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1 Introduction 
STAS (State Space Analysis of Offshore Wind Power Plants) is a program for the analysis of 

offshore wind power plants as a unified, linear state space.  The program consists of modules which 
generate portions of the state space, which are then linked (using Equation 1.4) to form the 
assembled model.  This report describes the module which generates state matrices describing the 
aeroelastic dynamics of the individual wind turbines in the plant.  Although the resulting state 
matrices are intended for use as part of the STAS program, they can also be used independently, for 
aeroelastic stability, control design, or preliminary estimates of design loads. 

The model is representative of the state-of the art in wind turbine analysis.  The blade-
element momentum method is used for the aerodynamics, and the structures are represented  by 
finite element beams.  The equations are linearized about a steady-state operating point, which is 
specified as input.  The module outputs the state matrices describing fluctuations about the 
operating point.  As these fluctuations are modelled as linear, the model is not valid far from the 
steady-state operating point.  In general, it can be expected that the linearized model will provide 
reasonable estimates of the stochastic response of the wind turbine to normal levels of turbulence 
( 0.1)u uσ ≈ , but not extreme loads. 

Creation of a linear state-space model is motivated by three things.  First, such linear models 
are useful in control system design.  It is typical to use highly simplified models when designing 
and tuning a control system.  However, if one proposes to use additional sensors, like strain gauges 
or accelerometers, as control inputs, then it is important to have a good model for the data obtained 
from these sensors.  Even high-frequency dynamics can impact the relative phase between the 
excitation and control response, which is important for active damping, so it is useful to have a full 
linear model of the wind turbine.  Such a model may also be useful in optimal control algorithms. 

The second reason to use a linear model is the speed of frequency-domain calculations.  For 
a stochastic estimate of lifetime loads, a calculation in the frequency domain is orders of magnitude 
faster than a corresponding calculation in the time domain.   

The third reason is that frequency-domain estimates of stochastic loads do not involve 
random numbers.  They are perfectly repeatable functions of the design parameters, and can be 
made numerically smooth, for use in gradient-based optimization algorithms. 

1.1 A Linear State-Space Model of a Wind Turbine 
A linear state-space model can be written in the standard form: 

 
d
dt

= +
x Ax Bu  

= +y Cx Du , 
(1.1)  

where x is a vector of system states, u is a vector of inputs, and y is a vector of outputs.  It is 
evident from the expression = +y Cx Du  that the outputs can be chosen as any system variable 
that can be written as a (linearizable) function of states and inputs. 

In the present model of a wind turbine it is convenient to work with a different form of the 
state equations: 

 
d
dt

= +
xL Ax Bu  

= +y Cx Du , 
(1.2)  

where we now permit a square matrix multiplying the time derivative of the state vector.  The 
systems (1.1) and (1.2) are equivalent, and the matrix L can be inverted to recover (1.1).  
Computationally, however, this is undesireable, as L is a sparse matrix, while its inverse may be 
full. 
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1.2 A Linear State-Space Model as a Collection of Linked Modules 
It is not convenient to write the state equations for the system directly in the form of 

Equation 1.2.  It is much preferable to isolate parts of the calculation, and write their behavior in 
the standard form using local, rather than global, inputs and outputs. 

Let the system be represented as a collection of linked modules, each of which has a local 
state-space representation, with local inputs, outputs, and states.  Let every link between two 
modules be an element of the global output vector y.  Now, isolating each module in turn, it is 
possible to write: 

 
u y

d
dt

= + +
xL Ax B u B y  

u y= + +y Cx D u D y . 
(1.3)  

Here u still represents the vector of global inputs.  The y on the left-hand side of the equation 

u y= + +y Cx D u D y  contains the rows of equations associated with the local outputs from the 
module.  The y's on the right-hand side, Byy and Dyy, contain entries associated with local inputs.  
Each local input is, by definition, a local output from one of the other modules.  Note that the 
diagonals of Dy are zero.  An appropriately constructed block diagram, in the present context, will 
not have the output of a module fed directly back to the input of the same module. 

The rows of state and output equations for all the modules are collected into a global state-
space, still in the form of Equation 1.2.   This can then be manipulated to eliminate y from the 
right-hand side: 

 
1 1( ) ] [ ([ ) ]y y u y y u

d
dt

− −− + + −= + I D CxL x B B I DA B D u  

1 1( ) ( )y y u
− −= −+− Cxy D I D uDI  . 

(1.4)  

Equation 1.4 is now in the linear state-space form of Equation 1.2.  All links between modules are 
accounted for by a series of automated matrix operations. 

The procedure for generating a global, linear, state-space representation is thus as follows.  
The system is broken into modules, each of which represents a given operation or physical process.  
For each module, governing equations, which may be nonlinear, are derived in state-space form.  
Using perturbation theory, the first-order terms are collected, and higher-order terms discarded.  
Discriminating between global and local inputs, the linear equations are written in the form of 
Equation 1.3; this is manipulated into standard form, as shown in Equation 1.4. 

1.3 Linear Analysis of Wind Turbines 
Simplified, linear models of wind turbines are frequently employed in the analysis of control 

systems and electrical systems.  For instance, for electrical system studies, Ellis et al. [9] 
recommend a two-mass model – one rotational inertia for the rotor and one for the generator – 
described by a linear differential equation.  Leithead and Connor [19] describe a linear model for 
use in control system design. 

More advanced linearized models are used to analyze the aeroelastic frequency, damping, 
and stability properties of wind turbines.  Sørensen et al. ([28],[29]) describe a frequency-domain 
method which is in many respects identical to the present one, although the derivation is based on 
transfer functions.  The structural model and the aerodynamics are simplified with respect to the 
present program.  The methods described by Hansen ([10],[11]), and developed into the 
HAWCStab2 program, extend the work of Sørensen to include a more advanced representation of 
the aerodynamics.  In addition, aeroelastic analysis software such as Bladed and FAST provide the 
ability to linearize the model about a chosen operating point, giving azimuth-dependent state 
matrices. 
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There is a history of using linear methods to estimate design loads.  This is one of the stated 
purposes of Sørensen's method [28].  Burton et al. [5] provide a method for the estimation of the 
stochastic response of a wind turbine blade, based on a linearized aerodynamic and structural 
model.  The TURBU Offshore software, as described by van Engelen and Braam [30], employs 
frequency-domain analysis, and is intended for rapid design load estimation.  For some stochastic 
load cases, frequency-domain methods may provide reasonable estimates of extreme loads.  Merz 
([20],[21]) describes methods for extreme load prediction, and comparisons against nonlinear 
simulations. 

The present model is similar to that implemented in the HAWCStab2 and TURBU programs, 
and is expected to give similar results, as demonstrated in Section 5.2.2.  The model has been 
developed in Matlab/Octave, as part of the STAS wind power plant analysis program, for ease of 
integration with existing electrical system models. 

1.4 Notation and Coordinate Systems 
Vectors and matrices are denoted with a bold font, for instance the state vector x and matrix 

A.  When a vector or matrix has a certain coordinate system as a basis, then this is indicated by the 
use of a superscript.  It may be important to keep track of two coordinate systems, one the basis in 
which the components of a vector are expressed, and another relative to which the vector is 
measured.  In this case the basis is indicated by a superscript, and the relative is indicated by a slash 
in the subscript.  Thus the position of a node r – that is, the length of the vector – might be 
measured relative to the global coordinate system, but the components expressed in a local body 
coordinate system; this would be written as /

B
gr . 

Subscripts are frequently used in other contexts as well.  When a spatial vector has a 
subscript, for instance the induced velocity Vi, then one of the spatial components is indicated by 
an additional subscript outside a parentheses; so the Zr component of the induced velocity, a scalar, 
would be written ( )r

i ZV .  Subscripts never denote derivatives. 
The structural and aerodynamic analyses employ a variety of coordinate systems.  Most of 

these are sketched in Figure 1.  For clarity, the following description is given as if the structure 
were rigid.  The formulation of structural displacements in Section 3 allows for small elastic 
rotations which may incrementally misalign the various coordinate systems. 

The global coordinate system is located at the base of the tower, or equivalently the top of 
the transition piece.  The Xg axis is parallel with the undisturbed ocean surface and indicates the 
direction of zero yaw angle; at zero yaw, the Xg axis points downwind.  The Zg axis is normal to the 
undisturbed ocean surface and typically passes through the center of the undeformed tower. 

The yaw coordinate system indicates the position of the yaw bearing.  At zero yaw it is 
aligned with the global coordinate system.  Positive yaw angle involves a rotation about the 

y gZ Z= axis. 
The nacelle coordinate system is aligned with the axis of rotation of the driveshaft.  The Zn 

axis points in the direction of the Xy axis, except that it is rotated about the Yy axis by the driveshaft 
tilt angle δ : positive tilt angle raises the rotor hub.  Note that the yaw coordinate system is the 
reference coordinate system for the nacelle structure.  The "nacelle" coordinate system serves as an 
intermediate frame against which driveshaft rotation is measured. 

Thus, the driveshaft coordinate system is rotated, with respect to the nacelle coordinate 
system, by the azimuth angle ψ  about the d nZ Z=  axis. 

The rotorplane coordinate system is used in the aerodynamic analysis.  It is aligned with the 
nacelle coordinate system, but has its origin at the center of the rotor hub.  Quantities expressed in 
rotorplane coordinates have in general an "axial" component, in the Zr direction, and a "tangential" 
component, which is tangent to a particular radius, for instance 

 ) ) sin ) cos( : ( (X
r r r
i t i b bYiψ ψ= − +V V V . (1.5)  
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This decomposition of the coordinates is convenient, because the spanwise component of relative 
velocity is neglected when computing aerodynamic forces. 

The remaining coordinate systems occur in triplets, one associated with each blade.  The hub 
coordinate systems is not shown in Figure 1.  Its origin is the same as the rotorplane coordinate 
system, at the center of the rotor hub, and the Xh axis points from the axis of rotation to the pitch 
bearing.  The hub coordinate system is aligned with the driveshaft coordinate system for Blade 1, 
and is rotated about the h dZ Z=  axis by the blade offset angle of 2 3π  for Blade 2 and 4 3π  for 
Blade 3. 

The blade coordinate system is located at the pitch bearing.  It is rotated, with respect to the 
hub coordinate systesm, about the h bY Y=  axis by the blade cone angle φ .  (The blade cone angle 
is not shown in Figure 1.) 

The blade pitch coordinate system is offset from the hub coordinates system by rotation 
about the b pX X=  axis by the negative of the pitch angle.  The negative sign is required such 
that, by convention, positive pitch rotates the leading edge of the blades into the wind. 

There are additional coordinate systems associated with each blade element in the 
aerodynamic analysis.  These are shown in Figure 2.  The section coordinate system is offset from 
the pitch coordinate system by rotation about the p sX X=  axis by the negative of the blade 
aerodynamic twist angle.  The airfoil coordinate system is the traditional one used to represent lift 
and drag, or normal and chordwise, forces.  The origin is one quarter-chord aft from the leading 
edge, and the Xa axis lies along the chordline. 

Structural finite elements also have an associated section coordinate system.  This is 
described in Section 3. 
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Figure 1: Important coordinate systems and angles used in the wind turbine model.  The wind turbine structures are 
represented by beam finite elements.  Rotating nodes are shown by black dots, and fixed nodes by gray dots.  White dots 
show joints.  All joints restrain 5 degrees-of-freedom, allowing one rotational degree-of-freedom, with the exception of 
the front driveshaft bearing, which restrains only Xn and Yn displacements. 
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Figure 2: Coordinate systems associated with each airfoil section.  The aerodynamic coordinate system passes through a 
point 0.25c aft of the leading edge, where c is the chord length.  The section coordinate system passes through the blade 
pitch axis. 

1.5 Maps of the State and Output Vectors 
Table I lists the state, input, and output vectors, along with the dimension of each set of 

variables.  The states include the position and velocity of the structure, transformed into mode 
shape amplitudes; intermediate variables associated with dynamic inflow; the induced velocity; the 
effective angle-of-attack, including the effects of circulation lag and dynamic stall; and 
intermediate variables associated with circulation lag.  Inputs are axial and tangential components 
of turbulence at each blade element, and a vector of nodal forces.  Outputs are the position and 
velocity of the structural degrees-of-freedom, in body coordinates; the velocity of the structural 
nodes relative to the global coordinate system; the velocity of the blade nodes, relative to the global 
coordinate system, and expressed in terms of rotorplane coordinates; the quasi-steady induced 
velocity; the quasi-steady angle-of-attack; the effective angle-of-attack including circulation lag; 
lift and drag coefficients; lift and drag forces; aerodynamic forces expressed in rotorplane 
coordinates, section coordinates, and blade pitch coordinates; and finally aerodynamic nodal forces.  

DOFN  is the number of structural degrees-of-freedom of the unconstrained bodies, rDOFN  is the 
number of reduced modal degrees-of-freedom including constraints, bN  is the number of blades 
(always 3 in the present implementation of the code), ebN  is the number of aerodynamic elements 
per blade 
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Table I: A list of states, inputs, and outputs

 

2 Aerodynamics 
The aerodynamic model is based upon the blade-element momentum method.  The model 

includes Prandtl's tip loss function, dynamic inflow, circulation lag, and dynamic stall. 
The modules can be organized as follows.  Momentum balance and dynamic inflow are used 

to compute induced velocities r
iv .  The induced velocities are used in the calculation of the 

instantaneous angle-of-attack qα  on each airfoil.  The change in circulation (lift) of the airfoil is 
modelled as a time-lag on the instantaneous angle-of-attack, and dynamic stall is a time-lag on the 
circulation, resulting in modified lift and drag coefficients Lc  and Dc .  The lift and drag forces Lf  

and Df  follow from the coefficients, together with the local velocity magnitude.  Coordinate 

transforms convert lift and drag forces into rotor coordinates ( r
af , needed for momentum balance) 

and pitch coordinates ( p
af , needed for the structural model). 

2.1 Momentum Balance 
Momentum balance is used to determine the induced velocities at the rotor plane.  The 

momentum balance equation is 

 ( )02r r r r
a i ifAfr= − +F V n V Vn � , (2.1)  
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where r
aF  is the normal (axial) and in-plane (tangential) force on the blade element, 0

rV  is the 

wind velocity vector at the location of the airfoil, r
iV  is the induced velocity vector, n  is the 

normal to the rotorplane, f  is Prandtl's tip-loss function, A  is the portion of the rotor swept area 
associated with the blade element, and ρ  is the air density.  In terms of perturbed and steady-state 
variables, and including a q subscript to indicate that here the induced velocity is the quasi-steady 
(as opposed to dynamic inflow) value, 

 ( ) { } ( )2 2
0 0 0

1( ) (
2

)r r r r r r
iq iq z iq Z iq Z t a au fV u

Afr∞+ +  + + = − + +V V v Fv f . (2.2)  

Here r
iqv  is a local output and uz, ut, and r

af  are local inputs.  Globally, r
iqv  and r

af  are intermediate 
variables, part of the vector y, while uz and ut  are global inputs, part of the vector u.  Linearizing 
Equation 2.2 gives 

 
0

0 0

1( (
2 ( 2 2

( )
) )

) )(

r
iq Zr r

iq Z z a Zr r
iq Z iq Z

u
V Af Vf fr∞ ∞

−
+ +

= −
  

v f
V

V

V
 (2.3)  

 

 

0 0

0 0

0

0 0

0

(
( 2 (

(
2 2

( ) ( )
) 1

) )

( )
)

( ) ( )

)
(

1 ( .
2 )

r r
iq iq Zr

iq t zr r
iq Z iq Z

r
iq r

a Zr r
iq Z iq Z

r
a tr

iq Z

t

t

f f

f

f f

f
u

V V

Af V V

Af V f

r

r

∞ ∞

∞ ∞

∞

 
= −

+ +

+
+ +

−
+


  

      

  

V V

V

V V

V

v
V V

f

f

 (2.4)  

This is consistent with the modular state space form u y= +y D u D y .  Note that the tip-loss 
function f is assumed to be constant. 

