV Element Documented through Rationale
and Assumptions™ link.

Best effort was made to document the appropriate trace-
links without taking into consideration any knowledge of
exactly which of them would be used when applying the
change. The use of the trace-links along with the application
of change on the prediction models took totally 20 minutes
and resulted in the same predictions (change propagation
paths and values of QCF estimates on the Availability DV),
as in the original case study [3]. Without the guidelines
and the trace-link report, the change application would have
taken approximately double time for the same user.

All documented trace-links were relevant and used dur-
ing the application of the change, and about 73% of the
relevant trace-links could be retrieved from the prototype
tool. Considering however the importance and the role of
the retrievable trace-links, the percentage should increase
considerably.

Although hyperlinks are included as meta-data in the
user interface for clement registration, an improved solu-
tion should include interfaces for automatic import of the
element names from the prediction models, as well as user
inlerfaces for easy (graphical) trace-link generations between
the existing elements. This would also aid verification of the
element names.

VI. WHY OUR SOLUTION 1S A GOOD ONE

This section argues that the approach presented above
fulfills the success criteria specified in Section 1L

A. Success Criterion 1

The traceability scheme and the prototype tool capture
the kinds of trace-links and traceable elements. specified
in the Success Criterion 1. The types of trace-links and
traceable elements as well as their properties, are specified
in dedicated tables in the database of the prototype tool.
This allows constraining the types of the trace-links and the
types of the traceable elements to only the ones defined, or
extending their number or definitions, if needed. The trace-
links in the prototype tool are binary and unidirectional, as
required by the traceability scheme. Macros and constraints
can be added in the Lool, to implement any additional logic
regarding trace-links, traccable elements, or their respective
type definilions and relations. The data properties (e.g. date,
hyperlink or creator) required by the user interface, allow
full traceability of the data registered in the database of the
prototype tool.

B. Success Criterion 2

Searching based on user input, selectable values from a
list of pre-defined pararneters, or comparison of one or more
databasc ficlds, are relatively simple and fully supported
based on querics in MS Access. Customized reports can
be produced with results of any query and show any infor-
mation registered in the database. The report, an extracl of
which is presented in Section V., is based on a query of all
documented trace-links and Lhe related elements.

C, Success Criterion 3

The text-based fields for documenting the concrete in-
stances of the traceable elements and the trace-links, allow
level of detail selectable by the user. Only a subset of fields
is mandatory for providing the necessary trace-link data. The
optional fields in the tables can be used for providing addi-
tional information such as for example rationale, comments,
links to external information sources, attachments, strength
or dependency. There are no restrictions as to what can be
considered as a traceable element, as long at it belongs 1o one
of the element types defined by Figure 2. Similarly, there are
no restrictions as to what can be considered as a trace-link,
as long at it belongs to one of the trace-link types defined
by Figure 2. The amount of information provided regarding
the naming and the meta-data, are selectable by the user.

D. Success Criterion 4

Given the realism of the prediction models involved in
the example, the size and complexity of the target system
they address, the representativeness of the change applied
on them, the simplicity of the prototype tool with respect
to both the user interfaces and the notions involved, as
well as the time spent on documenting the trace-links and
using them, the application of the approach presented in
Section V indicates the applicability of our solution on real-
life applications of PREDIQT, with limited resources and by
an average user (in the role of the analyst).

The predictions (change propagation paths and values of
QCF estimates) we obtained during the application of our
solution on the example were same as the ones from the
original case study [3] (performed in year 2008) which
the models stem from. Although the same analyst has
been involved in both, the results suggest that other users
should, by following PREDIQT guidelines and applying the
prototype traceability tool, obtain similar results.

The time spent is 1o some degree individual and depends
on the understanding of the target system, the models and
the PREDIQT method. It is unknown if the predictions
would have been the same (as in the original case study)
for another user. We do however consider the models and
the change applied during the application of the solution, to
be representative due to their origins from a major real-life
system. Still, practical applicability of our solution will be
subject to future empirical evaluations.

VII. WHY OTHER APPROACHES ARE NOT BETTER IN
THIS CONTEXT

This scction cvaluates the feasibility of other traceability
approaches in the PREDIQT context. Based on our review
of the approach-specific publications and the results of the
evaluation by Galvao and Goknil [9] of a subset of the
below mentioned approaches, we argue why the alternative
traceability approaches do not perform sufficiently on one
or more of the success criteria specified in Section 1II.
The evaluation by Galvao and Goknil is conducted with
respect to five criteria: 1) structures used for representing
the traceability information; 2) mapping of model elements
at different abstraction levels; 3) scalability for large projects
in terms of process, visualization of trace information, and
application to a large amount of model elements; 4) change
impact analysis on the entire system and across the sofiware
development lifecycle; and 5) tool support for visualization
and management of traces, as well as for reasoning on the
trace-link information.

