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1. Iniroduction.

It is, today, possible to find numerical solutions for difference equations which
were difficult or impossible to attack a short time ago. Electronic computers usually
give the results easily and rapidly, and if, for some reason, it is not convenient to
use an electronic computer, the relaxation method gives a comparatively easy way
of arriving at the results.

The difference equations, which are therefore increasingly used for the solution
of technical and physical problems, are as a rule derived from differential equations.
The domain in question is covered by a mesh, and the differential equations for
the problem are approximated by difference equations at the nodes.

The differential equations, in their turn, are obtained from the equilibrium
conditions for the problem, written as difference equations, by passing to the limit.
They are evolved using certain assumptions as to the conditions in the immediate
neighbourhood of the point in question, which of course are correct for infinitesimal
elements, but which may not always be made when the distances between the nodes
considered are finite.

As will be shown, this procedure may lead to incorrect difference equations
when the mesh used has irregular points, caused by a not rectangular section, as
in fig. 1, and even more so when changes of material occur, as in fig. 2.

The author will show that in order to arrive at correct difference equations,
it is in many cases necessary to use the equilibrium equations for the problem as
a point of departure, deriving the difference equations directly from these, without
the detour over the differential equations. This procedure gives the same results
as approximation from the differential equations at regular points, but at irregular
points, and where the material constants change, the results may be very different.
In the solution of problems from the theory of elasticity, the main purpose of this
paper, many difficulties disappear when the equations are built up this way.

Some of the points above have also been made by Varga (1), and his results
have been used by Nohel and Timlake (2). Varga derives the difference equations
by integrating the differential equation over each homogeneous region near the
point considered, transforming the resulting integrals by means of Green’s theorem,
and then approximating the integral equations with the usual difference formulas.
In this way, some of the effects of the finite size of the elements may be taken into
account. This method can only be used where the Laplacian operator, as the only
derivation of the unknown functions, appears in the equations.




2. Application to a problem in heat flow.

The equation 4w =0 (1]
for steady state heat flow without sources, is derived from the equilibrium con-
dition that the rates of heat flow to and from any point must be equal, or

5 Au(w, —w,)F, [k, =0 . [2]
1

The usual procedure for approximating [1] for a quadratic mesh, see for
instance Southwell (3), (4), gives

(10, ~w,) = 0 [3]
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where, as will be seen, both 1, F and % have disappeared when compared to
equation [2].
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Fig. 1 Mesh with boundary of non-rectangular section.

For an irregular node, fig. 1, such as one frequently finds near the boundary,

a::: is (see Allen (5), p. 67, equation (12),
Pw 2w 2w 2w,

he — = B a_ 0 4
T E14+ 8 I & [4]

Equation [1] is therefore in this case approximated by

the finite-difference approximation for

2wg
c(1+9)

whereas [2] gives

2wy

14+¢

SN A w4—(2+%’) w, =0 (5]
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If, for instance, A had been different above the line 3 - B, it would have been
complicated to evolve the correct equation from [1], whereas no difficulties appear
when using [2].

The difference between [5] and [6] arises, as a comparison with fig. 1 will show,
from the fact that in using [1], the boundary must be supposed to run as shown
in the dotted line through B. Writing equation [2] for this latter boundary, one
arrives at equation [5].
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Fig. 2 Mesh with nodes with different coefficient of conduction in different
quadrants (Concrete wall and slab with heat insulation).

The difference between equations derived from [1] and [2] may be important
in many cases, not only when conditions as in fig. 1 prevail, but especially for problems
such as that shown in fig. 2, the caleulation of heat loss from a slab supported on
an exterior wall. In this case, as will be seen, one finds inevitably points with dif-
ferent heat conductivity in different quadrants, as at 4 and B, and it is difficult
to arrive at the correct equations starting from [1].

Heat transfer problems may perhaps be said to be the least complicated of the
problems that are usually solved by the help of difference equations. For more
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complicated problems, such as one encounters for instance in the theory of elasticity,
it is, as will be shown, still more necessary to use the equilibrium conditions as a
point of departure, in order to arrive at correct difference equations at the
boundary.

3. Application to the theory of elasticity.

As an important illustration of the foregoing, equations that can be used
for solving two-dimensional problems in the theory of elasticity are developed. In
this case, both the equilibrium equations and the equations of continuity for the
elements must be written. These will be developed for a state of plane strain; it
is a simple matter to go from these to the equations for plane stress when desired.
Both can be used for solution of many interesting problems.

The equilibrium equations in the x-direction for the element ,,0” are (fig. 3).