2.2 Dynamic Inflow 
Dynamic inflow is modelled by the time-lag function of Øye, as described by Hansen [14].  

The equations are 

 
1 1

1ˆ 1 0.ˆ 6
rr
iqr ri

i iq

d
dt

d
dt t t

+− +=
v v

v v  (2.5)  

 

 
2 2

1 ˆ1r
r ri
i i

d
dt t t

= − +
v

v v . (2.6)  

This form of the equations is not ideal because r
iqd dtv  is directly proportional to the global input 

uz.  This would lead to imaginary terms, proportional to iω , in the By matrix, which would 
complicate calculation of transfer functions.  We introduce a variable 

 0 6ˆ .r r
i iq−=s vv ; (2.7)  

then Equations 2.5 and 2.6 can be written 

 
1 1

1 0.4 r
iq

d
dt t t

= − +
s s v  (2.8)  

and 
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2 2 2

1 0.61r
r ri
i iq

d
dt t t t

+ += − sv v
v

. (2.9)  

These are linear differential equations, and fit directly into a state-space representation 

yd dt = +x Ax B y . 
The time constants are computed as [14] 

 1
1.1

1 1.3 2
D

a V
τ

∞

 
=  −  

;          
2 2

0 0 )( ()r r
i Z tiV V

a
V∞

+
=  (2.10)  

and 

 
2

2 1
20.39 0.26 r
D

ττ
  = −  

   
. (2.11)  

The time constants are evaluated at the steady-state values, and are not updated with fluctuations in 
the induction factor a. 

2.3 Instantaneous Angle-of-Attack 
The instantaneous angle-of-attack can be determined from the state of flow local to the 

rotorplane.1  It is most convenient to work in rotorplane coordinates.  Figure 3 shows the cross-
section of a blade, together with the flow components that form the local velocity vector V. 

 

 
Figure 3: Velocity triangle of local flow at the airfoil 

From the velocity triangle in Figure 3, it follows that 

 ( ) 0
0 0 0

0 0

( ) ( () )
tan ( )

( ) ( ) ( )

r r r
s z i Z i Z Z

q q X r r r
t i t i t t

V
r r u

u
aa  β β ξ ∞+ + + + =

Ω + Ω − − −
+ + + −

−
+
w

θ
V v

v
w

V 


, (2.12)  

such that 

 1 0
0 0 0

0 0

)( ) ( ( )
( ) tan

( ) ( ) ( )

r r r
s z i Z i Z Z

q q X r r r
t i t i t t

uV
r r u

aa  β β ξ − ∞ + + + −
= − +  


− − − +

Ω − + Ω − − +
w

V v w
V v

θ



. (2.13)  

The tan-1 function is linearized as 

                                                      
1 The instantaneous angle-of-attack is also referred to as the quasi-steady angle-of-attack, hence the 

"q" subscript.  The "quasi-steady" aspect does not refer to the incoming flow, which is variable, but rather the 
dynamic stall analysis of Section 2.4. 
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0

00 0 0

0 0 0

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,

r r r r
i Z i t z tr r r r

i Z i t z t

z t
z t

dg dg dg dgg
d d d d

dg dg dgu u
d du du

+ + + +

+ Ω + +
Ω

v v w w
v v w w

 
 

 (2.14)  

with 

 1 0
0

0 0

( )
tan

( )

r
i Z

r
i t

V
g

r
− ∞ +=

Ω −
V
V

, (2.15)  

 

 0 0
2 2

0 0 000

( )
( ) [ ( ) ] [ ( ) ]

r
i t

r r r
zi Z i Z i t

rdg dg
dud V r∞

Ω −
= =

+ + Ω −
V

v V V
, (2.16)  

 
 

 0 0
2 2

0 0 00

( )
( ) [ ( ) ] [ ( ) ]

r
i t

r r r
Z i Z i t

rdg
d V r∞

Ω −
= −

+ + Ω −
V

w V V
, (2.17)  

 

 0
2 2

0 0 000

( )
( ) [ ( ) ] [ ( ) ]

r
i Z

r r r
ti t i Z i t

Vdg dg
dud V r

∞

∞

+
= =

+ + Ω −
V

v V V
, (2.18)  

 

 0
2 2

0 0 00

( )
( ) [ ( ) ] [ ( ) ]

r
i Z

r r r
t i Z i t
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and 

 0
2 2

0 0 0 0
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[ ( ) ] [ ( ) ]

r
i

r r
i Z i t

ZVdg r
d V r

∞

∞

+
= −

Ω + + Ω −
V

V V
. (2.20)  

This linearization puts Equation 2.13 in the form u= +y Cx D u . 

2.4 Circulation Lag and Dynamic Stall 
When the flow conditions relative to an airfoil change dynamically, the response of the 

airfoil is not instantaneous.  Rather, the response is subject to a time-lag with respect to the 
excitation.  Sønderby and Hansen ([26],[27]) have demonstrated that if these transient effects are 
not modelled, then the response of the wind turbine to aerodynamic or blade pitch perturbations is 
nonetheless accurately predicted at low windspeeds.  However, near the cutout windspeed, the 
computed response may be in error in a frequency band that, in the case of a large utility-scale 
wind turbine, are in the range of the second modes of vibration of the blades and support structure, 
and the free-free mode of the drivetrain. 

The simplest engineering methods used to account for the unsteady aerodynamics are easy to 
implement, and so are included in the STAS program.  The downside is that then the aerodynamic 
portion of the model accounts for the majority of states; the sizes of the system matrices are 
increased.  Sønderby [26] has developed modal decomposition techniques to reduce the number of 
aerodynamic states, without a loss in accuracy.  Such methods are not yet implemented here, but 
would be desirable. 

The unsteady aerodynamic models account for circulation lag, the time it takes to convect 
shed vorticity away from the airfoil; and dynamic stall, the time needed for the point of flow 
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separation, along the low-pressure surface of a stalled airfoil, to change position.  Circulation lag is 
present and most pronounced under attached-flow conditions, while dynamic stall is active only 
under stalled flow conditions. 

Circulation lag is modelled by the method suggested by Leishman [18], also adopted by 
Hansen et al. [12].  For each airfoil, a state-space is defined, with input being the quasi-steady 
angle-of-attack qα , and output the "Theodorsen" angle-of-attack Tα . 

 1 12

2 21 2 1 2

0 1
0

2( )2 1 q
d

Vdt b b b b
c

a a
Va a
c

a
 
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 (2.21)  
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  (2.22)  

Constant parameters are 

1 0.165A = , 2 0.335A = , 1 0.0455b = , and 2 0.3b = . 
For dynamic stall, the linear model of Merz [20] is used.  This has the same mathematical 

form as the model of Øye [22], when the latter is linearized.  Dynamic stall is represented as a first-
order time-lag on the effective angle-of-attack, 

 
1 1

q
d
dt
α α α

t t
= − + . (2.23)  

A value of 4.3c Vτ =  is recommended, based upon comparisons with measurements on various 
airfoils [20].  The lift force then responds as 

 max 0 max( ) |L q qc γ γ a γ a= − + , (2.24)  
where 

 max 0 0max{ / ( ), | | }L z qCγ aa  γ= − . (2.25)  
 
Equations 2.21 and 2.22 are of the forms yd dt = +x Ax B y and y= +y Cx D y , respectively.  
Dynamic stall has a minimal effect on the drag coefficient; this is therefore given its instantaneous 
value 

 
0

D
D q

q

dC
c

d
α

α
= . (2.26)  

The moment coefficient is neglected, as its value is small and nearly constant over the expected 
range of angles-of-attack for a pitch-regulated wind turbine.  From the perspective of the structure, 
torsional moments are assumed to be dominated by the offset between the lift force, at 
approximately 4c  from the leading edge (for zero moment coefficient), and the structural 
centroid. 

2.5 Lift and Drag Forces 
Lift and drag forces follow from the respective coefficients, as 

 ( ) 2
0 0F 1

2L L L Lf C c cLρ+ = + V  (2.27)  

and 
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 ( ) 2
00

1
2

F D DD D cC c Lf ρ++ = V , (2.28)  

with 

 
2 22

0( ) ( ) ) ( ) ( )(r r r r
z i Z Z t i t tV ru u∞   = +   + + − Ω +Ω − − +V w wV V  . (2.29)  

The right-hand side of Equation 2.29 is linearized as 
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 (2.30)  

with 

 
2

0 0 0 0
1
2L L Lg F C cρ= = V , (2.31)  
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, (2.36)  

and 

 ( )2 2

0 0 0
0

)1
2

( ) (r r
i Z i t

L

V rg cL
c

r ∞∂   = +   + Ω −
∂

V V . (2.37)  

The expressions for the drag force are identical, except for the substitution of CD for CL.  With this 
linearization, Equations 2.27 and 2.28 are of the form u y= ++y D ux DC y . 

2.6 Aerodynamic Forces 
Lift and drag forces are respectively perpendicular and parallel to the vector V in Figure 3.  

Momentum balance (Section 2.1) requires these forces in rotorplane coordinates, and structural 
dynamics (Section 3) requires these forces in blade pitch coordinates.  The transform to rotorplane 
coordinates is 
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with 
 0 0 0 ( )s

q q Xφ α α β β ξ= + ++ −+ θ ;     0 0 0 0qφ α β ξ= + + . (2.39)  
The trigonometric functions are linearized using 

 0
00

cos cos sin
q

φ φ φ
α β

= −
∂ ∂

=
∂ ∂

, (2.40)  

 

 0
0

cos sin
( )s

X

φ φ
∂

=
∂
θ

, (2.41)  

 

 0
00

sin sin cos
q

φ φ φ
α β

=
∂ ∂

=
∂ ∂

, (2.42)  

and 
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The result is 
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which is of the form y= +y Cx D y . 
The transform to section coordinates is 
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where ε  is the offset from the aerodynamic center to the structural centroid; referring to Figure 2, 
this is the distance, along the Xa axis, from the Ya to the Zs axes.  Linearizing, the result is 
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This is of the form y=y D y . 
The transform to pitch coordinates is 
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such that 
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or, expanding the terms, 
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 (2.49)  

 

3 Structures 
The structures of the wind turbine are represented by beam finite elements.  The elastic 

deflections are assumed to be small.  Large rigid-body rotations are permitted at the yaw bearing, 
the driveshaft and rotor, and the pitch bearings.  These latter degrees-of-freedom will be referred to 
as the joints of the structure. 

Figure 4 through Figure 7 show sketches of the structural components together with the 
finite-element model.  The structural components are linked at the joints to form the entire wind 
turbine.  Links are described by constraint equations, which associate the degrees-of-freedom of the 
structures on each side of the joints.  The constraint equations are used to eliminate dependent 
degrees-of-freedom from the model. 
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Figure 4: Blade nodes and coordinate systems. 

 
Figure 5: Driveshaft nodes and coordinate systems (sketched with zero blade cone angle). 
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Figure 6: Nacelle nodes and coordinate systems. 

 
Figure 7: Tower and foundation nodes and coordinate systems. 

Figure 8 shows the length dimensions which are used to define the turbine structure.  Joints 
are shown by white dots. By default, the global coordinate system has its origin at the base of the 
tower, at the top of the transition piece between the tower and foundation.  On land, this would 
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typically be at ground level.  Offshore, however, this might not be the same as either the seabed or 
undisturbed ocean surface elevation.  The location of the origin can be moved by suitable 
redefinition of Lf and Lt in the input file. 

Note that the nacelle and driveshaft structures overlap between the rear and front bearings. 
 

 
Figure 8: Dimensions of the turbine structures.  Only one blade is shown. 

3.1 Element Mass, Stiffness, and Damping Matrices 
The element mass and stiffness matrices are developed according to standard finite-element 

beam theory.  Some comments are required, however, related to the modelling of airfoil profiles 
and foundation elements in the sea floor.  The implementation of structural damping is not 
straightforward, and this is discussed in more detail. 

3.1.1 Element Mass Matrix 
For cross-sections with no coupling between degrees-of-freedom, the element mass matrix is 
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(3.1)  

with 

 
420b

ALC ρ
= ,   

6aC ALρ
= ,   and   

6rC JLr
= . (3.2)  

If the line between the nodes does not pass through the center-of-gravity of the section, then there 
is coupling between lateral and torsional accelerations.  Consider the airfoil section shown in 
Figure 9.  The section coordinate system is defined so that it passes through the pitch axis.  This 
does not necessarily coincide with the elastic, gravity, and shear centers.  The offset from the 
section coordinate system to the bending, gravity, and shear centers is respectively eb, eg, and es. 

For the initial implementation of STAS, the effects of these eccentricities are neglected.  As 
a consequence, the present code should not be used in cases where the bend-twist coupling is 
expected to be significant, for instance flutter instability during overspeed events. 

  

 
Figure 9: Elastic (bending), gravity, and shear (torsion) centers of an arbitrary airfoil profile. 

3.1.2 Element Stiffness Matrix 
The element stiffness matrix is 
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(3.3)  

with 
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= . (3.4)  

The bending and shear offsets shown in Figure 9 are presently ignored. 
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3.1.3 Element Damping Matrix 
Rather than employing a damping matrix along the same lines as the mass and stiffness 

matrices, a modal approach is adopted.  This avoids some of the disadvantages of mass- and 
stiffness-proportional (Rayleigh) damping, such as a damping ratio that varies widely with 
frequency. 

For a statically-mounted structure, whose response can be decoupled into independent modes 
of vibration, a damping ratio can be defined for each mode, as 

 
2

k
k

k k

C
K M

ζ = . (3.5)  

Here kM , kC , and kK  are the modal mass, damping, and stiffness, respectively.  The extensive 
survey by Blevins [4] indicates that a reasonable design value for the structural damping ratio is 
around 0.01, for statically-mounted structures.  The damping ratio does not change appreciably 
with frequency, although it may increase with amplitude. 

For a structure such as a wind turbine, with many coupled modes, the damping ratio can be 
defined according to the real and imaginary parts of the state-space eigenvalues, 

 ( ):
( )

R λ
λ

ℜ
=
ℑ

,          ( )
2

2sgn ( )
1k

R
R

ζ λ= − ℜ
+

. (3.6)  

As discussed in Section 3.7, the wind turbine is represented by several substructures, or 
bodies: the tower, nacelle, driveshaft, and each blade.  In turn, the elastic deformation of each body 
is represented by several of its natural, uncoupled modes.  The modal damping of the body can then 
be represented by Equation 3.5.  A value of 0.008ζ =  is used for all modes.  When the full wind 
turbine structure is assembled, the modes become coupled; but the value of the structural damping 
ratio for the global modes of the wind turbine, Equation 3.6, is observed to remain in the vicinity of 
0.01. 

