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Hansteen, O. E. ANALYSIS OF STRESS DISTRIBUTION IN SHEAR WALLS BY THE FINITE

ELEMENT DISPLACEMENT METHOD

Ein umfangreiches Programm fill' Strukturuntersuchungen eines ebenen

Spannungs- und Belastungszustandes wird beschriehen. Das Programrn beruht
auf del' von Argyris, Clough, Turner u. a. angegebenen Methode. Das im Pro­
gramm verwendete Rechenprinzip 1st neu und stellt eine zllsammenfassende

Verbesserung verschiedener veroffentlichter Rechenprinzipien dar. Einer
del' hauptsachlichen GrUnde fUr die Aufstellung des Programmes war die
Untersuchung del' Spannungsverteilung in schubbelasteten Wanden. Von spe­
ziellem Interesse sind die Schubspannungen in vertikalen Verbindungen bel
Wanden aus vorfabrizierten Betonelementen in mehrstBckigen Gebauden.
Einige Rechenbelspiele werden angegeben, die den EinfluB von Ti.ir- und
Fensteroffnungen auf das strulcturelle Verhalten del' Wand demonstrieren.

~nopsis

A computer program for plane strees or plane strain analysis of structures is described. The program
15 based. on the finite element displacement method. As computational element is used a new type of tri­
angular element, with 9 nodal points and 2 internal displacement modes. Numerical examples illustrate
the accuracy of the method, and its application in analysis of shear walls.

Introduction

A number of methods exist for analysis of shear walles /1,2,3/. Generally they are based on one-dimen­
sional elastic theory, with the usual assumptions on stress and strain distribution made in this theory.

Regular vertical rowS of door and window openings are taken into account by making further simpliiying
assumptions. Among the advantages of these methods is that they can be used in hand computations.
Among the disadvantages are the uncertainties in the basic assumptions, and that irregular systems (1. e.

scattered door and window openings) cannot be properly analysed.

Shear walls are essentially plane structures in a state of plane stress. In recent years, the finite ele­
ment method has to a great extent been applied successfully to analysis of such structures. However, in

the author's opinion, the previously known element types would not be a satisfactory basis for a computer
program specifically designed to analyse shear walls. Element types with completely compatible displace­

ment fields would result in inadmissible overestimation of the stiffness of certain parts of the structure
(1. e. door beams), or would require such a large number of computational elements that the capacity of
available computers would be exceeded /8/, /10/. The convergence characteristi<:s of element types based
on displacement continuity in nodal points only were considered uncertain /6,9,12/. Therefore, the author
has derived the stiffness matrix of a new type of triangular element.

Derivation of Stiffness Matrix

The basic idea of the element displacement method is to regard the structure as an assembly of a finite
number of elements, interconnected in a finite number of nodal points. The stiffness of the structure is

represented by its nodal point stiffness matrix K, and is obtained by adding the individual element stiff­
ness matrices in an appropriate manner. K serves as coefficient matrix in a system of simultaneous

equations. The equations express the principle of minimum potential energy for the structure, which is
equivalent to the equilibrium conditions in all the nodal points. The solution vector consists of all nodal
point displacements.

To find the element stiffness matrix, one assumes for the element a finite number of displacement
modes, characterised by nodal point displacements. Because the final displacement pattern of the element

will be restricted to a linear combination of the assumed modes, it is important that these include all
essential modes. - The strains in the element are found as partial derivatives of displacements. Applica­
tion of the appropriate stress - strain relationship (Hooke's law), and of the principle of minimum po-
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tential energy, then yields the stiffness matrix. Fig. 1 shows a triangular element with 9 nodal points. The

displacement modes

(2)

(1)

7

3degmB
polynomials

of the corner nodal points 1,2,3.