Almeida et al. [17] propose an approach aimed at simpli-
fying the management of relationships between requirements
and various design artifacts. A framework which serves as
a basis for tracing requirements, assessing the quality of
model transformation specifications, meta-models, models
and realizations. is proposed. They use traceability cross-
tables for representing relationships between application
requirements and models. Cross-tables are also applied for
considering different model granularities and identification
of conforming transformation specifications. The approach
does not provide sufficient support for intra-model mapping,
thus failing on our Success Criterion 1. Moreover, possibility
ol representing the various types of trace-links and traceable
elements is unclear, although different visualizations on a
cross-table are suggested. Tool support is not available,
which limits applicability of the approach in a practical
setting. Searching and reporting facilities are nor available.
Thus, it fails on our Success Criteria 1, 2 and 4.

Event-based Traceability (EBT) is another requirements-
driven fraceability approach aimed at automating trace-link
generation and maintenance. Cleland-Huang, Chang and
Christensen [18] present a study which uses EBT for manag-
ing evolutionary change. They link requirements and other
traceable elements, such as design models, through publish-
subscribe relationships. As outlined by [9], “Instead of estab-
lishing direct and tight coupled links between requirements
and dependent entities, links are established through an event
service. First, all artefacts are registered to the event server
by their subscriber manager. The requirements manager uses
its event recognition algorithm to handle the updates in
the requirements document and to publish these changes as
event to the event server. The event server manages some
links belween the requirement and its dependent artefacts
by using some information retrieval algorithms.” The notifi-

cation of events carries structural and semantic information
concerning a change context. Scalability in a practical setting
is the main issue, due to performance limitation of the
EBT server [9]. Morcover, the approach does not provide
sufficient support for intra-model mapping. Thus. it fails on
our Success Criteria 1 and 4.

Cleland-Huang et al. [19] propose Goal Centric Trace-
ability (GCT) approach for managing the impact of change
upon the non-functional requirements of a software system.
Softgoal Interdependency Graph (SIG) is used to model
non-functional requirements and their dependencies. Addi-
tionally, a traceability matrix is constructed to relate SIG
elements to classes. The main weakness of the approach is
the limited tool support, which requires manual work. This
limits both scalability in a practical setting and searching
support (thus failing on our Success Criteria 4 and 2,
respectively). Tt is unclear to what degree granularity of the
approach would suffice the needs of PREDIQT.

Cleland-Huang and Schmelzer [20] propose another
requirements-driven traceability approach that builds on
EBT. The approach involves a different process for dynami-
cally tracing non-functional requirements 1o design patterns.
Although more fine grained than EBT, there is no evidence
that the method can be applied with success in a practical
real-life setting (required through our Success Criterion 4).
Searching and reporting facilities (as required through our
Success Criterion 2) are not provided.

Many traceability approaches address trace maintenance.
Cleland-Huang, Chang and Ge [21] identify the various
change events that occur during requirements evolution and
describe an algorithm to support their automated recognition
through the monitoring of more primitive actions made by a
user upon a requirements set. Mider and Gotel [22] propose
an approach to recognize changes 10 structural UML models
that impact existing traceability relations and, based on that
knowledge, provide a mix of automated and semi-automated
strategies to update the relations. Both approaches focus on
trace maintenance, which is as argued in Section III, not
among the traceability needs in PREDIQT.

Ramesh and Jarke [13] propose another requirements-
driven traceability approach where reference models are
used to represent different levels of traceability information
and links. The granularity of the representation of traces
depends on the expectations of the stakeholders [9]. The
reference models can be implemented in distinct ways when
managing the traceability information. As reported by [9].
“The reference models may be scalable due to their possible
use for traceability activities in different complexity levels.
Therefore, it is unclear whether this approach lacks scala-
bility with respect to 1ool support for large-scale projects
or not. The efficiency of the tools which have implemented
these meta-models was not evaluated and the tools are not
the focus of the approach.” In PREDIQT context, the refer-
ence models are too broad, their focus is on requirements

traceability, and tool support is not sufficient with respect to
searching and reporting (our Success Criterion 2).

We could however have tried to use parts of the reference
models by Ramesh and Jarke [13] and provide tool support
based on them. This is done by [23] in the context of
product and service families. The authors discuss a knowl-
edge management system, which is based on the traceability
framework by Ramesh and Jarke [13]. The system captures
the various design decisions associated with service fam-
ily development. The system also traces commonality and
variability in customer requirements 1o their corresponding
design artifacts. The tool support has graphical interfaces
for documenting decisions. The trace and design decision
capture is illustrated using sample scenarios from a case
study. We have however not been able to obtain the tool, in
order to try it out in our context.

A modeling approach by Egyed [24] represents trace-
ability information in a graph structure called a footprint
graph. Generated traces can relate model elements with other
models, test scenarios or classes [9]. Galvao and Goknil [9]
report on promising scalability of the approach. It is however
unclear to what degree the tool support fulfills our success
criterion regarding searching and reporting, since semanlic
information on trace-links and traceable elements is limited.