In other words, the damping matrix is defined as a diagonal matrix with zeros associated 
with the rigid-body motions, and  

 2 kk kC K Mζ=  (3.7)  
on the diagonal entry associated with the kth elastic mode of one of the bodies. 

Soil damping is modelled by damping elements which act in parallel with the p-y springs 
representing the soil stiffness.  The equivalent soil spring and damping properties are provided as 
part of the input file. 

Aerodynamic damping follows naturally from the methods of Section 2.  Hydrodynamic 
damping is not implemented in the present model, but can be added as part of the applied 
hydrodynamic loads. 

3.1.4 Centrifugal Stiffening 
For a wind turbine undergoing small deflections about some mean position, there is for most 

degrees-of-freedom only a weak relationship between the deflection and the system mass, stiffness, 
and damping matrices.  This is taken advantage of in Section 3.2 to simplify the derivation of the 
equations of motion.  An exception is the centrifugal stiffening of the blades, which must be 
accounted for in order to obtain the correct natural frequencies of vibration. 

Centrifugal stiffening is a function of the instantaneous, deflected position of the blade; this 
coupling is neglected. 

It is most convenient to derive centrifugal stiffening in hub coordinates, with the Xh axis 
normal to the axis of driveshaft rotation, and pointing along the blade of interest, not including the 
cone angle.  Let the position vector of the degrees-of-freedom associated with node j of the blade 
be h

jx .  Then ( )h
j j Xr = x . 
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The rotation of the rotor gives an acceleration in the Xh direction, as 

 2 0 0 0 0 0
T

j jr Ω =  a . (3.8)  

The force vector seen by a given element, say element k, due to this acceleration is 

 , , , ,
1 1

j jh h h s
e j s j

Neb Neb
s
e j h jk

j jj k kj= =+ +

   
= =   

   
∑ ∑

a a
F m T m T

a a
. (3.9)  

If we say that the tension force P within element k is the seventh entry in the vector ,: s h
h k

s
k k=F T F , 

which is the along-blade tension acting on the outer node of the element, then the centrifugal 
stiffness matrix s

sk  follows as 

 
30c

PC
L

= ; (3.10)  

 

 

2 2

2 2

0 0 0 0 0 0 0 0 0 0 0 0
0 36 0 0 0 3 0 36 0 0 0 3
0 0 36 0 3 0 0 0 36 0 3 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 3 0 4 0 0 0 3 0 0
0 3 0 0 0 4 0 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 36 0 0 0 3 0 36 0 0 0 3
0 0 36 0 3 0 0 0 36 0 3 0
0 0 0 0 0 0

c c c c

c c c c

c c c c

c c c c

c c c c

c c c c

C LC C LC
C LC C LC

LC L LC L C
LC L LC L

C LC C LC
C LC C LC

C
C C

−
− − −

− −
− −

− − −
−

2 2

2 2

0 0 0 0 0 0
0 0 3 0 0 0 0 3 0 4 0
0 3 0 0 0 0 3 0 0 0 4

c c c c

c c c c

LC L LC L C
LC L L

C
C CC L

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − − 
 − − 

 

(3.11)  

In Section 3.2, the derivative with respect to Ω is needed.  This is computed using 

 
1 2

30 30

Neb
c

i i
i j

dC dP r
L d L

m
d =

= = Ω
Ω Ω ∑ , (3.12)  

from which it is evident that 

 2s
sd

d
s

s=
Ω Ω

k
k . (3.13)  

3.2 Equations of Motion 
The equations of motion are based upon a simplified multi-body formulation.  The 

simplification is related to the way in which large rotations are handled.  As the analysis is to be 
linearized, it was desired to avoid the general nonlinear formulations of large-rotation dynamics as 
described by, for instance, Shabana [24].  At the same time, it is necessary to accommodate large 
static rotations of the yaw, driveshaft, and blade pitch joints, and retain important couplings 
between the joint motions and flexure of the structure. 

The Lagrange equations are used to formulate the structural equations of motion.  Define the 
operation 

 
1

2:
x
x

∂ ∂ 
∂  = ∂ ∂ ∂

  
x



 (3.14)  
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The Lagrange equations are 

 
1
2

K K D PE E E Ed
dt

∂ ∂ ∂ ∂ 
− + + = ∂ ∂ ∂ ∂ 

F
q q q q



 
, (3.15)  

where q is a vector of the degrees-of-freedom, and F is a vector of the (generalized) forces.  EK is 
the kinetic energy, EP is the potential energy, and dED/dt is the rate of energy dissipation. 

Development of the equations of motion proceeds as follows.  First the equations are 
developed, with all degrees-of-freedom expressed in body coordinates.  A modal transformation is 
applied to the elastic degrees-of-freedom, while those representing rigid-body motions are left un-
transformed.  The bodies are joined at the joints, with constrained degrees-of-freedom eliminated 
from the equations.  This gives terms which depend upon the rotation angles of the joints, and in 
particular the rotation of the rotor and driveshaft.  As the rotor and driveshaft have a steady rotating 
motion (upon which small fluctuations in speed are imposed), the matrices are functions of the 
azimuth angle.  The rotating degrees-of-freedom in the equations of motion are substituted with 
multi-blade coordinates, which eliminate dependence of the matrices on the azimuth angle. 

3.2.1 Kinetic Energy 
In modelling the dynamics of a mechanical system with joints, one has a choice of degrees-

of-freedom.  They must in the end describe the same motion, but the degree of complexity of the 
formulation – and where in the equations that complexity appears – depends on the selection of 
degrees-of-freedom. 

At present we use an elastic multi-body representation.  Define the position of a node in 
global coordinates as the sum of the vector to the body origin, which happens, in the present case, 
to always be the first node on the body; plus the rigid-body offset from the body origin to the 
undeformed position of each node at its section coordinate system; plus a small elastic deflection 
relative to the undeformed nodal position: 

 / 1/ / /
g g g g

k g g k B k s= + +r O P δ . (3.16)  
The position and orientation of the reference node, at the body origin, could be described by 

 1/ 1/ 1/ 1/ 1/ 1/ 1/) ) ) ) ) )( ( ( ( ( (
Tg g g g g g g

g g X g Y g Z g X g gY Z =  P O O ΘO Θ Θ . (3.17)  

The vector 1/
g

gO  is the vector from the global origin to the origin of the body coordinate system.  

The "angles" 1/
g

gΘ  are only placeholders; their time derivative is the angular velocity, which is the 

quantity of interest.  In general multi-body formulations, the 1/
g

gΘ  components are not the time 
integral of the angular velocity vector, but rather some parameters, like Euler angles, from which 
the body coordinate transformation matrix g

BT  and angular velocity matrix g
Bd dtT  can be 

reconstructed.  This relationship is in the general case nonlinear. 
The equations of motion developed at present will subsequently be linearized.  This implies 

that the departure from the selected degrees-of-freedom is small, and hence the motion is 
constrained.  We take advantage of this constraint by selecting the degrees-of-freedom such that the 
position of the body is defined relative to the undeformed position of the master node on the 
preceeding body.  The nature of the joints as rotations about a single axis (plus small elastic 
rotations about the other axes) then allow the rotational degrees-of-freedom to be chosen as the 
time integrals of the relative angular velocity vectors between the two bodies. 

The degrees-of-freedom of the body origin are chosen as 

 1/ 1/ 1/ 1/ 1/ 1/ 1/) ) ) ) )( ( ( ( ( ( )
T

m m X m Y m Z
B B B B B B B

Ym X m m Z =  P O O ΘO Θ Θ , (3.18)  
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where "m" indicates the master body and "B" indicates the slave body.  One of the rotational 
components is the joint rotation angle, and the other two are small elastic deformations.  The rate of 
change is 

 1/ 1/ 1/ 1/ 1/ 1/ 1/) ) ) ) )( ( )( ( ( (
T

m m X m Y m Z
B B

m X m
B B B B

m
B

Y Z =  ω ω ωP V V V . (3.19)  

The global position of a point, or node, is recovered by 

 ( )( )( )/ , / 1, / , / 1, / , / 1, / / /
g g g y y y d d d p p p

k g m t g y n m m n y d d m m d d p b m k p k s= + ++ + + ++r P δT O P T O P T O P , (3.20)  
using the example of a node on one of the blades, which contains the most terms.  As discussed 
above, the definition of a "global orientation" in terms of time integrals of the angular velocities 
would not be meaningful.  However, angular velocities sum and transform straightforwardly as 
vectors.  Thus while the definition of a "global position and orientation" of a node 

 /
/

/

:
g

k gg
k g g

k g

 
=  
  θ
r

x  (3.21)  

would not be meaningful in the present context, its time derivative 

 / /

/

:
g g
k g k g

g
k g

d d dt
dt

 
=  
  ω

x r
 (3.22)  

is meaningful. 
Defining the total degree-of-freedom vector 

 1/ 1/ /

TB B B
m m

B
s =  Oq wΘ  , (3.23)  

where the sequence repeats for each body, with  

 / / / / / / /( ( ( () ) ) ) ( () )
TB B B

s k s X k s k
B B B B

Y Z Ys k s X k s k s Z =  δ δ δ θw θ θ  ; (3.24)  

and the vector of nodal position offsets 

 / / /) ): ( ( ( 0) 0 0
TB B B B

s k B X k B Y k B Z =  P P P P  , (3.25)  

where the sequence repeats for each node, the global position of one node, from Equation 3.20 or 
similar, can be conveniently written in matrix/vector format as 

 /
g g B g B

k g k B k B s+=r A T q PTB . (3.26)  
Let the coordinates of the two nodes associated with an element k connecting nodes j and j+1 

be 

 /

1
/

/

j g

j g

g
g
k g g

+

 
=  
  

x
x

x
, (3.27)  

that is, twelve degrees-of-freedom.  The kinetic energy of the element is 

 / /
, , ,)

( )1 (
2

g T g
k g k gs T s s

K g k e k g kE
d d

dt dt
=

x x
T m T . (3.28)  

Note that the operation 

/
,

g
k gs

g k

d
dt
x

T  

expresses the linear and rotational velocities, measured relative to the global coordinate system, in 
coordinates corresponding to the instantaneous orientation of the section coordinate system.  Also 
note that with a beam finite element representation, the rigid-body component of the kinetic energy 
depends only upon the linear velocity of the nodes, and the angular velocity of the element rotation 
about its axis; the other two rotational degrees-of-freedom, as mentioned, represent small elastic 
deformations, and are not functions of the bulk motion. 
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The mass matrix for the element can just as well be written in body coordinates, 

 / /
, , ,

( )1
2

g T g
k g k gg B s s B

K B s k e k B k gd t
E

d d
t d

 =  
x x

T T m T T  (3.29)  

as the quantity in brackets is constant for small elastic deformations.  If we say that the kth element 
mass matrix, nominally 12-by-12 in size, is expanded with zeros to include entries for all the nodal 
positions, then the expression for kinetic energy can be written as 

 / /( )1
2

g T g
g gg B B

K B g

d d
d dt

E
t

=
x x

T TM ,         , , ,
1

:B B s s
s k e k

Ne

k
B k

=

= ∑M T m T . (3.30)  

The vector /
g
gd dtx  consists of a group of six values for each node in the structure.  In each group, 

the first three values are /
g

k gd dtr , and the latter three values are /
g
k gω .  However, /

g
k gω  is not the 

total angular velocity of the node.  It is the portion which contributes to the kinetic energy, and this 
includes all three rotations due to elastic deformation, but, due to the nature of the finite elements, 
only the Xs component of the rigid-body angular velocity.  In general, for a given node, the Xs 
component of the rigid-body angular velocity can be written 

 
1/

1/ ,

)(
0
0

s
g X

g g
g s k

 
 =  
  

ω
ω T . (3.31)  

Taking an example, the axial rotation of a blade element due to rotation of the yaw bearing would 
be 

 
, 1, /

1/ ,

)(
0
0

s
y k n g X

g g
g s

y

k

 
 =  
  

ω
ω

T
T . (3.32)  

That being said, the nature of the wind turbine system leads to considerable simplification.  It is 
noted that the rotation of the pitch bearings is nearly aligned with the section coordinate systems of 
the blade elements, that the blades are nearly orthogonal to the driveshaft, and that the yaw rotation 
is expected to be slow.  In addition, by far the greatest portion of the inertial resistance to driveshaft 
and yaw rotation comes from the positional offsets of the nodes, not the direct rotational inertia of 
the elements.  (This is analogous to a lumped-mass representation of the structure.)  It is concluded 
that the only rigid-body axial rotations that contribute appreciably to the kinetic energy are the 
pitching of the blade elements, and the rotation of the driveshaft elements.  Thus, for a blade node, 
we define 

 
1, /

/ /

)(
0
0

p
b b X

g g
k g

p
p k s

  
  = +  
    

ω
Tω ω , (3.33)  

for a driveshaft node, excluding the pitch bearing masters, 

 / /

1, /

0
0

)(

g g
k g k s

d

d

n

d
d

Z

  
  = +  
    ω

Tω ω , (3.34)  

and for all other nodes, 
 / /

g g
k g B k s

B=ω T ω , (3.35)  
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as the entries in /
g
k gd dtx , which multiply the mass matrix in the kinetic energy equation.  All the 

ω  variables on the right-hand sides are elements of Bq . 
The full rigid-body angular velocity of the body is needed in order to compute the kinetic 

energy associated with the positional displacement of the nodes.  Taking the example of a node on 
one of the blades, 

 ( )( )1, / 1, / 1, / 1, /
g g y y d d p

b g y n g d d y p b d= + +T Tω ωTω ω . (3.36)  

The time derivative of Equation 3.26 gives the positional components of /
g
k gd dtx : 

 /
g g gB

k g g B BB B
k B k k s

d d dd
dt dt dt dt

= + +
r T TqA T A q B P . (3.37)  

It can be shown, for instance Shabana [24], that  

 /

m
mB
B

B
m

d
dt

=
T

T S ;     
1/ 1/

/ 1/ 1/

1/ 1/

) )
) )
)

0 ( (
(

)
0 (

( ( 0

B B
m Z m Y

B B B
m m Z m X

B B
m Y m X

 −
 = − 
 − 

ω ω
ω ω
ω ω

S , (3.38)  

where /
B
mS  thus consists of elements of Bq .  Taking the example of a node on one of the blades, we 

can write 

 
g d gy

p yg y g d y dd
y d y p d p

pd d dd
dt dt dt dt

= + +
T T TT

TT T T T T , (3.39)  

or 

 
/ //

g
g y d p g y d d g y y d
y d p b d y

p
d p y n g pd dy

d
dt

= + +
T

T T T S T T TS T T S T , (3.40)  

where 

 
1, / 1, /

/ 1, / 1, /

1, / 1, /

0 ( (
: ( 0 (

) )
) )

() 0)(

b
p p

p

p p

d Z b d Y
p p
b d b d Z b d X

b d Y b d X

 −
 = − 
 − 

ω
ω

ω ω
S

ω
ω , (3.41)  

and so forth.  Equation 3.40 can also be written 

 ( )/ //

g
g y d p p d d p d y y d
y d p b d d

p
d y p d y n g d p

d
dt

= + +
T

T T T S T S TT T T S T , (3.42)  

or in general for any of the bodies as 

 B
B

B
g

gd
dt

=
T

T S , (3.43)  

with, for the blades, 
 / //:B p p d d p d y y d

b d d p d y n g d pd y= + +S S T S T T T S TT , (3.44)  
for the driveshaft, 

 / /: d y
B d d y y

y n g d= +S S T TS , (3.45)  
and for the nacelle, 

 /:B y
n g=S S . (3.46)  

Equations 3.37 and 3.31 through 3.35 can be combined in the form 
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 /
g B
k g g g B B g B B

k B k B k B s

d d
dt dt

= + +
x qA T A T S q T SB P , (3.47)  

where kA  includes the angular velocity terms. 