Vertical unit displacement af edge paint

Horizontal unit displacementafcamer paint

j=1,2 J 3
(Index laken modulo 3)

u(x,y) = Ij+1 • Ij+2, v(x,y) = Ij+1 'lj+2

u(x, y) = mj , 1)+1 . Ij +2

v(x, y) = m j .lj +1 . 1)+2

In addition, the displacement modes

u(x,y) = Ij(x,y) and v(x,y) = Ij(x,y) j = 1,2,3

are characterised by the relative horizontal and vertical displacements
These are the traditional modes assumed for triangular elements.

yvl

Fig. 1

Plane triangUlar element

L- x,u

are allowed for. They are characterised by the displacements of the edge nodal points 4 through 9, rela­

tive to the displacements given by the traditional modes.

Finally, the internal modes

(3)

displacements of the 9 nodal points, but could

u(x,y) = 11 ' 12 ' 13 and v(x,y) = f 1 'lz '13
are assumed. They are kinematically independent from the
be characterised by displacements of an internal point.

The assumed displacement functions imply that both displacement components are represented as third­

degree polynomials in one variable along element edges. When continuity is imposed in 4 points on the
common edge of two adjacent elements, full kinematic compatibility along the whole edge will therefore
be ensured. - The assumptions also imply that computed stresses in an element are represented by second­
degree polynomials in two variables, whereas the traditional assumptions for triangular elements imply

constant stresses within an element, and more recent methods assume linearly varying stresses /7, 10/.

On the basis of the displacement assun'ptions, the 20 x 20 element stiffness matrix k is computed in
the machine, and the following relation can be set up:

k'V=[kll kle][VI ] =S= [SSI] (4)
kei kee ve e

The submatrices with indices i and e correspond to internal and external nodal point displacements and

forces. S is the vector of forces acting on the element, and v the nodal point displacement vector.• At this
stage of the computations, S only contains forces corresponding to distributed loads in the interior of the

element (i. e. own weight).

Before setting up the global stlliness matrix k and load matrix R, the internal element displacements
Vi are eliminated. Equation (4) is then reduced to

kee red•. ve = Se red. (5)
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where
k . k-1 k_

kee red. = ee - Ket i1 ""'18

and

(6)

-1 (Se red. = Se - kel kU SI 7)

The statical significance of inclusion and elimination of internal modes is perhaps best recognised if

the procedure is regarded as an application of the principle of minimum potential energy. The stresses
computed from arbitrarily assumed displacements are generally not in equilibrium internally in the ele­
ment. The minimum potential energy principle is equivalent to the equilibrium conditions, and its applica­
tion on the internal displacement modes results in the best approximation to equilibrium also locally in

the interior of the element. - Numerical computations have shown that the reduction leads to very signi­
ficant decreases in the element stlffnesses. As the reduction leads to very significant decreases in the
element stiffnesses. As the resulting stiffness still can be shown to be an upper bound to the theoretically
correct stiffness, the inclusion of the internal modes represents an equally significant improvement in the
method.

computer Program and numerical Results

The method outlined above has been incorporated in a computer programm. The programm is operating
on the Univac 1107 computer, and is mainly written in the FORTRAN IV programming language. Input to
the prCtgram consists of geometry and topology of the structure, elastic properties of the material, loads
and boundary conditions. The maximum program capacity today is 450 elements, which is sufficient for
numerous practical applications.

The present program assumes linearly elastic stress - strain relationship, with completely arbitrary
anisotropy provided for. The finite element method can, however, also be used with any other assumptions.
This would require some additional programming, and considerably more computer time for problem solu­
tion.
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For each loading case, output from the computer consists of two parts:

1. Displacements of all nodal points in the x and y directions.
2. Stresses in the element. For each element, stresses in the corners and edge midpoints are given.

For each point, the dx' dy and"xy stress components are printed, as well as the principal stresses
and their direction.

Fig. 2 shows a cantilever beam with a height/length ratio of 1/8, and with a constant shear force. This
is of course a simple one-dimensional problem where use of more sophisticated methods is normally not

justified. It has J however, proved to be a tough test for finite element representations with completely
compatible displacements. - The beam is divided into four triangular elements of the new type. Computed
stresses and tip deflection are seen to be in good agreement with elementary beam theory.