Aizenbud-Reshef et al. [25] outline an operational seman-
tics of traceability relationships that capture and represent
traceability information by using a set of semantic proper-
ties, composed of events, conditions and actions [9]. Galvao
and Goknil [9] state: the approach does not provide sufficient
support for intra-model mapping; a practical application of
the approach is not presented; tool support is not provided;
however, it may be scalable since it is associated with the
UML. Hence, it fails on our Success Criteria 1 and 2.

Limon and Garbajosa [26] analyze several traccability
schemes and propose an initial approach to Traceability
Scheme (TS) specification. The TS is composed of a trace-
ability link dataset, a traceability link type set, a minimal set
of traceability links, and a metrics set for the minimal set of
traceability links [9]. Galvao and Goknil [9] argue that “The
TS is not scalable in its current form. Therefore, the authors
outline a strategy that may contribute to its scalability: to
include in the traceability schema a set of metrics that can
be applied for monitoring and verifying the correctness of
traces and their management.” Hence, it fails with respect
to scalability in a practical setting, that is, our criterion 4.
Moreover, there is no tool support for the employment of
the approach, which fails on our success criterion regarding
searching and reporting,

Some approaches [27] [28] [29] that use model trans-
formations can be considered as a mechanism (o generate
trace-links. Tool support with transformation functionalities
is in focus, while empirical evidence of applicability and par-
ticularly comprehensibility of the approaches in a practical
setting, is missing, The publications we have retrieved do not

report sufficiently on whether these approaches would offer
the searching facilities, the granularity of trace information.
and the scalability needed for use in PREDIQT context (that
is, in a practical setting by an end-user (analyst) who is not
an expert in the tools provided).

VIII. CONCLUSION AND FUTURE WORK

Our earlier research indicates the feasibility of the
PREDIQT method for model-based prediction of impacts
of architectural design changes on system quality. The
PREDIQT method produces and applies a multi-layer model
structure, called prediction models, which represent system
design, system quality and the interrelationship between the
two,

Based on the success criteria for a traceabilily approach in
the PREDIQT context, we put forward a traceability scheme.
Based on this, a prototype tool which can be used to define,
document, search for and represent the trace-links needed,
is developed. We have argued that our solution offers a
useful and practically applicable support for traceability in
the PREDIQT context. The model application guidelines
provided in Appendix 2 complement the prototype trace-
ability tool and aim to jointly provide the facilities needed
for a schematic application of prediction models.

Performing an analysis of factors such as cost, risk, and
benefit and following the paradigm of value-based software-
engineering, would be relevant in order to stress the effort
on the important trace-links. As argued by [8], if the value-
based paradigm is applied to traceability, cost, benefit, and
risk will have to be determined separately for each trace
according to if, when, and to what level of detail it will be
needed later. This leads to more important artifacts having
higher-quality traceability. There is a trade-off between the
semantically accurate techniques on the one hand and cost-
efficient but less detailed approaches on the other hand.
Finding an optimal compromise is still a research challenge.
Our solution proposes a feasible approach, while finding the
optimal one is subject to further research.

Further empirical evaluation of our solution is also nec-
essary to test its feasibility on different analysts as well
as its practical applicability in the various domains which
PREDIQT is applied on. Future work should also include
standard interfaces and procedures for updating the traceable
elements from the prediction models into our prototype
traceability tool. As model application phase of PREDIQT
dictates which trace-link information is needed and how it
should be used, the current PREDIQT guidelines focus on
the application of the prediction models. However, since the
group of recorders and the group of users of traces may be
distinct, structured guidelines for recording the traces during
the model development should also be developed as a part
of the future work.

ACKNOWLEDGMENT

This work has been conducted as a part of the DIGIT
(180052/S10) project funded by the Research Council of
Norway, as well as a part of the NESSoS network of
excellence funded by the European Commission within the
7th Framework Programme.

REFERENCES

[I] A. Omerovic, A. Andresen, H. Grindheim, P. Myrseth,

[7

(8

P}

(1o

[11]

2

A. Refsdal, K, Stplen, and I. @lnes, “A Feasibility Study
in Model Based Prediction of Impact of Changes on System
Quality.” in faternational Symposium on Engineering Secure
Sefiware and Systems, vol. LNCS 5965. Springer, 2010, pp.
231-240.

A. Omerovic, B. Solhaug, and K. Stplen, “Evaluation of
Experiences from Applying the PREDIQT Method in an In-
dustrial Case Study.” in Fifth IEEE International Conference
on Secure Software Integration and Reliability Inprovement.
IEEE, 2011.

A. Omerovie, A. Andresen. H. Grindheim, P. Myrseth,
A. Refsdal, K, Stelen, and J. @lnes. “A Feasibility Study
in Model Based Prediction of Impact of Changes on System
Quality.” SINTEF. Tech. Rep. A13339, 2010.

A. Knethen and B. Paech. “A Survey on Tracing Approaches
in Practice and Research,” Frauenhofer TESE, Tech. Rep.
095.01/E, 2002.

“Standard Glossary of Software Enginecring Terminology:
1EEE Std.610. 12-1990." 1990.