Now define g
BT  to be a matrix consisting of 3-by-3 blocks of transforms located along the 

diagonal, that is, 

 
y

d

g

g
B

g

g
p

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

I
I

T
T

T

T









. (3.48)  

Each block transforms a triplet of the degrees-of-freedom Bq  from body to global coordinates.   
Then Equation 3.47 can be expanded to the entire structure, as 

 /
g B
g g g B B g B B

B B B s

d d
dt dt

= + +
x qAT Σ B ΣA q T PT , (3.49)  

with 

 

B

B

B

B

 
 
 
 
 

=  
 
 
 
 
 

S 0 0 0 0 0
0 0 0 0 0 0
0 0 S 0 0 0
0 0 0 0 0 0
0 0 0 0 S 0
0 0 0 0

Σ

0 0



 

. (3.50)  

It is noted that Equation 3.43 still holds, in the form 

 B
B

B
g

gd
dt

= T Σ
T

. (3.51)  

The time derivative of BΣ , as well as the time derivative of B B∂ ∂Σ ω , are required in the 
equations of motion.  These are most conveniently written as 

 
B B B B

B
B B

d d
dt dt

∂ ∂
= +
∂ ∂

Σ Σ ω Σ ω
ω θ

 (3.52)  

and 

 
2 2 2

2( )

B B B B B
B B

B B B B B B

d d
dt dt

∂ ∂ ∂ ∂
= + =

∂ ∂ ∂ ∂ ∂ ∂
Σ Σ ω Σ Σω ω
ω ω ω θ ω θ

, (3.53)  

since 2 2( ) 0B B∂ ∂ =Σ ω .  Considering the most complicated case of a blade node, the partial 
derivatives are evaluated with 
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 // /
d ypB

n gp d p d y db d
d p d y d pB B B

d
B

y∂ ∂∂∂
= + +

∂ ∂ ∂ ∂
T

ω ω ω
S S

ω
SS T T T T T , (3.54)  

 

 

/ /

/ /

/ / ,

Td dB
p pp d p d

d dB B B

Ty y
p d y d p d y dd d

d y n g p d y n g pB B

Td d
p pp d y y p d y y

d y n g d d y n g dB

d y d y

B

 ∂ ∂∂
= −  

∂ ∂ ∂  

 
+ −  ∂ ∂ 

 ∂ ∂
+ −  

∂ ∂

∂ ∂  

T TS T S T S

T T S T T T S T

T T
T T S T T S

θ θ θ

T T
θ θ

T T
θ θ

 (3.55)  

 

 

2

/ /

/ /

/ /

,

Td d d dB
p pp p

d dB B B B B B

Ty yy y
n g n gp d d p d dd d

d y p d y pB B B B

Ty d y d
n g p n g pp d y p d y

d y d d y dB B B

d

B

d y y ∂ ∂ ∂ ∂∂
= −  

∂ ∂ ∂ ∂ ∂ ∂  

 ∂ ∂
+ −  

∂ ∂ ∂ ∂  

 ∂ ∂ ∂ ∂
+ −  

∂ ∂ ∂ ∂ 

∂ ∂



ω θ ω θ ω θ

T T
ω θ ω θ

T T
ω θ

S T S TS T T

S S
T T T T T T

S T S T
T T T

ω
T

θ

 (3.56)  

and 

 

/ /

2 2

3

/ /

/ /

Td y d yy yB
y n g y n gp d p dd d

d p d pB B B B B B

Ty yy y
n g n gp d d p d dd d

d y p d y pB B B B

d y d d y
y n g p y n g pp y p y

d d d dB B B

yy y

yy

yy

 ∂ ∂ ∂ ∂∂
= −  

∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂  

 ∂ ∂
+ −  

∂ ∂ ∂ ∂ ∂ ∂  

∂

∂ ∂

∂

∂ ∂ ∂ ∂ ∂
+ −

∂∂

∂

∂ ∂ ∂

T T
ω θ ω θ ω θ

T T
ω θ ω θ

T

T S T SS T T T T

S S
T T T T T T

T
T

S T T
ω
S

T T
ω

T
θ

/ / .

Td

B

Ty d y dy y
n g p n g pp d p dd d

d y d yB B B Byy

 
 

∂  

 ∂ ∂∂ ∂∂ ∂
+ −  

∂ ∂∂ ∂ ∂ ∂  

θ

T T
ω θ
S T S T

T T T
θ

T
ω

 (3.57)  

In deriving the above, we have used the fact that / /( )B T B
m m= −S S .  Equivalent expressions can be 

derived by using 

 
/( )

p
p T pd
b d d

d
dt

=
T

S T ,   /

d
p d p

p b d

d
dt

=
T

T S , 

/( )T
d y

d
y d d

y

d
dt

=
T

S T ,   and   /d

y
y dd

yd
d
dt

=
T

T S , 

(3.58)  

which leads to 
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/

/

//

/ /

/ / / /

/ / /

/

/ .

d ypB
n gp d p d y db d

d p d y d p

Tp d d p

d y

d y d y

y d y

p d d p
d p b d d p b d

Tp d y y d p p d y y d p
d y n g d p b d d y n g d p b d

Tp d y d p d y d
d y n g d y p d y n g d y

d
d d p

d ddd
dt dt dt dt

= + +

 + −  

 + −  

 + −  

S SSS T T T T T

T S T S T S T S

T T S T S T T S T S

T

T T

T T S T S T T T S T S T

 (3.59)  

and 

 

/ /

/ /
/ /

/ /
/

/

/

/

.

Td dB
p d p p d p

d p b d d p b dB B B

Ty y
n g n gp d y d p p d y d p

d y d p b d d y d p b dB B

Ty y
n g n gp d d p d d

d y d y p d

d y d y

y d
y d y pB B

y d
d d

d
dt

 ∂ ∂∂
= −  

∂ ∂ ∂  

 ∂ ∂
+ −  

∂ ∂  

 ∂ ∂
+ −  

∂ ∂  

S SS T T S T T S

S S
T T T S T T T S

S S

ω ω ω

T T
ω ω

T T T
ω

S T T
ω

T T S T

 (3.60)  

Note that 

 
B B

B B

d
dt

d
dt

∂
≠

∂
∂ ∂
Σ Σ
ω ω

; (3.61)  

the latter contains additional terms. 
Using Equation 3.49, the kinetic energy is written as 

 

1 ( ) ( ) ( ) )( )
2

.

(
B T

B T B T B T B T B T B T B T g B B
K g g s g B g

B
g g B B g B B
B B B s

d
dt

d
dt

E
 

= + 
 
 

×

+

++ 
 

Σ P Σ B M

Σ B Σ P

q T A q T A T T T

qAT AT q T





 (3.62)  

It is convenient to define 
 :B B g

g B=A T AT ;     :B B g
g B=A T AT  ;     and     :B B g

g B=B T BT , (3.63)  
noting that these now become functions of the reference node orientations and joint angles.  By 
Equation 3.51, their time derivatives are of the form 

 ( )
B

B T B B Bd
dt

= +
A A AΣ Σ . (3.64)  

Then 

 

1 ( ) ( ) ( ) ( ) ( ) ) )( ( (
2

.

)
B T

B T B T B T B T B T B T B T B
K s

B
B B B B B B B

s

d

d

E
dt

dt

 
= + 

 
 

× + 


+


+

q A q AΣ P Σ

q

B M

Σ B ΣA A q P





 (3.65)  

The first term in the Lagrange equations is 
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( ) ( )( ) ( ) ( ) ( )) (

.

B T B T
B T B T B T B T B T BK

sB B B

B
B B B B B B B

s

Ed d
dt dt

d
dt

  ∂ ∂ ∂= +   ∂ ∂ ∂   
+

+


 × +  
 

Σ ΣP B M

Σ B

A q A
q q q

qA A Σ Pq


  



 (3.66)  

where we have taken advantage of the symmetry of MB to eliminate the 1/2 factor.  Performing the 
time derivative, using Equation 3.64 for the time derivatives of BA , BA , and BB , and 
multiplying out the terms gives 57 terms.  The first term is the mass times the acceleration, 

2

2( )
B

B T B B d
dt

qA AM  ... 

There are two terms involving angular accelerations and positional offsets, 

( ) ( )
B B

B T B B B B T B B B
s

d d
dt dt

++
Σ ΣA A q AM M B P  ... 

Five terms contain coriolis forces, 

( ) ) ( ) ( )

( ) ) ( ) .

(

( ..

B B B
B T B B B B T B T B B B T B B B

B B
B T B B T B B T B B B

d d d
dt dt dt

d d
dt dt

+ + +

+ +

M Σ Σ M Σ Mq q qA A A A

M Σ M

A A

q qA A A A Σ

    

   
 

and eight contain centrifugal forces, four accounting for the offset due to displacement and four the 
offset of the nodes in the undisplaced position, 

(

(

(

(

) ( ) ( )

( ) ) ( )

) ( ) ( )

( ) ) ( ) ...

B T B T B B B B B T B B B B B

B T B B T B B B B T B B B B B

B T B T B B B B B T B B B B B
s s

B T B B T B B B B T B B B B B
s s

+ +

+ +

+ +

++

Σ M Σ Σ M Σ

M Σ Σ M Σ Σ

Σ M B Σ P Σ M B

A A q A A q

A A q A A q

A A

A B A

Σ P

M Σ Σ P M Σ Σ PB

 

 

 

 

 

The above 16 terms appear in all the equations.  The remaining 41 terms all contain 
( ) ( )B T B T

B B

∂ ∂
=

∂ ∂
Σ

q
Σ

ω
, 

since BΣ  is a function of the angular velocity of the reference node on each body.  As a 
consequence, these terms appear only in the rows of equations associated with rotations of the 
reference nodes, and are zero for the rows associated with linear displacements of the reference 
nodes, as well as elastic deformations.  The 41 terms can be organized into two which involve 
accelerations, 

2 2

2 2

( ) ( )( () ( )( ) )
B T B B T B

B T B T B B B T B T B B
sB B

d d
dt dt

∂ ∂
+ +

∂ ∂
q qq A A AΣ ΣM P B M

ω ω
  ... 

four which involve angular accelerations, 
( ) ( )( ) ( ) ( ) ( )

( ) ( )) ( ) (( ) ( ...)

B T B B T B
B T B T B B B B T B T B B B

sB B

B T B B T B
B T B T B B B B T B T B B B
s s sB B

d d
dt dt

d d
dt dt

∂ ∂
+

∂ ∂
∂ ∂

+ +
∂

+

∂

Σ Σ Σ ΣM M B P
ω ω
Σ Σ Σ ΣP B M P B M B P
ω

q A A q q A

A q
ω

 

one with quadratic terms in the velocities, 
( ) ( ) ( )

B T B T B
B T B B

B

d d
dt dt

∂
+

∂
Σ M
ω

q qA A ... 
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seven with coupling between displacements and velocities, 
( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ) ( ) ( ) ( )

( ) ( )

(

( ) ( ) ) ( ) ( )

(

(

B T B B T B T
B T B T B B B B T B B B B

B B

B T B B T B
B T B T B T B B B T B T B B B

B B

B T B B T B
B T B T B B T B B T B T B B B

B B

B

d d
dt dt

d d
dt dt

d d
dt dt

∂ ∂
+ +

∂ ∂
∂ ∂

+ +
∂ ∂

∂ ∂
+ +

∂ ∂

+

q qq A A A AΣ ΣM Σ M Σ
ω ω

q

q qq A A q A A

q qq A A q A

Σ ΣΣ M Σ M
ω ω
Σ ΣM Σ M Σ
ω

A
ω

q

 

 

( )) ( ) ...
B T B

T B T B B
B

d d
dt dt

 ∂
 ∂ 

qA AΣ M
ω



 

seven with coupling between velocities and positional offsets, 

( ( (

( )

( ) ( )) ) ( ) ) ( )

( ) ( ) ( )( ) ) (

( ) ( )) ( ) ) (( ) ( ( )

B T B B T B
B T B T B T B B B T B T B B B
s sB B

B T B T B T B
B T B B B B B T B T B B B
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B T B B T B
B T B T B B T B B T B T B B B
s sB B

d d
dt dt

d d
dt dt

d d
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∂ ∂
∂ ∂
∂ ∂

+ +
∂ ∂

∂ ∂
+

+

+
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+
Σ ΣP Σ M P Σ M
ω ω
Σ ΣM B Σ P P B M Σ
ω

q qB A B A

q qA A
ω

Σ ΣP B M Σ P B M Σ
ω

qA A
ω

q

 

 

( )) ( .( .) .
B T B

B T B T B B
s B

dt
d d
dt dt

 ∂
 ∂ 

+
qAΣP B M

ω


 

five with quadratic terms in displacements, 
( ) ( )( ) ) ( ) ( ) ( )

( ) ( )( ) ( ) ) ( ) ( )

(

(

(

)( ) ( ) ...

B T B T
B T B T B T B B B B B T B T B B B B B

B B

B T B T
B T B T B B T B B B B T B T B B B B B

B B

B T
B T B T B B B B

B

d
dt

∂ ∂
+ +

∂ ∂
∂ ∂

+ +
∂ ∂

 ∂
+  ∂ 

Σ ΣΣ M Σ Σ M Σ
ω ω
Σ ΣM

q A A q q A A q

q A Σ Σ M Σ Σ
ω ω

Σ M

A q q A A

Σq A A q
ω

q  

ten with coupling between displacments and positional offsets, 
( ) ( )) ) ( ) ) ( )

( ) ( )( ) ) ( ) ( ) ( )

( ) ( )( ) ( ) ) ( ) ( )

( ( (

(

(

(

B T B T
B T B T B T B B B B B T B T B B B B B
s sB B

B T B T
B T B T B T B B B B B T B T B B B B B
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B T B T
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s

∂ ∂
∂ ∂

∂ ∂
+ +

∂ ∂
∂ ∂

+
∂ ∂

+

+ +

+

Σ ΣP Σ M Σ P Σ M Σ
ω ω
Σ ΣΣ M B Σ P Σ M B Σ P
ω ω

B A q B A q

q A q

Σ ΣM Σ Σ P M Σ Σ

A

q A B q
ω

B P
ω
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A
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) ( (

.

