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l. Introduction. 

It is, today, possible to &d numerical solutions for difference equations wbich 
w e e  difiicult or impossible to attaclr a short time ago. Electronic computers usualiy 
give the results easily and rapidly, and 3, for some reason, i t  is not convenient to 
use au electronic computer, the relaxation metliod gives a comparatively easy r a y  
of arriving a t  tlie resiilts. 

Tlie difference equations, which are therefore increasingly used for the solution 
of technical and physical problems, are as a rule derived from differential equations. 
The domain in question is covered by a mesli, and the differential equations for 
the problem are approsimated by difference equations a t  the nodes. 

Tlie differential equations, in their turn, are obtained from the equiiibrium 
conditions for the problem, written as difference equations, by pussing to tlie limit. 
They are evolved using certain assumptions as to tlie eonditions in tlie immediate 
neighbourhood of the point in question, which of course are correct for infinitesimal 
elements, but mhicli may not always be made when the distances between the nodes 
considered are finite. 

As mill be sliown, tliis procedure may lend to incorrect difference equations 
wben the mesh used Iias irregular points, caused by a not rectangular section, as 
in fig. 1, and even more so when clianges of material occur, as in fig. 4. 

The author dl show that in order to anive a t  correct difference equations, 
it is in many cases necessary to use the equilibrium equations for the problem as 
a point of departure, deriving the clifference equations directly from these, mithout 
the detour over the differential equations. Tliis procedure gives the same results 
as approximation from the differential equations a t  regular points, but at irregular 
points, anil mhere the material constants change, the results may be very different. 
I n  the solution of problems from the theory of elasticity, the main purpose of tliia 
paper, many difficulties disappear mhen the equations are built up this may. 

Some of the points above have also been made by Varga (l), and lus resnlts 
have been used by Nohel and Tintlake (4). Varga derives the difference eqnations 
by integrating the differential equation over each homogeneous region near the 
p i n t  considered, transforming the red t ing  integrals by menns of Green's theorem, 
and then approximating the integral equations witli the usual difference formulas. 
In this way, some of tlie effects of the k i t e  size of the elements may be talten into 
account. This method can only be used mhere the Laplacian operator, as the only 
derivation of tlie unluiown functions, appears in the e-tions. 



2. Application to a problem in heat flow. 

The equation A zu = O [il 
for steady state heat flow without sources, is derived from the equilibrium con- 
dition that the rates of heat flow to and from any point miist be equal, or 
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CA, (20, - 20,)P,/fipn = O 
1 

Pl 

The usual procednre for approximat.ing [l] for a quadratic mesh, see for 
instance Soz~tJ~zuell (3), (4), gives 

mhere, as will be seen, both A, P and 7~ have disappared when compared to 
equation [$l. 

Fig. 1 Mesh with boundary of non-rectangular eection. 

For an irregular node, fig. 1, such as one freqnently finds near the boundary, 
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the £bite-difterence approsimation for - is (see Allen (5), p. 67, equation (13), 
J 9  

Equation [l] is therefore in this case approximated by 



Lf, for instance, ri liad been different above the line 3 - B ,  i t  mould have been 
complicated to evolve the correct equation from [l], whereas no ilifficulties appea.r 
when using [?l. 

The differenco between [5] and [6] arises, as a comparison ~vith fig. 1 mill sliow, 
from the fact that in using [l], the bounclary must be supposed to run as s h o m  
in the dotted line tlirough B. Writing equation [2] for tliis latter boundary, one 
arrives at  equation [5]. 

Fig. 2 Mesh with nodes with different coefficient of conduction in different 
cluadrants (Concrete wall and slab with heat insulation). 

The difference between equations derived from [l] and [g] may be important 
in many cases, not only mlien conditions as in fig. 1 prevail, biit especially for problems 
such as tliat sliomn in fig. 2 ,  the caloulation of heat loss from a slab supported on 
an e-xterior wall. In this case, as wvill be seen, one finds inevitably points witli dif- 
ferent lieat conductivity in different quadrants, as a t  A and B, and i t  is clifficult 
to arrive a t  the correct equa.tions starting from [l]. 

Heat transfer problems may perhaps be said to be the least complicated of the 
problems that are iisually solved by the help of difference equations. For more 



complicated problems, such as one encounters for instance in tlie theory of elasticity, 
it is, as \vill be sho\vn, still more necessa.rjr to use the eqiiilibrium condit.ions a.s a 
point of departure, in order to arrive a t  correct clifference equations at  tlie 
boundary. 