(1 —0o3)b,+(ta—1y) a, = 0 [7a]
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Fig. 3 Square mesh with stresses acting on central element,
The stresses are here assumed to be constant over the length of the element.
The weight of the element is taken to be acting in the Y-direction. One finds

(0 —0y) a, + (13— 14) b, + ya b, = 0 [7Db]
For a state of plane strain:

e.=0, and o.=v(o, + o,)
and by Hooke’s law

ﬁ =&y = [O':-'V(O'l, =2 i’gu)]/E = [(1 —VE)O'Q:— V(I = V)au]/E

and

= =g, =[(1-v)a, - V(L + V)a,][E




with e=E[[(1-v*) (1-v)-v*(1 4 v)], one finds

o ov
O, = Q[(l—]’)s&-‘-?g]
o, =0 [l’g%—i—(lﬂl')ég] , and
B dv . du
3 +) (%Jra_y)

The expressions for ¢, and ¢, given above can now be written as finite dif-
ferences

op=-e {(1-v)(u— nn)/Aal + v[(va - ”4)/2 4+ (v5— ”s)/z:[/(Fm -+ F1g)} [8a]
os =0 {(L-v) (va— ”u)/Aoz + v[(u; ”156)['2 e (-ul—u:,)/Q]/(F% + Fag) [8b]

with the corresponding expressions for o, and g,.

The evolution of these equations follows easily from what is said above, by
consideration of fig. 3. We have, when the vertical boundary between elements
0”7 and ,,1” is considered:

oufor = (uy—u,)[A,
the difference being taken between the centers of the elements. Further, for the
same vertical boundary line:

5”/5‘.’1 = [(vs - ”4)!2 ol ”s)/g]/(Fls + Fig)
the difference along the boundary line is here taken as the average of the dif-

ferences v,—v, and v;—wv,. The equation [8a] is of course written for the boundary
between elements 0 and 1, [8b] for 0—2.
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Fig. 4 Deformation of elements with varying dimensions.
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A4,., and F, can be found from fig. 4, as follows:
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du P
and for a, = a, @)1 —

therefore

dz~ b +b, E  b+b  \de

by 4 by
A —_ .._.;....._."_,_:
byfa; 4 bsja, i

du 6 P bjay,+ byfa, du)l(bl b._,) _ ou

and therefore

A= a-,,—;— y / (%04‘2‘%)

F _ba+bl+b:\+bs/(ba+b1 ba-l-br.)
pE 4 (a,+a,)2  (ax+a5) 2

F _bn+bl+b4+bsl( bo+b1 bnl'l_bs )
=i 4 (@+a1)2 (a3 ag) 2

The ,,A”s are counted between the centers of the elements, the ,,F”’s along
their boundary lines. The ,,F”’s are again, like the differences 50/6y taken as the
averages of the expressions for the neighbouring elements. For the meaning of the
indexes, see fig. 3. For inner points, with homogeneous material and all sections
of equal size, all A and F are equal to the mesh width a.

Further, for the shear, obtained in the same way as [8a] and [8h]

. -7, U — Uy —+ U5 —Ug

= [ A, i 2(Fy5 + Fig) ] [9a]
. Un— U, U — Vg 4 V5 — Uy

n= R+ A T e

with the corresponding expressions for 7, and 7, and G = E [2(1+v).

The equations for the moments do not here give the usual result 7; = 7,, as
the normal forces do not necessarily attack at the centerlines of the elements. In
order to examine the moment equilibrium in the least complicated way, it is
now supposed that 4,,, = F,,, = a.

One finds then

(11— 1) + (13— 70) = [(v1 + v3—20,) — (ua + uy - 2%,)] G +
+ [(25 —ug 4 27 —wg) — (v5— v + v — )] G
It will be seen that the moment is the difference between the second derivatives

of # and v at the center, plus the difference between the first derivatives at the
sides. This can be cancelled by excentricities of the normal pressures.
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Substituting [8] and [9] in [7], gives
0(1=) (g =) [ Ay + 0¥ (23— 0y -+ V5~ 25) [2(Fyg -+ Fr)
— (1=v) (2t,—1t3) [ A iy =¥ (Ve —0y + V6—5) [2(Fyg+ Fa)
+ G tg=1) 2 [Aua + o1~y + v5-00) 322 (Pt Ty

— Gty =103) 32 [ Ao H G (01 =03+ v5=0) 32 [2(Fig+ Fig) =0 [10a]
e (1=v) (va=yp) [Agn + v (uy—uy + u5—14) /2 (Fag + Fog)

—o(1-v) (vy—2y) /Am_f-’"('”l—’”a 4 ug—12u,) /2 (Fyp+ Fyg)
b b
+ G (v, — ) E%/Am + G (wg—uy + ua‘“a)&% [2(F15 + Fyg)

b b
=G (vp—17y) 0_2 /A03_G('uz"u4+ “a—ﬂv)?:/?‘(Fas +Fy) + 70 =0 [10b]

For inner points and homogeneous material, with all « =% and 4 and F
equal to @, [10] gives

e(1—v) (uy + u3—2u,) + G (12 + wy— 22%,) +

+ (ev+ @) (vs—vg—v5+ ;) [4 = 0 [11a]
e(1-v) (va 4 vy—29,) 4 G(vy + v3—2) +
+ (ov + @) (us—ug—ug + u;) [4 4+ ya*= 0 [11D]
The following expressions for the stresses are now obtained
oy = o(1—v) (13 —p) + ov(vs + v5—v,—vg) [4 [12a]
os = o(1—v) (v2—vy) + ov(u; + us—ug—1g) [4 [12Db]
7 =G (v, — ) + G (g + 25— uy—ug) [4 [12¢]
o = G (U —p) + G (vy + v5—v3—v,) [4 [124]

Equations [11] are the same as would be found taking the differential equations
for the plane state of strain, and substituting differences for the differentials, see (6).
This checks that the equations [10] are correct. But at the boundary and at all
irregular points very different results are to be found, just as in the case of equations
[5] and [6].