)

( ( . .)

B T B T
T B T B B T B B B B T B T B B B B B

sB B

B T B T
B T B T B B B B B T B T B B B B

s sB B

d d
dt dt

∂ ∂
+

∂ ∂
   ∂ ∂

+    ∂ ∂ 
+

 

A q AΣ ΣB M Σ Σ P B M Σ Σ
ω ω

Σ ΣM B Σ P P B

q

q A A qM Σ
ω ω

 

and, finally, five with quadratic terms in the positional offsets, 
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( ) ( )) ) (( ( (

( ) ( ( )

(

) ) ( )

( ) ( )) ( ) ) (

( )) )( .
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s s s sB B
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B T B T B B T B B B B T B T B B B B B
s s s sB B

B T
B T B T B B B B
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∂ ∂
∂ ∂

∂ ∂
∂ ∂

 ∂

+ +

 ∂ 

+ +

+

Σ ΣP Σ M B Σ P P Σ M B Σ P
ω ω
Σ ΣP B M Σ Σ P P B M Σ Σ P
ω ω

ΣP B M B

B

Σ P
ω

B B

B  

The next term in the Lagrange equations is 
K
B

E∂
−
∂q

. 

This evaluates to 18 terms.  Three of these appear in every equation, and represent centrifugal and 
coriolis forces: 

( ) ( ) ( ) ( ) ( ) ( )
B

B T B T B B B B T B T B B B B B T
s

B B T B B d
dt

− − −Σ M Σ Σ M qA A q A A AB Σ P Σ M  ... 

The remaining 15 terms appear in the rows of equations associated with reference node rotations.  
They include one term which is quadratic in the velocities, 

( ) ( )B T B T B
B B

B

d d
dt dt

∂
−

∂
q AMA q

q


 ... 

three with coupling between displacements and velocities, 
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ...
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B B

B T B T
B B B B
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∂
−

∂
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q q
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q

ΣA qM

 


 

three with coupling between the positional offsets and velocities, 
)( )( () ( ) )

( ) ( ) . .

) (

.

(
B T B B T B

B T B T B B B T B T B B
s sB B

B T B T
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d
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∂
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∂
−
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∂
−

∂
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q
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q
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
 

two which are quadratic in the displacements, 
( ) ( )( ) ( ) ( ) ( )

B T B T
B T B T B B B B B T B T B B B B

B B

∂ ∂
− −

∂ ∂
Aq A A q q A q

q
Σ M

q
Σ M Σ Σ ... 

four which couple displacements and positional offsets, 
) () ( ) )

( ) ( )( ) ( ) ( ) ( ) ...

( )( ) ( (
B T B T

B T B T B B B B B T B T B B B B
s sB B

B T B T
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∂
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∂ ∂

∂
− −
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∂

∂
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q q
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q q

Σ P Σ M Σ
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and finally, two which are quadratic in the positional offsets, 
( )( ) ( ()()) ( )

B T B T
B T B T B B B B B T B T B B B B
s s s sB B

∂
−

∂ ∂
∂

−
Σ BP B M B Σ P P Σ M B Σ P
q q

. 
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3.2.2 Damping (Dissipated) Energy 
The rate of energy dissipated due to the equivalent viscous damping, resulting from elastic 

deformation of an element, can be written 

 
1

, , ,
1 1 ( ) 1 ( )
2 2 2

B BNeB T B T
s s B

D s k e k B
k

k
Bd d d dE

dt dt dt dt=

 = =  
∑w w w wT c T C . (3.67)  

For the elastic degrees-of-freedom, the term in the Lagrange equations is simply 

 1
2

B

B
BDE d

dt
∂

=
∂

wC
w




. (3.68)  

3.2.3 Potential Energy 
The potential energy stored in the elastic deformation of the structure is 

 ( ), , , ,
1

1 1( (
2 2

) )B T B s s s B T B
P s k e k c k B k

Ne
B B

k
E

=

 = + =  
∑w T k k T w w K w . (3.69)  

The term in the Lagrange equations, for elastic degrees-of-freedom, is 

 BP
B

BE∂
=

∂
K w

w
, (3.70)  

and there is no dependence on rigid-body motion.  (Here gravity is considered to be an applied 
force.) 

3.2.4 Work by External Forces 
The work done by the external forces acting on a body, due to the (small, or virtual) 

displacement of the elastic degrees-of-freedom of the body, is 
 / )( T

g
g gWδ δ= x F , (3.71)  

where, as in Equation 3.21, / g
gδ x  contains both displacements and rotations, and gF  the 

corresponding forces and moments.  This can be expressed in terms of the degrees-of-freedom,  

 /
/

g
g

B
g B

gδ δ
∂

=
∂q

x q
x

. (3.72)  

The term in the Lagrange equations is 

/( )g T
g g B

BB B

W ∂∂
=

∂ ∂

x
T F

q q
. 

Equation 3.26 is relevant for the displacements, such that 

 /
g g g

k g g B BB B
k B k k sB B B

∂ ∂ ∂
= +

∂ ∂ ∂
+

r T T
A T A q B P

θq θ
. (3.73)  

It is also valid to compute the partial derivative of an equation for rotations similar to Equation 3.36 
for the angular velocity, giving, in the manner of Equation 3.49, 

 /
g g g
g g B BB B

B sB B B

∂ ∂ ∂
= +

∂ ∂ ∂
+

x T T
AT A q B

θq
P

θ
 . (3.74)  

Thus 

 ( ): )(
B B
g gB B T g B T T g B T T g B

g B B s BB B B

W  ∂ ∂∂
= = +  ∂ ∂ ∂

+


T T
F T A T q A T P B

θ
T

q θ
F . (3.75)  



 

PROJECT NO. 
502000059-10 

REPORT NO. 
TR A7474 
 
 

VERSION 
1.0 
 
 

36 of 68 

 

It is evident, from the structure of the A , A, and B matrices, that sums of components of the nodal 
forces BF  act at the reference nodes.  For linear analysis (Section 3.4.2), this expression can be 
evaluated at the steady-state condition, 

 0 0 0 0 0

0 0

( )) (
B B
g gB B T g B T T g B T T g B

g B B s BB B

 ∂ ∂
 = +
 ∂ ∂ 

+


P B
θ θ
T T

F T A T q A T T F . (3.76)  

3.3 Linking Bodies with Constraints 
The equations for the structure are obtained by stacking the equations for individual bodies; 

the bodies are as yet not connected at the joints. 
A body is linked to the previous body by equating degrees-of-freedom at the reference node 

(and in the case of the drivetrain also the node at the front bearing) with degrees-of-freedom of the 
master node on the previous body.  The basic consideration is that the location of both nodes, 
relative to the reference coordinate system on the master body, must be the same; and the deflected 
orientation differs only by the joint rotation angle. 

There are two ways in which the constraints could be implemented.  One is to consider the 
degrees-of-freedom of the reference node to represent displacements from the undeformed position 
of the structure.  That is, 

 1/ 1/:B B
m m=P w , (3.77)  

with the exception of the joint rotation degree-of-freedom.  The coordinate transformations are 
functions only of the joint rotation angles, not of the displacements.  The constraint equations are 

 1/ / 0m m
m m m− =δ δ      and     1/ / 0m m

m m m− =θ θ , (3.78)  
again with the exception of the joint rotation degree-of-freedom.  This is the preferred approach for 
the case in which the joints are locked; the problem with this approach comes when the joints are 
rotating, and the mean displacements are not negligible.  Then, for instance, the position and 
orientation of the rotating shaft could depart from the undeformed axis about which it is assumed to 
be rotating, leading to anomalous centrifugal forces.   

The other way in which the constraints could be implemented is to consider the displaced 
position of 1/

B
mP  to define the reference coordinate system on the slave body, with respect to which 

body displacements are zero.  The displaced position is given in reference to the undeformed 
coordinate system of the master body.  The elastic degrees-of-freedom on the slave body are 
defined relative to the undeformed position on the slave body, rather than the undeformed position 
of the global structure. 

 
Figure 10: Two ways of implementing constraints between bodies. 
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Figure 10 compares the two approaches.  It is seen that the position and rotational constraints 
in the latter case are, in essence, the same as the former: 

 1/ / 0m m
m m s− =O δ ,     1/ /) ( )( 0m

m i m
m

s i− =Θ θ , (3.79)  
where i represents the two components which are not the joint rotation angle.  However, the 
damping and stiffness matrices are modified, such that the rows and columns associated with the 
degrees-of-freedom at the reference node are zero.  The elastic displacements must then be 
interpreted differently, as they are measured relative to the offset and rotated reference node.  In 
addition, as evident in the derivation of the equations of motion in Section 3.2, displacement of the 
reference node must account for the inertia of the entire body. 

Here the latter approach is adopted, since it is desired to account for deflection of the 
reference axis about which the rotor rotates. 

3.3.1 Constraint Equations 
We first consider the yaw bearing.  The joint rotation of the nacelle is about the Zy axis, 

which in the undeflected state is aligned with the Zg axis of the tower.  The positional constraints 
are 

 1, / , /
g
y n m

y
s

g
m t− =δT O 0  (3.80)  

The transformation matrix is 

 
, /

, /

, / , /

(
(

cos sin )
sin cos )

( )( 1)

g
Y

g g
m

X
g g

Y

t s

y m t s

m t s m t s X

c c
c c

− 
 = − 
 − 

θ
θ

θ θ
T , (3.81)  

where the axial rotation of the reference node 
 1, /: ( )y

n m Zχ = Θ  (3.82)  
is measured relative to the undeflected master body coordinate system (for the yaw bearing, the 
global coordinate system), not the torsionally-deflected master node on the tower.  For a linear 
elastic calculation of mean displacements, the elastic rotations in the transformation matrix are set 
to zero. 

The rotational constraints are 
 1, / , / ,, ( ) 0( )X

g y g
y n m m t s X YY − =T Θ θ . (3.83)  

At the rear bearing of the driveshaft, it is assumed that all three positions and two rotations 
are constrained.  Rotation is about the nacelle Zn axis.  This gives the position constraint equations 

 1, / , /
n

d m s
n d y

yd m n− =T O T δ 0 , (3.84)  
where 

 

sin cos
1
0 cos sin

0
0 0y

n

δ δ

δ δ

 
 =  
 − 

T ;     ( )n y T
y n= TT ; (3.85)  

accounts for driveshaft tilt angle δ  (not to be confused with displacement δ ) and conversion to a 
coordinate system whose Z axis is aligned with the nacelle nose, and 

 
, /

, /

, / , /

cos sin
sin cos

( )
( )

( ) ( ) 1

n y
y m n s Y

n n y
d y m n s

n y n y
y m n s Y y

X

m s Xn

yy
yy

 
 = − 
 

−

− 

θT

θT
θ

θ
T T

T
 (3.86)  

accounts for the driveshaft rotation 
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 1, /: ( )d Z
d

mψ = Θ , (3.87)  
as well as the elastic deformation of the nacelle structure.  The rotational constraints are 

 / , / ,,1, (( ) 0)n nd
d d m y m n

y
X YX sY − =T Θ θT . (3.88)  

At the front bearing, there are two positional constraints, 
 , / 1, / , / , /( ) ( ) ( ) ( ) 0n d n d d n y

d s d m X d d m Y s d d Z y m n s X+ − =T T Tδ Θ δP  (3.89)  
and 

 , / 1, / , / , /( ) ( ) ( ) ( ) 0n d n d d n y
d s d m Y d d m X s d d Z y m n s Y− − =T T Tδ Θ δP . (3.90)  

 
At the pitch bearing, the rotation is about the Xb axis.  This gives positional constraints 

 1, / , /
b b h
p b m h d m d s

p d− =δT O T T 0 , (3.91)  
with 

 
( ) ( )
( ) ( )

cos 1 2 3 sin 1 2 3
sin 1 2 3 cos 1

0
0

0 0
2 3

1
h
d

b b
b b

π π
π π

− − −
−

 
 =  − 
  

T ;   ( )h d T
d h= TT ; (3.92)  

 

 

cos sin

sin co0 s

0
0 1 0h

b

φ φ

φ φ

 
 = 
  −

T ;     ( )b h T
h b= TT ; (3.93)  

and 

 
, / , /

, /

, /

1 ( ) ( )
( ) cos s
( )

in
sin cos

b h d b h d
h d m d s h d m d s Y

b h d
p h d m d s

b h d
h d d s

Z

m Y

b
Z bb

bb

 −
 =  
 − − 

T θ T θ
T θ
T θ

T T
T T

T
, (3.94)  

where 
 1, /: ( )p

b Xmb = − Θ . (3.95)  
The rotational constraints are 

 1, / , / ,, ( 0( ) )b b h d
p b m h d m h s

p
Y ZY Z − =T Θ θT T . (3.96)  

Together, all the positional and rotational constraint equations can be written in the form 
 ( )I I B

B m ms − =T B T B q 0 . (3.97)  

The "I" index stands for some intermediate coordinate system.  I
BT  is a function of some of the 

rotational degrees-of-freedom, while I
mT  is constant.  The Jacobian (partial derivatives with respect 

to the degrees-of-freedom) of these constraint equations is needed for implementation in the 
equations of motion.  The Jacobian is 

 
I

B I I BB
B m m sBs

∂
= − +

∂
T

L T B T B B q
q

. (3.98)  

3.3.2 Example of Implementation in the Equations of Motion 
Following Shabana [24], the uncoupled equations of motion can be written in the form 
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2

2

d
dt

=
qM R , (3.99)  

where R represents some likely nonlinear right-hand side terms.  In developing this equation using 
variational methods, the details of which we skip (as we proceeded directly from the related 
Lagrange equations), the dependent degrees-of-freedom in the virtual displacements δq  are 
eliminated using the constraint equations.  This is a linear operation.  First the constraint functions 
and equations of motion are partitioned such that the independent degrees-of-freedom come first, 
and the dependent degrees-of-freedom are grouped at the end.  Then the variation of the constraint 
functions, applied to the virtual displacements, can be written 

 ˆ 0ˆ
s sδ δ+ =L q L q , (3.100)  

such that  
 1 ˆ ˆs sδ δ−= −q L L q . (3.101)  

Here q̂  represents the independent degrees-of-freedom, and sq  the dependent (slave) degrees-of-
freedom.  Defining  

 1
:

( ˆ)s
−

 
 =

−

I
Λ

L L
, (3.102)  

where I  is the identity matrix of dimension equal to the number of independent degrees-of-
freedom, the equations of motion are 

 
2

2

ˆT Td
dt

=
qΛ Λ ΛM R  (3.103)  

in terms of the purely independent degrees-of-freedom. 
If the equations of motion are linear, then Equation 3.101 applies directly as a transformation 

of the degrees-of-freedom: 
 1

0 0
ˆ ˆs s

−= −q L L q ;          0 ˆ=q Λ q . (3.104)  
The implementation of constraints is further discussed in Sections 3.6.1 and 3.7.2. 