N. Aizenbud-Reshef, B. T. Nolan, J, Rubin. and Y. Shaham-
Gafni, “Model Traceability,” IBM Syst. J., vol. 45, no. 3, pp.
515-526, 2006.

J. Simpson and E. Weiner, Oxford English Dictionary.
Clarendon Press, 1989, vol. 18, 2nd edn,

S. Winkler and J. von Pilgrim. A survey of Traceability in
Requirements Engineering and Model-driven Development.”
Software and Systems Modeling. vol. 9. no. 4, pp. 529-565.
2010.

1. Galvao and A. Goknil, “Survey of Traceability Approaches
in Model-Driven Engineering,” in Proceedings of the 11th
IEEE International Enterprise Distributed Object Computing
Conference, 2007.

G. Spanoudakis and A. Zisman, “Software Traceability: A
Roadmap,” in Handbook of Software Engineering and Knowl-
edge Engineering. World Sciemific Publishing, 2004, pp.
395-428.

R. J. Wieringa, “An Introduction to Requirements Traceabil-
ity,” Faculty of Mathematics and Computer Science, Vrije
Universiteit, Tech. Rep. IR-389, 1995.

N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C.
Royer, A. Rummler, and A. Sousa, “A Model-driven Trace-
ability Framework for Software Product Lines.” Soffware and
Systems Modeling, 2009.

15

[13]

[14]

[15]

[16)

[17]

[18]

(19]

[21]

[22]

[24]

[25]

[26]

B. Ramesh and M. larke, “Toward Reference Models for
Requirements Traceability,” IEEE Transactions on Software
Engineering, vol. 27, no. 1, pp. 58-93, 2001.

S. Bohner and R. Arnold, Software Change Impact Analysis.
IEEE Computer Society Press, 1996.

J. Rumbaugh, 1. Jacobson, and G. Boeoch, Unified Modeling
Language Reference Manual. Pearson Higher Education,
2004,

“Access Help and How-t0” accessed: May 19,
2011. [Online]. Available: hitp:/foffice.microsoft.com/en-us/
access-help/

J. P. Almeida, P. v. Eck, and M.-E. lacob, “Requirements
Traceability and Transformation Conformance in Model-
Driven Development,” in Proceedings of the 10th [EEE
Tternational Enterprise Distributed Object Computing Con-

Jference, 2006, pp. 355-360.

J. Cleland-Huang, C. K. Chang, and M. Christensen. “Event-
Based Traceability for Managing Evolutionary Change.”
IEEE Trans. Softw. Eng., vol. 29, pp. 796-810, 2003.

J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhan-
skaya, and 8. Christina, “Goal-centric Traceability for Manag-
ing Non-functional Requirements.” in Proceedings of the 27ih
international conference on Software engineering. ACM.
2005, pp. 362-371.

J. Cleland-Huang and D. Schmelzer, “Dynamically Tracing
Non-Functional Requirements through Design Pattern Invari-
ants.” in Proceedings of the 2nd Iniernational Workshop on
Traceability in Emerging Forms of Software Engineering.
ACM, 2003.

J. Cleland-Huang, C. K. Chang, and Y. Ge, “Supporting
Event Based Traccability through High-Level Recognition
of Change Events,” Cumputer Software and Applications
Conference, Annual International, vol. 0. p. 595, 2002.

P. Mider. O. Gotel, and 1. Philippow. “Enabling Automated
Traceability Maintenance through the Upkeep of Traceability
Relations,” in Proceedings of the 5th European Conference on
Muodel Driven Architecture - Foundations and Applications.
Springer-Verlag, 2009, pp. 174-189,

K. Mohan and B. Ramesh, “Managing Variability with Trace-
ability in Product and Service Families,” Hawaii International
Conference on Svstem Sciences, vol. 3, 2002.

A. Egyed. “A Scenario-Driven Approach to Trace Depen-
dency Analysis,” IEEE Transactions on Software Engineer-
ing. vol. 29, no. 2, pp. 116-132, 2003.

N. Aizenbud-Reshef, R. F. Paige, J. Rubin, Y. Shaham-Gafni,
and D. S. Kolovos, “Operational Semantics for Traceability.”
in Proceedings of the ECMDA Traceability Workshop, ar
Evropean Conference on Model Driven Architecture, 2005.

A. E. Limon and J. Garbajosa, “The Need for a Unifying
Traceability Scheme,” in 2nd ECMDA-Traceability Workshop,
2005, pp. 47-55.

[27] F. Jouault, “Loosely Coupled Traceability for ATL. in In
Proceedings of the European Conference on Model Driven
Architecture (ECMDA) workshop on traceabiliry, 2005, pp.
29-37.

D. S. Kolovos, R. F. Paige. and F. Polack, “Merging Models
with the Epsilon Merging Language (EML)." in MoDELS 06,
2006, pp. 215-229.