3. Application to the theory of elasticity. 

As an important illustration of the foregoing, equations that can be used 
for solving tmo-dimensiond problems in the tlieory of elasticity are developed. In : 

tIiis case, both the equilibrium equations and the equations of continuity for the 
elements must be mitten. Tliese \vill be developed for a state of plane strain; it 
is a simple metter to go from tliese to tlie equations for plane stress mhen desired. 
Botk can be rised for solution of many interesting problems. 

(a, - Q,) b, + (r2 - r,) a, = O [7 a.1 

i The equilibrium equations in the x - h c t i o n  for the element ,,OJ' are (fig. 3). 

Fig. 3 Square mesh with stresses actiig on central element. 

The stresses are here assumed to be constant over the length of tlie element. 
The meight of the element is talren to be acting in the Y-direction. One £inds 

(Q2 - ad) a, + (r,  - r31 bo + l ~ a ~ b ,  = 0 [7bl 
For a state of plane strain: 

E =  = O, and a= = V (Q, + Q,) 

and by Hoolce's law 

Su - = E, = [g, - V (c, + VQ= + va,)]/E = [ ( l  - v ? ) ~ ,  - il ( I  + v)a,]/B dx 

and 



mitli r = E / [ ( l  - v2)  ( 1  - 11) - ip2(1 + v)], one finds 

The expressions for a, and u, given above can nom be ~vritten as finite dif- 
ferences 

ul=  e i (1 -v )  ( z ~ - ? L , , ) / & ~  + ~ I [ ( v ~ - v ~ P +  (v5-v8)/2I/(FlS [sal 

u2= r ~ ( ~ - V ) ( V ~ - V ~ ) / A ~ + ~ ~ [ ( T ~ ~ - ? L ~ ) / ~ +  ( ~ . - T L ~ ) / ~ ] / ( F ~ ~  [g bl 

with the corresponding expressions for u3 and u,. 
The evolution of tiiese equations follows easily from wliat is said above, by 

consideration of fig. 3. We liave, mlien the vertical boundary betmen elements 
,,O" and , ,I" is considered: 

St&/Sx = (u, - a.)/A, 

the differenoe being talien between tlie centen of the elements. Purtlier, for the 
same vertical boundary line: 

the differenco along the boundary line is Iiere talien as the average of the dif- 
ferences v,-v4 and v,-v,. The equation [Sa] is of course written for the boundary 
between elements O and 1, [Sb] for 0-2. 

Fig. 4 Deformation of elements with varying dimensions. 

A,, and Fm, can be found from fig. 4, aa foliows: 



du 
and for al = a2 

P 
(H)'= E(4+b2) '  

therefore 

and therefore 

Fl8 = 
b , + b , + b 4 + b ,  

4 1 ( + (a,+ a,) 2 

The ,,AWs are counted between the centers of the elements, tlie ,,P"' a,long 
their boundary lines. The ,,FJ's are again, lilre the differences 6vl8y tal- ,en as the 
averages of the espressions for the neiglibouring elements. For the meaning of the 
indeses, see fig. 3. For inner points, with I~oniogeneous material and all sections 
of equal size, all A and F are equal to tlie mesh vvidth a. 

Further, for the shear, obtained in the same way as [Sa] and [8b] 

with the correspondhig espressions for .t, and T,, and G = EIS(1 +i,). 

The equations for the moments do not here give the usual result .c, = T, as 
tlie normal forces do not necessa.rily attacl; a t  the centerlines of tlie elements. In 
order to exarnine tlie moment equilibrium in the least complicated way, i t  is 
now supposed that A,,, = P ,,,, = a. 

One finds then 

(r1 - 5) + (r3 - ra) = [(v1 + v3 - 2 ~ ~ )  - (15 + w4 - 3 ~ ~ 1  G + 

I t  Tvill be seen that the nioment is the ctifference between tlie second derivatives 
of ?t and v a t  the center, plus the difference between the first derivatives a t  the 
sides. Tliis can be cancelled by escentricities o£ the normal pressures. 