3.4 Linearized Equations 
The majority of the terms in the equations of motion are nonlinear, each containing products 

of qB , Bd dtq , and 
22 Bd dtq .  In general, a function of a vector x and its first two time 

derivatives can be linearized as 

 

( )

0 0 0
0 0 0

2 2 2

( , , , , )(

, ,

)

,

T T T

O

 ∂ ∂ ∂
+ ∆ + ∆ + ∆ ∂ ∂ ∂ 

+ ∆ ∆

≈

∆

g x x x x x x x x x g
x x x

x x

g

x

     
 

 

 (3.105)  

where the operator 
0

s∂ ∂  is understood to mean "first take the derivative with respect to s, then 
evaluate this at the steady-state condition."   

It is evident from Equation 3.105 that the linearized equations of motion will involve 
products of one or more of the steady-state terms 

0
Bq , 

0

Bd
dt
q

, 
2

2
0

Bd
dt

q
, 0

BΣ , 
0

B

m

∂
∂
Σ
θ

, 
0

B∂
∂
Σ
α

, and 
0

B∂
∂
Σ
ω

 

with small dynamic fluctuations 
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B∆q , 
Bd

dt
∆q

, and 
2

2

Bd
dt
∆q

. 

Here mθ  and α  are subsets of Bq , and represent the elastic master node rotations and joint 

rotations, respectively.  The body angular veloctity ω  is a subset of Bq .  The equations are greatly 
simplified by making intelligent assumptions about which of the steady-state components can be 
considered small, on the same order as B∆q , and neglecting orders higher than one. 

3.4.1 Small-Displacement Assumptions 
On the tower, all steady-state displacements 0

Bq  are small.  The steady-state velocity and 

acceleration, 0
Bq , and 0

Bq , are zero. 

On the nacelle, the steady-state yaw angle 0 1, / 0
: ( )y

n m Zχ = Θ  is not necessarily small.  

Otherwise, all displacements are small, and all steady-state time derivatives are zero. 
On the driveshaft, the azimuth angle 0 1, / 0

(: )d m Z
dψ = Θ  is prescribed, for reasons discussed 

in Section 3.8.  The steady-state rotational speed 0 0 1, / 0
: ( )d Z

d
mψ= =Ω Θ  is not small.  All other 

displacements, in the rotating driveshaft coordinate system, are small, and all other steady-state 
time derivatives are zero. 

On the blades, the steady-state pitch angle 0 1, / 0
: ( )b Xm

pb = Θ  may not be small.  It is 

questionable whether the mean blade deflection 0, /
p

b sw  can be considered small, especially near the 
tips; this depends upon the desired accuracy of the analysis.  The equations are presently 
formulated assuming that 0, /

p
b sw  is small.  The steady-state values of the displacements 1, / 0b m

pO  

and rotations 1, / 0,( )b m
p

Y ZΘ  of the reference node at the pitch bearing are small. 

As a consequence of the above assumptions, the steady-state values of Equations 3.44 
through 3.46 are, for the blades, 

 0 0 0 0
B p d

d pΩ=S T S T , (3.106)  
with 

 
0

0 0

0 0
0 0

0 0 0
Ω

− 
 =  
  

Ω
ΩS , (3.107)  

for the driveshaft, 
 0 0

B
Ω=S S , (3.108)  

and for the tower and nacelle, 
 0 0B =S . (3.109)  

Thus, the steady-state 0
BΣ  is only a function of the mean rotational speed 0Ω  and, for the blades, 

the steady-state transform from driveshaft to pitch coordinates.  Also, 

 
0

0
Bd

dt
=

S
,      for all nodes, so     

0

0
Bd

dt
=

Σ
. (3.110)  

The mean acceleration of all degrees-of-freedom is zero: 
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2

2
0

0
Bd

dt
=

q
; (3.111)  

that being said, nonzero accelerations in global coordinates may result from products of the 
rotational speed 0Ω  and other terms.   

The only terms in 0
Bq  which are of order zero are the joint angles 0χ  and 0ψ , and, for each 

blade, 0β .  The only nonzero mean velocity, with degrees-of-freedom in body coordinates, is the 

rotational speed 0Ω .  Thus 

 [ ]0 0
0

: 0 0 0
B

Td
dt

= = Ω
q Ω   . (3.112)  

Again, nonzero velocities in global coordinates result from products of 0Ω  with other terms. 
Examine the term 

B
Bd

dt
Σ q  

which appears in the equations of motion.  This is linearized as 

 0 0 0
0 0 0 0

B B B B B
B B B B B B B

B B

d d d d d
dt dt dt dt dt

   
≈ + + +   

 

∂ ∂
∆ ∆ ∆

∂ ∂ 

Σ Σ Σ Σ Σω q
ω q

q q q q q . (3.113)  

The first two terms on the right-hand side are zero, by Equation 3.110.  The vector 0
Bq  contains 

only joint angles as zero-order terms.  Yet the matrix BΣ contains all zeros in the columns 
associated with the joint angles.  Therefore the latter two terms are also zero, to first order, and 

 
B

Bd
dt

≈qΣ 0 . (3.114)  

wherever it appears in the equations.  By the same argument, any expressions involving BΣ  or its 
derivatives times 0

Bq , will be linearized as 

 0 0 0
B B B B B B≈ ∆+Σ Σ Σq q q , (3.115)  

and any products like 

0 0
B B B∆qΣ q  

are zero to first order.  The above statements also apply to the rate of change of Bq , that is, 

 
B Bd

dt
d
dt

≈
qΣ 0      and e.g.    0

0

B
B Bd

dt
= =Σ Σ Ωq 0 . (3.116)  

From Equation 3.110, it can be seen that  

 
0

B

B

d
dt

 ∂
= ∂ 

Σ
θ

0 . (3.117)  

 

3.4.2 Terms in the Linearized Equations of Motion 
We proceed term-by-term, beginning with the Jacobian of the constraint equation.  This 

already represents the constraint equations to first order, and so the steady-state value is used: 
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 0 0 0 0
0

s s

I
B I I BB

B m m B

∂
= − +

∂
T

L T B T B B q
q

 (3.118)  

Moving on to the equations of  motion, the first term is 

 
2 2

0 02 2( ) ( )
B B

B T B B B T B Bd d
dt dt

∆
≈

q qA A AM M A    . (3.119)  

The two terms involving angular accelerations are 

 ( )
B

B T B B Bd
dt

≈
Σ 0MA A q  (3.120)  

by Equation 3.114, and 

 
0 0

0

0 0
0

( ) ( )

( ) .

BB B
B T B B B B T B B B

s sB

B
B T B B B B

sB

d d
dt dt

∂ ∆
∂

∂
+ ∆

∂

≈
Σ Σ ωM B P M B P

ω

ΣM B P

A

A ω
θ

A 



 (3.121)  

Here Bθ  indicates the entries in Bq  associated with master node and joint rotations. 
For the coriolis force terms, 

 
0 0 0( ) ( )

B B
B T B B B B T B B Bd d

dt dt
≈

∆q qA A A AM Σ M Σ  ; 

0 0 0( ) ( )
B B

B T B B B B T B B Bd d
dt dt

∆
≈

q qA M A Σ ΣAMA    ; 
(3.122)  

 

 

0 0 0 0

0 0 0 0 0 0
0

0 0 0 0 0 0
0 0

0 0 0
0

) ( ) ) ( )

)) ( ) ( )

) ( )(

( (

((

( (

(

) )

) ( ) ;

B
B T B T B B B T B T B B

B B T
B T B T B B B T B B B

B

B T B T
B T B B B T B B

B B

B
B T B T B B

B

d
dt

d
dt
∆ ∂

∆

∂

≈

+ +
∂

 ∂
+ +

∂ ∂
∂

+ 
∂ 

∆


Σ M Σ M Ω

ΣΣ M M Ω ω
ω

Σ M Ω Σ M Ω
θ

qA A A A

qA A

θ

A A

AA A A

AΣ M Ω θ
θ

A

   

   


  




 (3.123)  

 
and similarly in an obvious manner for the terms 

( )
B

B T B B B d
dt

Σ M qA A       and     (( ) )
B

B T B B T B d
dt
qA M Σ A  . 

For the centrifugal force terms, centrifugal stiffening is represented by 

 

( )
( )

( )
( )

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

) ( ) ) ( ) ,

( ) ( ) ,

(

( (

( () ) ( ) ) ,

( ) ( ) ,

B T B T B B B B B T B T B B B B B

B T B B B B B B T B B B B B B

B T B B T B B B B T B B T B B B B

B T B B B B B B T B B B B B B

≈ +

≈ +

≈ +

∆

∆

≈ +

∆

∆

Σ M Σ Σ M Σ

Σ M Σ Σ M Σ

M Σ Σ M Σ Σ

M

A A q A A q q

A A q A A q q

A A q A A q q

A A q AΣ Σ M Σ qΣA q

 

 

 

 

 (3.124)  
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and other centrifugal forces by 

 

0 0 0 0

0 0 0 0 0 0
0 0

0 0 0 0 0 0
0 0

0 0
0

) ( ) ) ( )

) ( ) ) ( )

) ( ) ) ( )

( )

( (

( (

( (

( )

B T B T B B B B B T B T B B B B
s s

B T B
B T B B B B B T B T B B B B

s sB B

B T B
B T B B B B B T B T B B B

s sB B

B T
B T B B

B

≈

 
+ + 

∂ ∂ 

∂ ∂
∆



+ +

∂ ∂

∂
∂

∂ ∂



+

Σ M B Σ P Σ M B Σ P

Σ ΣM B Σ P Σ M B P ω
ω ω

Σ ΣM B Σ P Σ M B P
θ θ

A A

A A

A

AΣ M B Σ
θ

A

 

 

 


0 0 0 0

0

) ( )( ,
B

B B B T B T B B B B
s sB

∂ 
+ 

∂ 
∆


BP Σ Σ P
θ

A M θ

 (3.125)  

with similar expressions for  
( )B T B B B B B

sΣ M B Σ PA , (( ) )B T B B T B B B
sM Σ ΣA PB , and ( )B T B B B B B

sA BM Σ Σ P . 
The first equation involving coupling between displacement and acceleration is zero: 

 
2

2

( )( ) ( )
B T B

B T B T B B
B

d
dt

∂
≈

∂
Σ qA A 0Mq
ω

 . (3.126)  

The second is 

 
2 2

0 02 2
0

( ) (( ) )( )) ( ) (
B T B B T B

B T B T B B B T B T B B
s sB B

d d
dt dt

∂ ∂ ∆
≈

∂ ∂
Σ ΣP B M Pq qB M

ω
A

ω
A  . (3.127)  

By Equations 3.113 and 3.114, 

 

( )( ) ( )
B T B

B T B T B B B
B

d
dt

∂
≈

∂
q ΣA

ω
A qΣ M 0 ; 

( )( ) ( )
B T B

B T B T B B B
sB

d
dt

∂
≈

∂
Σ Σq A M B P
ω

0 ; 

(( ))) (
B T B

B T B T B B B
s B

d
dt

∂
≈

∂
Σ ΣP B A qM
ω

0 . 

(3.128)  

The only nonzero angular acceleration term is 

 0 0
0 0

0 0
0 0

( )) (

( )) (

(

( )

(

)) (

)

) .(

B T B
B T B T B B B
s sB

B T B B
B T B T B B B
s sB B

B T B
B T B T B B B B
s sB B

d
dt

d
dt

∂
≈

∂ ∆
∂

∂
∂
∂

∂
∂

∂
+ ∆

∂

Σ ΣP B M B P
ω

Σ Σ ωP B M B P
ω ω

Σ ΣP B M B P ω
ω θ

 (3.129)  

The quadratic velocity term is 

 0 0 0
0

( ) ( ) ( ) ( )
B T B T B B B

B T B B T B T B B
B B

d d d
dt dt dt

∂ ∂
≈

∂ ∂
∆Σ ΣM Ω M

ω ω
q q qA A A A  , (3.130)  

with other terms zero by Equation 3.115. 
For the seven terms with coupling between displacements and velocities, 

 ( )( ) ( )
B T B

B T B T B B B
B

d
dt

∂
≈

∂
Σ M Σ qq A
ω

A 0 ; (3.131)  
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( ) ( ) ( )
B T B T

B T B B B B
B

d
dt

∂
≈

∂
q A AM Σ qΣ

ω
0 ; 

( )( ) ( )
B T B

B T B T B B B
B

d
dt

∂
≈

∂
qq A A Σ

ω
0Σ M  . 

Then, 

 

( )0 0 0 0 0
0

(( )( ) ) ( ) ( )
B T B B

B T B T B T B B T B T B B B B B
B B

d
dt

∂
∆

∂
≈ +

∂ ∂
Σ ΣΣ M Ω M Σ
ω

qA A A q q
ω

q A   ; 

( )0 0 0 0 0
0

( )( ) ( ) ( ) ( )
B T B B

B T B T B B B T B T B B T B B B
B B

d
dt

∆
∂ ∂

≈ +
∂ ∂

qq A A A A qΣ ΣΣ M Ω M Σ
ω ω

q  ; 

( )0 0 0 0 0
0

( )( ) ( ) ) (( ) ( )
B T B B

B T B T B B T B T B T B T B B B B
B B

d
dt

∂
∆

∂
≈ +

∂ ∂
Σ ΣM Σ Ωqq A A A A qM

ω
qΣ

ω
  ; 

2

0 0 0
0

( )( ) ( ) ( ) ( )
B T B B

B T B T B B T B T B B B B
B B

d d
dt dt ψ

 ∂ ∂
≈ + ∂ ∂ ∂ 
Ω ∆

Σ Σqq A A A A qM Ω M
ω ω

q  . 