[29] J. Falleri. M. Huchard, and C. Nebut, “Towards a Traceability
Framework for Model Translormations in Kermeta,” in Pro-
ceedings of the ECMDA Traceability Workshop, ar European
Conference on Model Driven Architecture, 2006, pp. 31-40,
[30] A. Omerovic and K. Stelen, “Interval-Based Uncertainmy
Handling in Model-Based Prediction of System Quality,” in
Proceedings of Second International Conference on Advances
in Svstem Simulation, SIMUL 2010, August 2010, pp. 99-108.

—

[31

“International Organisation [or Siandardisation: ISO/IEC
9126 - Software Engineering — Product Quality,” 2004,

16

[Phase 1: Target modeling:J

[Sub-phase 1: Characterization of the target and the objectives }

[Sub-phase 2: Development of Quality Models]

[Sub-phase 3: Mapping of Design Models]

[Sub-phase 4: Development of Dependency Views]

(Phase 2: Verification of prediction models]

[sub-phase 1: Evaluation of prediction models]

(sub-phase 2: Fitting of prediction models)

[Sub-phase 3: Approval of the final prediction models]

[Phase 3: Application of prediction models J

[Sub-phase 1: Specification of a change]

[Sub-phase 2: Application of the change on prediction models]

[Sub-phase 3: Quality prediction]

Figure 7. A simplified overview of the process of the PREDIQT method

APPENDIX 1: AN OVERVIEW OF THE PREDIQT METHOD

The PREDIQT method produces and applies a mulli-
layer model structure, called prediction models, which rep-
resent system relevant quality concepts (through “Quality
Model™), architectural design (through “Design Model™),
and the dependencies between architectural design and
quality (through “Dependency Views"). The Design Model
diagrams are used to specify the architectural design of the
target system and the changes whose ecffects on quality are
to be predicted. The Quality Model diagrams are used to
formalize the quality notions and define their interpreta-
tions. The values and the dependencies modeled through
the Dependency Views (DVs) are based on the definitions
provided by the Quality Model. The DVs express the in-
terplay between the system architectural design and the
quality characteristics. Once a change is specified on the
Design Model diagrams, the affected parts of the DVs are
identified, and the effects of the change on the quality values
are automatically propagated at the appropriate parts of the
DV. This section briefly outlines the PREDIQT method in
terms of the process and the artifacts. For further details on
PREDIQT, see [1] [30] [2].

The process of the PREDIQT method consists of three
overall phases. Each phase is decomposed into sub-phases,
as illustrated by Figure 7. Based on the initial input, the
stakeholders involved deduce a high level characlerization
of the target system, its scope and the objectives of the
prediction analysis, by formulating the system boundaries,
system context (including the usage profile), system lifetime
and the extent (nature and rate) of design changes expected.
Quality Model diagrams are created in the form of trees,
by defining the quality notions with respect to the target
system. The Quality Model diagrams represent a taxonomy
with interpretations and formal definitions of system quality

Data proteclion ‘

L

QCF=0.94
P P
-) pY S
EI=0.30 EI=0.25 EI=0.30 EI=0.15
fl’ v » '*-.\
K ¥ | =
Authenticalion

QCF=0.95

Encryption
\ QCF=1.00

Figure 8,

; Other
Aulhorization
acr=p.g0 | LGF=090

Excerpt of an example DV with fictitious values

notions. The total quality of the system is decomposed
into characteristics, sub-characteristics and quality indica-
tors. The Design Model diagrams represent the architectural
design of the system.

For each quality characteristic defined in the Quality
Model, a quality characteristic specific DV is deduced from
the Design Model diagrams and the Quality Model diagrams
of the system under analysis. This is done by modeling the
dependencies of the architectural design with respect 1o the
quality characteristic that the DV is dedicated to, in the form
of multiple weighted and directed trees. A DV comprises two
notions of parameters:

1) El: Estimated degree of Impact between two nodes,
and

2) QCF: estimated degree of Quality Characteristic Ful-
fillment,

Each arc pointing from the node being influenced is an-
notated by a quantitative value of El, and each node is
annotaled by a quantitative value of QCF.

Figure 8 shows an excerpt of an example DV with ficti-
tious values. In the case of the Encryprion node of Figure 8,
the QCF value expresses the goodness of encryption with
respect to the quality characteristic in question, e.g., securily.
A quality characteristic is defined by the underlying system
specific Quality Model, which may for example be based on
the ISO 9126 product quality standard [31]. A QCF value in
a DV expresses (o what degree the node (representing system
part, concern or similar) is realized so that it, within its own
domain, fulfills the quality characteristic. The QCF value is
based on the formal definition of the quality characteristic
(for the system under analysis). provided by the Quality
Model. The EI value on an arc expresses the degree of
impact of a child node (which the arc is directed to) on
the parent node, or to what degree the parent node depends
on the child node, with respect (o the quality characteristic
under consideration.