Substituting [B] and [g] in 171, gives 

o ( l - ~ ~ )  ( U I - P C ~ )  /Aol + ail(vz-v, + ~ 5 - v ~ )  /"(Fis +Fl,)  

- o ( l  - J , )  (?lo- 76,) /Ao3 - ai1 (V,  - v4 f v6 - v7) 12 (F,, +Fm) 
a0 a0 + G ( ~ C ~ - ~ , ) - / A , + G ( ~ ~ - ~ ~ + V ~ - V , ) -  2 ( F 3 5 + l a )  
bo 6 . 1  

For inner points and homogeneous material, with all a. = b and A and F 
equa.1 to a, [lo] gives 

@ ( l - V )  ( q % + ? ~ , - 2 z i ~ )  +G( -+  ? c ~ - ~ ? L , )  + 
f (@i1 + G )  ( V ~ - V ~ - V ,  f v7) / 4  = O [lial 

The following espressions for tlie stresses are now obtained 

al = a ( 1  -11) ( ? c ~ - ' ~ L ~ )  + @ I ~ ( V ~  + v5-v4-v8) 14 [l 3 a] 

= @(l-11) (v3-vO) + @i'(% + ' I G ~ - U , - U ~ )  14 [Hb] 
1 --. -. .- 4 

= G(Vl-v0) +G(?$ + ?l5-?l4-?d8) /4 [l%] 3 
5 2  

- A  

% = G(PL~-'IL, , )  + G(vl + v5-V,-va) 14 [i 2 d] 

Equations [ l 1 1  are the same as mould be found talring the differential equations 
£or the plane state of strain, and substituting differences for tlie differentials, see (6). 
This checlrs tliat the equations [lo] are correct. But a t  the boundary and a t  all 
irregular points very different results are to be found, just as in the case of equations 
[o] and [G]. 

At free surfaces, the expressions corresponding to a and t in the equations 
[loa] and [lOb] must be put equal t o  zero, or the value of the exterior loading 
must be introduced instead of these. Thus, for conditions as shomn in fig. 5,  the 
part corresponding to r, in [loa] must be made equal to zero, and in [lOb] 11 must 
be substituted for the part corresponding to u,. 

In the eqressions corresponding to tlie shea.rs, the clifferences must be mitten 
correspondingly, for instance, fig. 5 ,  



Fig. 5 Boundary conditions for a free boundary with normal load p 

For point P in fig. 6, one finds 

as before, this is for the rertical houndav between elementa 0-1. 
Instead of the equations [Il], one finds for point zero in fig. 5: 

At fised boundaries, 71 and v must, of conrse. be made equal to zero. 

Fig. 6 Section with vertical w a .  Defonnations from weight of section. 

10 



For the stresses, instead of [lZa], for surface conditions as in fig. 5, it is found 
that 

al = @(l - V )  ( z G ~ - ~ ~ , )  + ev(vo-vr + vi-v,)/2 

Jf, as is often the case, the line 3-0-1 had been placed on the boundary, one 
would have b, = b, = b, = 0,5a0 and correspondingly different values for A,, etc., 

In order, however, to get as small a number of different expressions as possible, 
it is usually advantageous to Iocate the last mesh-centerline half a mesh width 
from the boundary, as shown in fig. 5. 

4. Example. 

Fig. 6 shows a section with vertical wall, subject to its own weight. The bound- 
ary conditions are talren to be ?L = v = O a t  the depth shown in the figure. At a 
sufficient distance to the right and left of the wall, v = O and one finds, with 
v = 0,45 

a,, = nya, g,= u" = 0.816 ov 
1 - v 2  

(fig. 3) 

This gives, mritli 

7c = ya2 -- Y~~ - 3,79 k 
Q ( ~ - V ) '  E 

Corresponding values must be calculated for the points Al-C1. 
The equations [Il]  and [15], 1~4th variations for instance for point P which 

will be obvious when considering equations [l31 and [14], can now be written for 
all points. Tlie solution is obtained quickly (and cheaply) from an electronic 
computer, and is given in fig. 6. 

The deformations when the body is subject to its o\m weight ase given here. 
By subtracting these values in all points from the vertical deformations in a section 
with horizontd surface, as given in the table above, the deformations caused by 
an escavation can be found. 

If desired, a finer net can be introduced near the corner, and the deformations 
here can thus be found with the desired exactitude. 
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S UMMARY 1 

Difference equations used for solution of physical problem8 ase usualiy obtained 
from differential equations, nhich wen originally obtained from equiiibriuni con- 1 
ciitions by passing to the limit. The author shows that this double step frequently 
leads to incofrect clifference equations near the boundary and a t  other irregular 1 
points, and to diEiculties in satisfying the boundary conditions. It is shom that i 
i t  osually is simpler, and frequently more correct, to evolve the differenee equations 
clirectly from the equilibrium conditions. 

A solution of a problem from the theory of elasticity is given as an example. 
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