(3.132)  

The seven terms coupling velocities and positional offsets linearize as 

 

0 0 0 0
0

0 0 0
0

0 0 0
0 0

2

0 0 0 0
0

( ) ( )) ) ( ) ) ) ( )

( )

( ( ( (

) ) ( )

( ) )) ( )

( ))

( (

((

( ( ) ( )

B T B B T
B T B T B T B B B T B T B T B B
s sB B

B T B
B T B T B T B B
s B

B T B T
B T B T B B B
s B B

B T
B T B T B T B B
s B B

d
dt

d
dt

∂ ∂
≈

∆

∂
∆

∂ ∂

∂
+

∂

∂
+

∂ ∂

 ∂
+

∂ ∂

Σ ΣP Σ M P Σ M Ω
ω ω

ΣP Σ M
ω

Σ ΣP M Ω ω
ω ω

Σ

qB A B A

P

qB A

B

Σ M Ω
ω θ

A

B A

 







0 0 0
0 0

0 0 0
0 0

0 0 0
0 0

( ) )) ( )

( ) ( )) )

( )) ) ( ) ,

((

( (

( (

B T B T
B T B T B B
s B B

B T B T
B T B T B B
s B B

B T B
B T B T B T B B
s B B




∂
+

∂ ∂

∂ ∂
+

∂ ∂

∂ ∂
+ 

∂ ∂ 

∂

∆


B AΣ ΣP M Ω
ω θ

ΣP Σ M Ω
ω θ

B A

ABΣP Σ M Ω θ
ω θ







 

(3.133)  

with the terms 
( )( )) (

B T B
B T B T B B B
s B

d
dt

∂
∂

qB AΣP Σ M
ω

  and ( ) (( )) ( )
B T B

B T B T B B T B
s B

d
dt

∂
∂
ΣP B M Σ
ω

qA  

having similar expressions.  Next, 

 
0 0 0

0

( )( ) ( )) ( ) (( )
B T B B T B

B T B T B B B B T B T B B B
s sB B

d d
dt dt

∂
∂ ∂

∆∂
≈

Σ ΣP B M Σ P B
ω

A AMq qΣ
ω

; 

0 0 0
0

( )( ) (( )) ( ( ))
B T B B T B

B T B T B B B B T B T B B B
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(3.134)  

The two remaining terms are  

 0 0 0
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∂ ∂
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ω
q qA M

ω
 (3.135)  
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(3.136)  

The five terms which are quadratic in displacements are all zero. 
The ten terms with coupling between displacements and positional offsets all contain 

products of Bq  and BΣ  or its derivatives, so to first order, 
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 (3.137)  

and similarly for 
( )) (( )

B T
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Then, 
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and similarly for 
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Finally, 
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(3.139)  

The five terms which are quadratic in the positional offsets are linearized as 
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(3.140)  

and similarly for 
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The fifth term is 
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(3.141)  

The next group of centrifugal and coriolis terms are linearized as 
 ( )0 0 0 0 0( ) ( ) ( ) ( )B T B T B B B B T B T B BB B B B− ≈ ∆− +Σ M Σ ΣA A A qM Σq A q , (3.142)  
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and 
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 (3.144)  

The term which is quadratic in the velocities is 
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 (3.145)  

The three terms coupling displacements and velocities are 
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and 
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The three terms coupling positional offsets and velocities are 
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(3.149)  
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(3.150)  
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(3.151)  

(On implementation, caution is needed on the above and following equations, as to which partial 
derivative determines the column in the matrix and which determines the row.) 

The two terms which are quadratic in displacements are both zero to first order.  The four 
terms coupling displacements and positional offsets are linearized as 
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The two terms which are quadratic in positional offsets are linearized as 
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(3.153)  

and similarly for 
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The two remaining terms are 
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B
B

B
B d d

dt dt
≈

∆q qC C   (3.154)  

and 
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≈ ∆ ∆Ω
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+ +
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KK q K q K q q


   , (3.155)  

where the latter term appears due to the centrifugal stiffening effect described in Section 3.1.4; this 
term may be neglected for cases in which the mean elastic blade displacements are considered to be 
small.   The six rows and columns of BC  and BK  associated with the reference node on each body 
are set to zero, as the stiffness and damping do not act on the degrees-of-freedom associated with 
rigid-body motions.   

The linearized equations can be written in the form 
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 (3.156)  

Here 0
B
KG  represents steady-state terms which are dependent on 0Ω  and multiply 0

Bq , and 0
B
ΩG  

represents the remainder of the steady-state terms which are dependent upon 0Ω .  B
CG  and B

KG  

are terms which are dependent upon 0Ω  and which multiply fluctuations in velocity and position, 

respectively.  B
MG  accounts for the rotational acceleration terms.  Also, 
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 0 0 0: ( )B B T B B=M MA A   (3.157)  

3.4.3 Comments on the Equations of Motion 
If all the matrix multiplications in the terms of B

CG  and B
KG  were written out, it would be 

seen that many of the terms cancel, and others are insignificantly small.  This has not been pursued 
further, in the initial implementation of the STAS program.  It has been observed that B

CG  and B
KG  

have only a minor influence on the rotor dynamics of utility-scale wind turbines.  With the 
exception of centrifugal stiffening  (Section 3.1.4), centrifugal and gyroscopic effects can be 
neglected, to within the level of uncertainty expected for other aspects of the linearized analysis.  
Further discussion of this point is provided in Section 5.2.2. 

3.5 Static and Dynamic Analysis in the Parked State 
When the turbine is parked, 0Ω = , and the linearized equations of motion are 
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∆
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A
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 

  



 

 

 

 

(3.158)  

The first term accounts for the inertia of elastic deformation, direct displacement of the reference 
nodes, and joint rotation.  The next two terms account for the inertia of reference node rotation. 

3.5.1 Constraints 
In addition to the constraints given in Section 3.3, the joint rotations are locked by providing 

five additional constraint equations.  The constraints are then implemented by the linear 
transformation of Equation 3.104.  Applying this transformation to Equation 3.158, after 
partitioning the dependent and independent degrees-of-freedom, gives 

 
( )

2

0 0 0 0 0 0 0 02

0 0 0 0 0

ˆ ˆ

ˆ ˆ

.

B
T B B T B T B B

M

B
T B T B T B B

d
dt

d
dt

+ = −
∆

∆
∆+ − ∆−

qG M F K qΛ Λ Λ Λ Λ

qΛ F Λ ΛC KΛ Λ q

 

 

 (3.159)  

3.5.2 Static Analysis 
Considering only the static terms in Equation 3.159, the mean displacements of the 

independent degrees-of-freedom are computed by 

 ( ) 1

0 0 0 0 0ˆ B T B T B−
= Λ Λ Λq K F . (3.160)  

The full set of displacements, including the slave degrees-of-freedom, is recovered by computing 
1

0 0 0 0
ˆ ˆB B

s s
−= −q L L q , and reordering so as to form 0

Bq . 

3.5.3 Dynamic Analysis 
The equations of motion are 
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 ( )
2

0 0 0 0 0 0 0 02

ˆ ˆˆ B B
T B B T B T B T B B

M
d d

dtdt
+ = −

∆
−

∆
∆ ∆

qΛ Λ Λ F Λ Λ ΛqG M C ΛK q  , (3.161)  

whose solution can be found by standard techniques of structural dynamics.  The undamped 
eigenvalues and mode shapes are also of interest, and are to be found by the nontrivial solutions of 

 ( )2
0 0 0 0 0ˆ ˆ 0T B B T B B B

Mω∆ − + =∆K G MΛ Λ q Λ Λ q  . (3.162)  
Alternatively, Equation 3.162 can be represented in state space, as described in the next section. 

3.6 Equations of Motion in State Space 
We now consider the general case, where the rotor may be either fixed or spinning.  In the 

case of a spinning rotor, a physically meaningful solution does not follow directly from these 
equations, as the degree-of-freedom ψ associated with the driveshaft and rotor azimuth undergoes a 
large steady rotation.  Rather, the multi-blade coordinate transform of Section 3.8 is used 
afterwards to eliminate the dependence of the system matrices upon ψ. 

3.6.1 Constraints 
First the bodies are linked by constraints, as described in Section 3.3.1.  The constraints are 

implemented by the linear transformation of Equation 3.104, after partitioning the degrees-of-
freedom.  Yaw and pitch rotations may be locked or free as appropriate, but driveshaft rotation is 
free.  The equations of motion become 

 

2

0 0 0 0 0 0 0 0 0 02

0 0 0 0

ˆ ˆ( ) ( )

( ) )
ˆ

.ˆ(

B
T B B T B T B T B B B

M K

B
T B B T B B B

C K

d
dt

d
dt

Ω+ = − − +

− + − +

∆

∆
∆

qG M FΛ Λ Λ Λ Λ Λ

q

G G K

Λ Λ Λ Λ

q

G C G K q

 

 

 (3.163)  

For simplicity of notation, rewrite these equations as 

 
2

0 0 0 02

d d
dtdt Ω= − − − −

∆ ∆
+ ∆ ∆

q qK q FM CG KF q , (3.164)  

or 

 
2

2

d d
dtdt

= −
∆

∆−
∆

∆
q qF C KM q  (3.165)  

and 
 0 0 0 0Ω− − =KF G q 0 . (3.166)  

The terms in Equation 3.166 are not necessarily constant; they may have a fluctuating component 
that is a function of 0ψ . 

3.6.2 State Equations in Physical Coordinates 
There is more than one way to write Equation 3.164 in state-space form.  The most direct 

way is to define 

 1 :=q q      and     2 : d
dt

=
qq , (3.167)  

such that 

 1 1

2 2

d
dt
        

= +        − −         ∆
q qI 0 0 I 0
q Fq0 M K C

. (3.168)  
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An alternate form is obtained by switching the order of the states and balancing the L matrix using 
the mass matrix, for instance .  The result is 

 2 2

1 1

d
dt
        

= +        −         ∆
q q0 M M 0 0
q FqM C 0 K

. (3.169)  

Here the former version, Equation 3.168, is adopted, as it is more intuitive.  The potential 
advantage of Equation 3.169, that the matrices may be symmetric, is not realized in the present 
case, due to gyroscopic terms.  In addition, the structural equations are but a part of a larger state-
space. 

3.7 Modal Reduction 
It is desirable to reduce the number of degrees-of-freedom in the model.  One reason is to 

increase the computational speed.  Even more importantly, limiting the model to the lowest modes 
improves the numerical conditioning of the global eigenvalue calculation [11]. 

Begin with the unconstrained equations of motion, Equation 3.156.  These represent a series 
of bodies, each of whose position and orientation is determined by a reference node.  The elastic 
deformation of the body is then measured with respect to the reference node.  This arrangement is 
ideally suited to independent modal decomposition of each body, using the Craig-Bampton method 
([8],[31]). 

3.7.1 Mode Shapes for Each Body 
For each body, the mass and stiffness sub-matrices, associated with the elastic degrees-of-

freedom, are extracted from the full-body matrices 0
B B
M +G M  and BK  of Equation 3.156.  The 

reference node degrees-of-freedom are not included in the sub-matrices; in effect, this fixes the 
reference node for purposes of calculating the modes. 

On the tower, there is no reference node, and the modes are calculated including the soil 
stiffness terms.  The tower modes are calculated using an augmented mass matrix, where the 6-by-
6 block associated with the node at the yaw bearing is assigned the inertia matrix of the rotor-
nacelle assembly.  This gives tower modes which closely approximate the deformed shapes 
expected from the full structural model.  Without the augmented inertia, the natural bending modes 
do not curve enough near the free end; in comparison with the full model, a modal model 
employing the first few bending modes cannot represent the internal loads on the tower side of the 
yaw bearing.  With the augmented inertia, the internal loads are well approximated.   

If the input file indicates the appropriate number of modes for the nacelle and driveshaft (8 
and 18, respectively), Ritz vectors are used to represent the mode shapes, as described below.  If 
the input file indicates some other number of modes for the nacelle and driveshaft, then these are 
computed using an augmented mass matrix for the master nodes, as in the case of the tower. 

In either case, the Ritz or natural modes are computed with fixed Xd and Yd degrees-of-
freedom at the front bearing.  To represent deformation of these two degrees-of-freedom, which are 
slaved to the nacelle, the driveshaft contains two additional modes.  These are Ritz vectors 
computed as in Equation 3.170, with unit forces in the slave degrees-of-freedom.   

The blades are represented by natural modes, computed with a fixed pitch bearing. 
The above combination of body modes was found to reproduce the natural frequencies, 

through at least the first 20 modes of the assembled wind turbine, obtained from the full mass and 
stiffness matrices.  Also, this combination of body modes reproduced the internal loads of the full 
model under various combinations of static loading. 

Ritz vectors are obtained by applying unit loads to each of the master degrees-of-freedom, 
and solving for the static deformation, following Cook et al. [7], as 

 j jk k=k φ f , (3.170)  



 

PROJECT NO. 
502000059-10 

REPORT NO. 
TR A7474 
 
 

VERSION 
1.0 
 
 

53 of 68 

 

where fk contains a unit value in the appropriate degree-of-freedom and kj is the stiffness sub-
matrix associated with the body (nacelle or driveshaft).  In the case of the nacelle, there are six 
master degrees-of-freedom at the rear bearing node, and two at the front bearing node.  The 
driveshaft has 18 master degrees-of-freedom, 6 at each pitch bearing. 

Otherwise, the mode shapes for body j are obtained by the eigenvectors of 
 ( )2 0j j jω− =k m φ , (3.171)  

where jk  and jm  are the sub-matrices for the body's elastic degrees-of-freedom, and jφ  are the 
mode shapes.  The mode shape vectors are normalized such that the maximum value in each vector 
is 1, and expanded with zeros so as to include entries for all the structural degrees-of-freedom, 
giving a matrix Φ . 

A reduced list of degrees-of-freedom is defined for each body as 

 1/ 1/

TB B BB
m m =  q ΘO d  , (3.172)  

where d represents the modal amplitudes.  In the case of the driveshaft, the sequence is modified to 

 1, / 1, / / /) )( (
TB d d d d

d n d n f s X
d

Yf s =  O w w dq Θ  , (3.173)  

so as to include the two slave nodes at the front bearing. 
The transform between physical and modal degrees-of-freedom is 

 B B=q Φq . (3.174)  

3.7.2 Constraint Equations 
By Equation 3.174, the variation of the constraint functions, applied to the virtual 

displacements, becomes 
 B Bδ =L Φ q 0 . (3.175)  

Thus the matrix :B B=L L Φ  can be manipulated in the same manner as BL .  The slave degrees-of-
freedom are all separate, not included in the modes, thus it is straightforward to partition Equation 
3.175 in the manner of Equation 3.104, 

 1 ˆ ˆs sδ δ−= −q L L q , (3.176)  

where q̂  now includes only the joint rotations and modal amplitudes.  The end result is the set of 
relations 

 1
0 0

ˆ ˆs s
−= −q L L q ;     0 ˆ=q Λ q ;     0 1

0 0
ˆ:

( )s
−


=

−


 
 

I
Λ

L L
. (3.177)  

3.7.3 Equations of Motion 
Beginning with Equation 3.156, modal reduction is employed, giving 

 

2

0 2( )

( ) ( ) .

B
T B B
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B
T B T B B T B B B

C K

d
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d
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+ =

− + − +

∆

∆
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qG M

G

Φ Φ

qΦ F Φ ΦC G KΦ Φ q



 
 (3.178)  

Then, the constraint relations, Equation 3.177, give the constrained equations of motion, 

 

2

0 0 0 2

0 0 0 0 0

ˆ
( )

( ) ( ) .
ˆ ˆ

B
T T B B

M

B
T T B T T B B T T B B B

C K
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d
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∆
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qG M
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 (3.179)  
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The obvious definitions of M, C, K, and F lead to Equation 3.168 in state space form. 

3.8 Multi-Blade Coordinates 
The multi-blade coordinate transform is employed in the analysis of rotating systems like 

helicopters [15] and wind turbines ([3],[11],[25]).  It is also known as the Coleman transform, after 
Coleman and Feingold [6].   