“Inttial” or “prior” estimation of a DV involves providing
QCF values to all leaf nodes, and EI values to all arcs.
Input to the DV parameters may come in different forms
(e.g., from domain expert judgments, experience factories,
measurements, monitoring, logs, etc.), during the different
phases of the PREDIQT method. The DV parameters arc
assigned by providing the estimates on the arcs and the

leafl nodes, and propagating them according to the general
DV propagation algorithm. Consider for example the Darg
protection node in Figure 8 (denoting: DP: Data protection,
E: Encryption, AT: Authentication, AAT: Authorization, and
O:0ther):

QCFppy =QUFE) Ellppogy + QUFary - Elipp_ar +
QCFiaary Elippaar) + QCF oy Ellppooy Eq. 1

The DV-based approach constrains the QCF of each node
to range between 0 and 1, representing minimal and maximal
characteristic fulfillment (within the domain of what is repre-
sented by the node), respectively. This constraint is ensured
through the formal definition of the quality characteristic
rating (provided in the Quality Model). The sum of Els, each
between 0 (no impact) and 1 (maximum impact), assigned to
the arcs pointing to the immediate children must be 1 (for
model completeness purpose). Moreover, all nodes having
a common parent have to be orthogonal (independent).
The dependent nodes are placed at different levels when
structuring the tree, thus ensuring that the needed relations
are shown at the same time as the tree structure is preserved.

The general DV propagation algorithm, exemplified by
Eq. 1, is legitimate since cach quality characteristic DV
is complete, the Els are normalized and the nodes having
a common parent are orthogonal due to the structure. A
DV is complete if each node which is decomposed, has
children nodes which are independent and which together
fully represent the relevant impacts on the parent node, with
respect o the quality characteristic that the DV is dedicated
10.

The rationale for the orthogonality is that the resulting
DV structure is tree-formed and easy for the domain experts
to relate to. This significantly simplifies the parametrization
and limits the number of estimates required, since the
number of interactions between the nodes is minimized.
Although the orthogonality requirement puts additional de-
mands on the DV structuring, it has shown to represent a
significant advantage during the estimation.

The “Verification of prediction models™ is an iterative
phase that aims to validate the prediction models, with
respect to the structure and the individual parameters, before
they are applied. A measurement plan with the necessary
statistical power is developed, describing what should be
evaluated, when and how. Both system-as-is and change
effects should be covered by the measurement plan. Model
fitting is conducted in order to adjust the DV structure and
the parameters to the evaluation results. The objective of
the “Approval of the final prediction models™ sub-phase is
to evaluate the prediction models as a whole and validate
that they are complete, correct and mutually consistent afler
the fitting. 1f the deviation between the model and the new
measurements is above the acceptable threshold after the
fitting, the target modeling phase is re-initiated.

The “Application of the change on prediction models”

phase involves applying the specified architectural design
change on the prediction medels. During this phase, a
specified change is applied (o the Design Model diagrams
and the DVs, and its effects on the quality characteristics at
the various abstraction levels are simulated on the respective
DVs. When an architectural design change is applied on the
Design Model diagrams, it is according to the definitions
in the Quality Model. reflected to the relevant parts of
the DV. Thereafter, the DV provides propagation paths and
quantitative predictions of the new quality characteristic
values, by propagating the change throughout the rest of
each one of the modified DVs, based on the general DV
propagation algorithm. We have earlier developed tool sup-
port [3] (below referred 1o as the “DV tool™) based on MS
Excel for simulation and sensitivity analysis of DVs.

APPENDIX 2: GUIDELINES FOR APPLICATION OF
PREDICTION MODELS

In order to facilitate quality and correct use of prediction
models, this section provides guidelines for application of
the prediction models and the trace-link information, with
the analyst as the starting point. Thus, unless otherwise
specified, all the guidelines are directed towards the analyst.
Overall guidelines for the “Application of prediction mod-
els” — phase (see Figure 7) are presented first, followed by
detailed guidelines for each one of its sub-phases: ‘Specifica-
tion of a change™, “Application of the change on prediction
models” and “Quality prediction™, respectively.

Guidelines for the “Application of prediction models” -
phase

Objective During this phase, a specified change is applied
to the prediction models, and its effects on the quality
characteristics at the various abstraction levels are simulated
on the respective Dependency Views (DVs). The simulation
reveals which design parts and aspects are affected by the
change and the degree of impact (in terms of the quality
notions defined by the Quality Model).

Prerequisites The fitted prediction models arc approved.
The changes applicd are assumed to be independent relative
to each other. The "Quality prediction™ sub-phase presup-
poses that the change specified during the "Specification of
a change” sub-phase can be fully applied on the prediction
models, during the "Application of the change on prediction
models™ sub-phase.

How conducted This phase consists of the three sub-
phases:

1) Specification of a change

2) Application of the change on prediction models

3) Quality prediction

Input documentation Prediction models: Design Model
diagrams, Qualily Model diagrams and Dependency Views;
Trace-links.

Output documentation Change specification; Pre- and
post-change Design Model diagrams; DVs.
People that should participate
» Analysis leader (Required). Analysis leader is also
referred 1o as analyst.
« Analysis secretary (Optional)
« Representatives of the customer:
— Decision makers (Optional)
— Domain experts (Required)
— System architects or other potential users of
PREDIQT (Required)
Modeling guideline

1) Texwally specify the architectural design change of
the system.