Table 1: d /~. 10-2
y t

;'Z Method 0 5 10 15 20

20 A 3,18 2,82 2,04 1,30 0,80
F.E.M. 3,18 2,87 2,01 1,30 0,76

15 A 4,24 3,44 2,03 1,06 0,58
F.E.M. 4,10 3,62 2,01 1,05 0,52

10 A 6,37 4,07 1,59 0,60 0,25
F.E.M. 7,01 4,14 1,58 0,52 0,23

5 A 12,73 3,16 0,51 0,13 0,04
F.E.M. 15,08 5,83 0,69 0,08 0,02

Table 3:" /~. 10-2
"Yt

Table 2: d/t . 10-2

>z Method 0 5 10 15 29

20 A 0 0,18 0,51 0,73 0,80
F.E.M. -0,12 0,02 0,38 0,61 0,69

15 A 0 0,38 0,90 1,06 0,98
F.E.M. -0,16 0,12 0,72 0,89 0,83

10 A 0 1,02 1,59 1,36 1,02
F.E.M. -1,09 1,00 1,39 1,15 0,81

5 A 0 3,18 2,04 1,15 0,70
F.E.M. 0,08 4,05 1,70 1,00 0,41
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~ Method 0 5 10 15 20

20 A 0 0,70 1,02 0,98 0,80
F.E.M. -0,02 0,69 0,98 0,96 0,77

15 A 0 1,15 1,36 1,06 0,73
F.E.M. -0,04 1,11 1,25 1,05 0,72

10 -A 0 2,04 1,59 0,90 0,51
F.E.M. -0,70 3,13 1,48 0,84 0,50

5 A 0 3,18 1,02 0,38 0,18
F.E.M. 3,54 4,25 0,92 0,38 0,17

Detail B
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Shear lVolllVith wind load
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Vertical stress distribution

The second example is a typically two-dimensional problem. Fig. 3 shows an infinite half-plane, with a

concentrated force normal to the free edge. The figure also shows how the problem is Simulated by divid­
ing a finite part of the plate into triangular elements. The tables in fig. 4 show the stresses computed
analytically and with the finite element method in an area close to the singular point. The stresses given
Ior the element method in any point simple averages of the element stresses in the point. In most points
no significant difference between the element stresses occur. - Only in the points closest to the singular

point differences of any significance between analytic and element method results can be observed.
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ELEMENT IDEALISATION IN STORIES

I
• • • J•

750 ·1 725 I· 1;1)0 ,I, 725 ·1 1;1)0 ·1

Fig. 6

The final example, shown in figures 5-8, is a shear wall in a IO-story bulding subject to wind load.

The wall is divided into 14 to 16 triangular elements for each story. To solve this problem, the computer
had to set up and solve a system of nearly 1300 simultaneous, linear equations. Total solution time on the

computer was 13 min. 16 sec., of which approximately 9~ min. was spent solving the system of equations.
The results cannot be checked against accepted computational methods because of the irregularity of the
system. A number of equilibrium checkS have been carried out by numerical integration of the computed
stresses, all of them with satisfactory results.

In fig. 7 diagrams for the vertical stresses at different levels are shown, and fig. 8 gives the shear
stress distribution along a vertical section. The irregular openings are seen to have cGnsiderable influence
on the stress distribution in the wall. - In prefabricated concrete element walls, the shear stresses are
of special interest, since the vertical joints have a reduced shear-carrying capacity. II one wants to assign
a reduced shear stiffness to the joints, this can eas.ily be built into the program.

Conclusion

The numerical example serve to verify the method and the program, and to demonstrate their capabilities
in solving complicated plane stress problems such as shear wall analysis. The new element type intro­
duced has some additional advantages that are worth noting:

1. The greatly reduced number of necessary elements in structure idealisation significantly facilitates
the setup of a computational model and the preparation of input data for the program.

2. With previous element types it has frequently been difficult to interprete the computed stresses. This
difficulty is greatly diminished with the new elements.

Both these factors serve to unburden the human program user, and to facilitate the practical application
of computers in structural computations. Further improvements in program capacity, efficiency and flexi­
bility of use are now being considered.
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Shear stress dfsfribution in vertical section

Fig. 8
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