At free surfaces, the expressions corresponding to ¢ and r in the equations
[10a] and [10b] must be put equal to zero, or the value of the exterior loading
must be introduced instead of these. Thus, for conditions as shown in fig. 5, the
part corresponding to 7, in [10a] must be made equal to zero, and in [10b] p must
be substituted for the part corresponding to ..

In the expressions corresponding to the shears, the differences must be written
correspondingly, for instance, fig. 5,

it

FITOyCes:




| | | EaG=0
[ +6| +2| +5 T=0
i . 4
7 rd -’//! n’/.-(/ I( rr7r 77
TErer T —
EEUEAROECE
P

Fig. 5 Boundary conditions for a free boundary with normal load p.

L.
oy

For point P in fig. 6, one finds

[(vg—v4)[2 + (v1—5) [ 2]/ F1g

v
oy

Vp— Yy
2F 5

Vs — Vg
2(F 5+ F1g)

- ]

as before, this is for the vertical boundary between elements 0—1.
Instead of the equations [11], one finds for point zero in fig. 5:

o e(1=v) (ug + uy—2ug) +ev (v —vg—vy + v;) [2 4
+ G (uy—uy) + G(og—vy + v, —vg) [4 = 0

e(1—v) (v3=vy) +ov (U —ug + uy—u,)[ 4 +
+ G(uy—ug—uy + u;) [ 2 + G(v, + v3-22,) + pa + ya* =0

At fixed boundaries, % and » must, of course, be made equal to zero.
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Fig. 6 Section with vertical wall. Deformations from weight of section.
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For the stresses, instead of [L2a], for surface conditions as in fig. 5, it is found

that
oy = e(1—v) (g — ) + v (¥ — vy + vy — vg)/2

If, as is often the case, the line 3—0—1 had been placed on the boundary, one
would have b, = b, = b, = 0,5a, and correspondingly different values for 4, ete.,

In order, however, to get as small a number of different expressions as possible,
it is usually advantageous to locate the last mesh-centerline half a mesh width
from the boundary, as shown in fig. 5.

4. Example.

Fig. 6 shows a section with vertical wall, subject to its own weight. The bound-
ary conditions are taken to be # = v = 0 at the depth shown in the figure. At a
sufficient distance to the right and left of the wall, v = 0 and one finds, with
v=0,45

{s

_ v{14v)

o, = nya, Op =" Ov= 0.816 g,

Be, = (1-v¥)o,—v(1+v)o, = 0,265 g,

ov] by [Jv by :
Y= 1 —| = —\| = fig. 3
This gives, with
ya? va,® r
TR N - . T
e(l —v) ¥ ’
} Gy ‘ O Be, | ”
A 5,56 ya 4,49 ya 1,469 ya - 0,73 yuz = 297k
B 4.5 ,, 3,67 ,, 1,191 ,, -2,06 ,, - 9,78 ,,
C 3,5 ,, 2,86 ,, 0,929 ,, -3.12 - -11,82,,
D 230 55 2,04 ,, 0,663 ,, -3,91 -~ 14,80 ,,
E 1,6 ., 1,22 ,, 0,398 ,, —4.44 - 16,81 ,,
r 0,6 ,, 0,21 ,, 0,133 ,, -4,71 ,, -17,81 ,,

Corresponding values must be calculated for the points 4'—C1.

The equations [11] and [15], with variations for instance for point P which
will be obvious when considering equations [13] and [14], can now be written for
all points. The solution is obtained quickly (and cheaply) from an electronic
computer, and is given in fig. 6.

The deformations when the body is subject to its own weight are given here.
By subtracting these values in all points from the vertical deformations in a section
with horizontal surface, as given in the table above, the deformations caused by
an excavation can be found.

If desired, a finer net can be introduced near the corner, and the deformations
here can thus be found with the desired exactitude.
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SUMMARY
Difference equations used for solution of physical problems are usually obtained

from differential equations, which were originally obtained from equilibrium con-
ditions by passing to the limit. The author shows that this double step frequently
leads to incorrect difference equations near the boundary and at other irregular
points, and to difficulties in satisfying the boundary conditions. It is shown that
it usually is simpler, and frequently more correct, to evolve the difference equations
directly from the equilibrium conditions.

A solution of a problem from the theory of elasticity is given as an example.
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