Modify the Design Model diagrams with respect to the
change proposed. Modify the structure and the values
of the prior parameters, on the affected parts of the
DVs.

Run the simulation and display the changes on the
Design Model diagrams and the DVs, relative to their
original (pre-change) structure and values.

2)

3)

Guidelines for the “Specification of a change™ sub-phase

Objective The change specification should clearly state
all deployment relevant facts necessary for applying the
change on the prediction models. The specification should
include the current and the new state and characteristics of
the design clements/properties being changed, the rationale
and the assumptions made.

Prerequisites The fitted prediction models are approved.

How conducted Specify the change by describing type of
change, the rationale, who should perform it, when, how and
in which sequence of events. In case change specification
addresses modification of specific elements of the Design
Model diagrams or the DVs, the quality characteristics of the
elements before and after the change have to be specified.
based on the definitions provided by the Quality Model.
The change specification has to be at the abstraction level
corresponding to the abstraction level of a sufficient subset
of the Design Model diagrams or DVs,

Input documentation Prediction models: Design Model,
Quality Model, Dependency Views.

Output documentation Textual specification of a change.

Modeling guideline

1) Textually specify an architectural design change of the
system represented by the approved prediction models.

2) Specify the rationale and the process related to the
change deployment.

Guidelines for the “Application of the change on predicrion
models™ sub-phase

Objective This sub-phase involves applying the specified
change on the prediction models.

Prerequisites The change is specified. The specified
change is, by the analyst and the domain experts, agreed
upon and a common understanding is reached,

How conducted Detailed instructions for performing the
six steps specified in “Modeling guideline™, are provided

here.

1

2)

This first step of relating the change to the Design
Model diagram(s) and their elements is a manual
effort. The analyst and the domain experts confirm
that a common understanding of the specification has
been reached. Then, they retrieve the diagrams and
the respective elements of the Design Model and
identify which clements are potentially affected by
the change, with respect to the system quality in
general, The identified elements are marked, and their
post-change status specified. The status may be of
three types: update, delete or add. The update may
involve change of a property related to design or a
quality characteristic. In the casc of delete, the diagram
element is marked and its new status is visible. In case
of add, a new diagram element is introduced.

The trace-links between diagrams and diagram ele-
ments are (during the "Targer modeling® phase) doc-
umented in the form of a database, which they can
be retrieved from. Each one of the above identified
Design Model diagrams and diagram elements (except
the added ones) is searched in the existing trace-link
database (created during the model development). The
result displays the searched items being in the role of
the origin or the target element, and all the elements
that depend on them or that they are dependent on, re-
spectively. The result also displays overall meta-data,
c.g. the kinds of the trace-links and their rationale.
The retrieved (linked) elements are, by the domain
experts and the analyst, considered whether they arc
affected by the specified change. Depending on the
contents of the change and the trace-link type and
rationale, each diagram or element which, according
to the search results is linked to the elements identified
in the previous step, may be irrelevant, deleted or
updated. The updated and the deleted elements are,
on the diagrams, assigned the new (post-change) status
and meta-data.

Search in the trace-link database for all the above iden-
tified elements which have been updated or deleted,
and retrieve their trace-links to the DV model ele-
ments. Manually identify the overall DV model ele-
ments that may be affected by the change. For all the
retrieved and manually identified DV model elements,
retrieve from the trace-link database, their rationale
for the DV structure and the node semantics, Consider
whether the added design element models require new
DV nodes. Manually modify the DV structure, based

19

4)

)

on the retrieved trace-link information.

The domain experts and the analyst manually verify
the updated structure (completeness. orthogonality and
correctness) of each DVs, with respect to the 1) qual-
ity characteristic definitions provided by the Quality
Model, and 2) the modified Design Model.

The estimates of the prior parameters have 1o be
updated due to the modifications of the Design Model
and the DV structure. Due do the structural DV
modification in the previous step, previously internal
nodes may have become prior nodes, and the Els on
the arcs may now be invalid. New nodes and arcs may
have been introduced. All the earlier leaf nodes which
have become internal nodes, and all new internal nodes
are assumed to automatically be assigned the function
for the propagation model, by the DV tool. All the new
or modified arcs and leaf nodes have 1o be marked so
that the values of their parameters can be evaluated,
Manually identify the overall unmodified arcs and leaf
nodes whose values have may have been affected by
the change. In the case of the modified arcs and leaf
nodes, trace-links are used to retrieve the previously
documented rationale for the estimation of the prior
parameter values and node semantics. The parameter
values on the new and the modified arcs and leaf nodes
arc estimated manually based on the Quality Model.

Estimate the leaf node QCFs of a sub-tree prior to
cstimating the related Els. The rationale is to fully
understand the semantics of the nodes, through rea-
soning about their QCFs first. In estimating a QCF,
two steps have to be undergone:

a) interpretation of the node in question — its con-
tents, scope, rationale and relationship with the
Design Model, and

b) identification of the relevant metrics from the
Quality Model of the quality characteristic that
the DV is addressing, as well as evaluation of
the metrics identified.

When estimating a QCF the following question is
posed (to the domain experts): “To what degree is
the quality characteristic fulfilled, given the contenis
and the scope of the node?” The definition of the
rating should be recalled, along with the fact thal
zero estimate value denotes no fulfillment, while one
denotes maximum fulfillment.

In estimating an EI. two steps have to be undergone:

a) interpretation of the two nodes in question, and
b) determination of the degree of impact of the child
node, on the parent node. The value is assigned
relative to the overall Els related to the same par-
ent node, and with a consistent unit of measure,
prior to being normalized. The normalized Els
on the arcs from the same parent node have to

sum up 1o one, due to the requirement of model
completeness.

When estimating an EI the following question is posed
(to the domain experts): “To whar degree does the
child node impact the parent node, or how dependent
is the parent node on child node, with respect to the
quality characteristic that the DV is dedicated 107"
The definition of the quality characteristic provided
by its Quality Model, should be recalled and the
estimate is provided relative to the impact of the
overall children nodes of the parent node in question.
Alternatively, an impact value is assigned using the
same unit of measure on all arcs of the sub-tree, and
normalized thereafter.

Once one of the above specified questions is posed,
depending on the kind of the DV parameter, the
domain expert panel is asked to provide the estimate
with an interval so that the correct value is within
the interval with a probability given by the confidence
fevel [30].

Manually verify the updated prior parameter values,
so that the relative QCF values are consistent to each
other and the rest of the estimates, and so that Els on
the arcs from a common parent sum up (O one.

6)

If the specified change can be fully applied, it is within
the scope of the prediction models, which is a prerequisite
for proceeding 1o the next sub-phase. Otherwise, the modifi-
calions are canceled and the change deemed not prediclable
by the models as such.

Input documentation Prediction models: Design Model,
Quality Model, Dependency Views, change specification,
trace-links.

Output documentation Design Model and DVs modified
with respect to the change.

Modeling guideline

1) Relate the specified change to manually identifiable
Design Model diagram(s) and their elements,

Use the trace-links to identify the affected parts (di-
agrams and diagram elements) of the Design Model.
Apply the change by modifying (updating, deleting
or adding) the identified affected parts of the Design
Model.

Use he trace-links to identify the affected parts (nodes
and dependency links) of cach DV, by retrieving the
traces from the modified and the deleted parts of the
Design Model to the DVs, as well as the rationale for
the DV structure and the node semantics. Modify the
structure of the affected parts of the DVs,

Manually verify the updated structure (completeness,
orthogonality and correctness) of the DVs, with re-
spect to the Quality Model and the modified Design
Model.

5) Use trace-links to identify the documented rationale

2)

3

4

for the estimation of the prior parameter values. Man-
ually identify the overall prior parameters which have
been affected by the change. Use Quality Model to
modify the values of the affected prior parameters
(i.e.. Estimated Impact (El) and leaf node Quality
Characteristic Fulfillment (QCFs)).

Manually verify the updated prior paramecter values
(that QCFs are consistent relative to each other and
that Els on the arcs from a common parent sum up (o
one).

6)

Guidelines for the “Quality prediction” sub-phase

Objective The propagation of the change throughout the
rest of each one of the modified DVs, is performed. The
propagation paths and the modified parameter values are
obtained.

Prerequisites The specified change is within the scope of
and fully applied on the prediction models.

How conducted Use the DV tool support to propagate the
change. The tool explicitly displays the propagation paths
and the modified parameter values, as well as the degrees of
parameler value change. Obtain the predictions, in terms of
the propagation paths and the parameter value modification.
The result must explicitly express the changes with respect
to the pre-change values. The propagation of the change
throughout each one of the modified DVs, is performed
based on the general DV propagation model, according (o
which the QCF value of each parent node is recursively
calculated by first multiplying the QCF and El value for
each closest child and then summing up these products.
Such a model is legitimate since each quality characteristic
DV is complete, the Els are normalized and the nodes
having a common parent are orthogonal (with respect to
the quality characteristic that the DV is dedicated to) due
to the structure. The root node QCF values on the quality
characteristic specific DVs represent the system-level rating
value of the quality characteristic that the DV is dedicated to.
If the predicted parameter values are beyond a pre-defined
uncertainty threshold, the modifications are canceled and the
change deemed not predictable by the input data and the
models as such.

Input documentation DVs.

Output documentation The change is propagated
throughout the DVs, based on the DV propagation model.
Propagation paths and parameter value changes (relative (o
the original ones) are displayed.

Modeling guideline

1) Run the simulation on the DV tool, in order to obtain

the change propagation paths and the modified QCF
values of the affected non-leaf nodes of the DVs.

2) Display the changes performed on the Design Model

and the DVs (structure and the prior parameter values).

SINTEF

Technology for a better society
www.sintef.no