Let some portion of the x, y, and u variables in Equation 1.3 be associated with the three 
blades of the wind turbine.  That is, such variables appear in triplets (not necessarily consecutively 
in the vectors), as 1 2 3[ ]B B B Tx x x , where the subscript here refers to the blade number.  We 

define corresponding multi-blade coordinates 0[ ]T
c sx x xψ ψ ψ , where 0xψ  represents collective 

motion, cxψ  represents motion when the blade is oriented along the cosine of the azimuth (the Xr 

axis), and sxψ  represents motion when the blade is oriented along the sine of the azimuth (the Yr 
axis).  The transforms between the triplets of variables are 

 

3

1

2

0
B

c

s

B

B

B

x x
x x
x x

ψ

ψ
ψ

ψ

   
   =   
      

T , (3.180)  

where 

 ( ) ( )
( ) ( )
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cos 2 3 sin 2 3
cos 4 3 sin 4

1
1
1 3

B
ψ

ψ ψ
ψ π ψ π
ψ π ψ π

 
 =  + +

+ +


  

T , (3.181)  

ψ  being the azimuth angle of blade 1, and 

 ( ) ( )

( ) ( )

1

1 1 1
3 3 3

2 2 2(
3 3 3
2 2 2
3 3

) cos cos 2 3 cos 4 3

sin sin 2 3 sin 3
3
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 
 
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 
 
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+ +

+ +


T T . (3.182)  

The relevant derivatives are 

 ( ) ( )
( ) ( )

sin cos
sin 2 3 cos 2 3
sin 4 3 cos

0
0
0 4 3

Bd
d

ψ

ψ ψ
ψ π ψ π

ψ
ψ π ψ π

−
− + +

 
 =  
 + + − 

T
 (3.183)  

and 

 ( ) ( )
( ) ( )

2

2

cos sin
cos 2 3 sin 2 3
cos 4 3 sin

0
0
0 4 3

Bd
d

ψ

ψ ψ
ψ π ψ π

ψ
ψ π ψ π

− −
− + − +
− + − +

 
 =  
  

T
. (3.184)  

The transformation of blade variables to multi-blade coordinates has the effect that the state 
equations can be written in a form that is only a weak function of  ψ .  The equations are evaluated 
at a number of values of ψ , and, subsequent to transformation, the matrices averaged.  Stol et al. 
[25] have shown that this gives modal dynamics which are close approximations to that obtained 
by a more advanced Floquet (periodic-coefficient [15]) analysis. 
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The multi-blade transform is akin to the transformation of structural degrees-of-freedom into 
mode shapes, in the sense that physical quantities like an [x y z] vector are mapped to a set of 
generalized coordinates.  Things which are expressed in physical coordinates, like mass, will 
appear in the transformed equations in the form 

( )physical quantity or operationB
Byy
yT T x . 

This can be interpreted as that the degrees-of-freedom in multi-blade coordinates are transformed 
to physical coordinates, fed into the operation conducted in physical coordinates, and then the 
result is transformed back to multi-blade coordinates. 

The multi-blade transform converts between physical and multi-blade coordinates, which are 
in essence aligned with the rotorplane coordinate system.  This in turn is aligned with the nacelle 
coordinate system, at an offset along the Zn axis of –Ld.(2)  The transform forms a "barrier" between 
the physical coordinates on each side.  Thus quantities like airfoil forces on the blade (rotating) side 
are expressed first in pitch or hub coordinates, by the standard physical coordinate transformations, 
and then transformed to multi-blade coordinates for incorporation in the equations of motion.  Any 
quantity that its associated with each blade has an analogue in multi-blade coordinates.  This 
includes aerodynamic variables such as the angle-of-attack, lift and drag forces, and so forth. 

Only some of the equations of motion – those associated with the blade degrees-of-freedom 
– are expressed in multi-blade coordinates.  The remaining equations – those associated with the 
nonrotating degrees-of-freedom, plus the axisymmetric driveshaft – are expressed in physical 
coordinates.   

The state equations transform as 

 
B

xB B B
Bx x Bx x Bx Bx u

d
dt

ψ
ψψ ψ ψ ψ ψ ψ

ψ ψ ψψ
 ∂

= − +  ∂ 
Ω

TxT LT T AT T L x T BT u , (3.185)  

and the output equations 
 B B

By x By u
yyyyy   

yy = +y T CT x T DT u . (3.186)  
Here a distinction is made between the multi-blade transforms associated with the state (x), input 
(u), and output (y) vectors. 

Equations 3.185 and 3.186 are not identical to the multi-blade transform of state-space 
described by Bir [3], also Johnson [15], who prefer to decompose the states as 

 
 

=  
 

x
q
q


 (3.187)  

and then make the substitutions 

 

B
q

ψ
ψ=q T q , 

 ( )
B
qB B

q q

dd d d
dt dt dt d

ψ
ψψ ψ

ψ ψ ψ
= = + Ω

Tq qT q T q ,     and 

22 2
2

2 2 22
B B B
q q qB

q
d d

dt
d d

dtdt dt

ψ ψ
ψ ψ ψψ ψ

ψ ψ ψψ
∂ ∂ ∂

= + + +
∂ ∂∂

Ω
Ω Ω

T T Tq q qT q q , 

(3.188)  

giving for the state-space 

                                                      
2 The rotorplane and nacelle coordinate systems are not exactly aligned due to elastic displacements 

and rotations of the driveshaft. 



 

PROJECT NO. 
502000059-10 

REPORT NO. 
TR A7474 
 
 

VERSION 
1.0 
 
 

56 of 68 

 

 2
2

2 2

B
Bq q

B
Bq q

B
qB

q
Bq B

q B B BB
Bq q q qq

Bq

Bq

d
dt

d
dt

ψ ψ
ψ

ψ ψ
ψ

ψ
ψψ ψ

ψ ψ ψ
ψ ψ ψψ

ψ

ψ

ψ

ψ
ψ ψψ

Ω

     
=     

        
  ∂

      ∂   −∂        ∂ ∂ ∂         +∂  ∂ ∂ ∂   
 

+  
 

Ω
Ω



Ω



Ω

T 0 T 0 q
L

0 T 0 T q

T
T 0 0

T 0 q
A LT0 T qT T TT

T 0
B

0 T





.B
u

ψ
ψT u

 
(3.189)  

Here the relationship  
d
dt

ψ ψ=q q  

is preserved.   
Consider again the transformation of Equation 3.185.  For the present illustration, which is 

not representative of the entire STAS state space, let the state vector be decomposed in the manner 
proposed by Bir, 

 
=  
 

x
q
q


. 

However, the velocity variables are defined so that they transform as  

 Bq
d
dt

ψ ψ=
qv T ;          B

q
d
dt

ψ
ψ=

q T v , (3.190)  

where ψv  is used to emphasize that this is not the rate of change of ψq ; rather, it represents the 
velocities of the blade degrees-of-freedom, expressed in multi-blade coordinates.  Equation 3.185, 
if the state vector is decomposed in this manner, gives 
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T 0
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L
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0 T

 (3.191)  

Either Equation 3.189 or Equation 3.191 is a valid transformation of the state space.  STAS 
implements Equation 3.191: it makes the transformations to and from multi-blade coordinates 
simpler.  The full state-space of a wind turbine contains a variety of states, inputs, and outputs 
associated with the blades: forces, turbulence, induced velocities, pitch actuator commands, and so 
on.  It is desireable from a practical standpoint to be able to transform these in one consistent 
operation, on the global state-space. 

The distinction between Equations 3.189 and 3.191 may be illustrated with a trivial example.  
Let the deflection of a particular triplet of blade degrees-of-freedom vary about the azimuth as 



 

PROJECT NO. 
502000059-10 

REPORT NO. 
TR A7474 
 
 

VERSION 
1.0 
 
 

57 of 68 

 

 
1

2

3

cos
cos( 2 / 3)
cos( 4 / 3)

q
q
q

ψ
ψ π
ψ π
+

   
   =   
     +

, (3.192)  

such that the velocities are 
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. (3.193)  

Transforming the deflections gives, for either method, 
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. (3.194)  

It is clear that the time derivative of the multi-blade coordinate transformed deflections is zero; and 
indeed, Bir and Johnson's definition of the transformed velocity gives 
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The simpler definition of the transformed velocity gives 
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(3.196)  

This is understood as the velocities, expressed in multi-blade coordinates; it is not the time 
derivative of the multi-blade coordinate deflections.  The key point, however, is that Equation 
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3.185 also eliminates azimuth-dependence from the equations, and is thus also an effective means 
to make the state-space matrices time-invariant. 

4 Manipulation and Solution of the State Equations 
Equations 3.185 and 3.186 are combined with the aerodynamic state equations into a unified 

state space, in the form of Equation 1.3.  This is thereafter reduced, via Equation 1.4, to the form of 
Equation 1.2.  A complete list of states, inputs, and intermediate variables (considered to be 
outputs) is given in Section 1.5. 

The coupling of the aerodynamic and structural equations is, on the one hand, by way of the 
aerodynamic forces on the blade degrees-of-freedom, and on the other hand, by the structural 
displacements and velocities of the blade elements, which are fed back to the aerodynamic 
equations. 

Equation 1.2 can be solved in a variety of ways.  For instance, in the time domain, the 
equations can be integrated numerically, or a solution can be written as [23] 

 
0

1 1 1
0 0exp[ ( )] ( ) exp[ ( )] ( )( )

t

t

t t t tt dt t t− − −− + −= ∫L A x L A L B ux . (4.1)  

In the frequency domain, stability and damping properties can be evalutated and transfer functions 
can be computed between quantities of interest. 

4.1 Augmenting the State Space 
The expansion of the state-space matrices to accommodate other functions, such as controls, 

is illustrated by two examples.  First, an induction generator response is added to a wind turbine 
with a free driveshaft degree-of-freedom.  This illustrates how to interface with the applied force 
entries in the u vector, and the procedure is applicable to other actuator loads, wave loads, and so 
forth.  Next, a blade pitch controller is implemented, where the pitch angle degrees-of-freedom are 
driven directly.  Rather than modelling the actuator forces, which would be identical to the case of 
the generator torque, directly driving degrees-of-freedom requires that the state matrices be 
restructured. 

4.1.1 Generator Torque 
In this example we wish to implement the relationship 

 gT K= Ω , (4.2)  
where T is the generator torque and Kg is a characteristic stiffness.  The torque is defined such that 
a positive torque will tend to resist rotation of the driveshaft and rotor.  A torque across the air gap 
is equivalent to a moment  
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d
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d
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dt
= −
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M  (4.3)  

applied to the driveshaft reference node, and the reaction 
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applied to the /( )m s Z
yθ  nodal degree-of-freedom on the nacelle master node.  The nacelle is not 

represented by nodal degrees-of-freedom, these having been transformed to a modal representation, 
however the conversion to modal coordinates is contained in the B matrix, derived from Equation 
3.179. 
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Consider the vectors of nodal forces BF  and nodal velocities Bd dtq .  By adding zeros, 
Equations 4.3 and 4.4 can be expanded to fill these vectors, taking the form of a new (or 
alternatively augmented) output equation 

 B =F Cx , (4.5)  
where C then contains Kg and the transform matrices.  The state equation is augmented by 
partitioning the columns of B as 

 B
u y

d
dt

= + +x B uL BA Fx
. (4.6)  

Equations 4.5 and 4.6 are reduced to the standard state-space form, by use of Equation 1.4.  This 
results in redefined state matrices which include the effects of the generator torque response. 

4.1.2 Direct Specification of Blade Pitch Angle 
Suppose that one wishes to implement a simplified model of blade pitch control, such as that 

described by Jonkman et al. [16], which ignores the details of the actuator dynamics, and simply 
prescribes a blade pitch angle.  This in effect reassigns the blade pitch degrees-of-freedom from 
states to inputs.  The state equations can then be partitioned like 

 12 111 1 2

21 22 21 22

11 1 1
1

2 2 2

d
dt
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resulting in the modified state equation, for frequency-domain analysis, of 

 [ ]1
11

11 1 2 11 1 1 2
2

d
i

dt
ω

 
= + −  

 

ux
L A x B A L
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(Time domain analysis would retain 2d dtu  as an additional input.)  The output equation becomes 

 [ ] 1
1 1 2

2

 
= +  

 

u
y C x D C

u
. (4.9)  

With Equations 4.8 and 4.9 as a starting point, the control is implemented in the manner of Section 
4.1.1, albeit with the prescribed pitch angles instead of forces. 

4.2 Natural Modes, Damping, and Transfer Functions 
To obtain frequency transfer functions, one can substitute 

 0 exp( )i tω=x x , 0 exp( )i tω=y y , and 0 exp( )i tω=u u  (4.10)  
into Equation 1.2 to obtain 

 0 0( )iω − =L x BuA . (4.11)  

Selecting desired inputs by setting elements of 0u  to one – or, in effect, picking columns of B – 
gives transfer functions between these inputs and the states 

 0( )iω =−L A X B . (4.12)  

Here 0X  is solved numerically as a system of linear equations; ( )iω −L A is, in the present case, 
sparse, while its inverse is nearly full.  Transfer functions between outputs and inputs follow from 

 0 0= +Y CX D , (4.13)  
where, if only a subset of the transfer functions is desired, Y, C, and D may be reduced by picking 
rows, and D again reduced by picking the same columns as B. 

Natural modes and damping ratios can be computed by setting the input to zero and solving 
Equation 4.11 as an eigenvalue problem 
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 0 0iω=A Lxx . (4.14)  

5 Verification 
Where possible, the simple functions in the STAS program have been double-checked and 

verified by hand.  The more complex, higher-level calculations are verified by comparison against 
other programs. 

5.1 Aerodynamics 
The aerodynamic modules have been verified by comparison against the nonlinear quasi-

steady BEM method, and nonlinear time-domain simulations using the FAST software [17]. 

5.1.1 Mean Aerodynamic Loads 
The mean aerodynamic loads are computed by a script, called speedyBEM.m, implementing 

the quasi-steady blade-element momentum method.  This script was derived from the Fortran 
subroutine speedyBEM.f90, which was implemented by Merz [20], and extensively validated.  As 
an illustration, Table II compares the rotor power and thrust obtained from speedyBEM.m against 
the same values obtained from the BEM method in HAWCStab2, as reported by Bak et al. [2].  
The agreement is not perfect, especially at high windspeeds.  This is to be expected, as above the 
rated windspeed the aerodynamic loads are very sensitive to the blade pitch angle, and details of 
the airfoil modelling; a small change in the pitch angle brings the results in line.  For instance, at 25 
m/s, changing the pitch angle from the nominal 22.98o to 22.63o results in speedyBEM.m output of 
10.66 MW power and 576 kN thrust. 

 
Table II: A comparison of power and thrust obtained from two different BEM analyses.

 

5.1.2 Fluctuating Aerodynamic Loads 
The aerodynamic portion of the STAS linearized state equations was isolated, effectively 

making the structure rigid, and deactivating all control actions.  The aerodynamic properties were 
defined based upon the DTU 10 MW Reference Wind Turbine [2].  Frequency transfer functions 
were computed by Equation 4.12; transfer functions were computed for the sensitivity of the axial 
and tangential aerodynamic forces, with respect to axial and tangential turbulence, at a radius of 
80.8 m (where the blade tip is at a radius of 89.2 m).  These are shown as solid lines in Figure 11, 
for mean windspeeds of 7, 11, 15, and 19 m/s.  The turbine was given a rotational speed and blade 
pitch angle corresponding to the nominal operating schedule at each windspeed. 
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Using speedyBEM.m, the force/turbulence sensitivities were computed using a two-sided 
finite-difference scheme.  The speedyBEM.m script performs a quasi-steady analysis, and thus 
represents the limit at zero frequency.  The results are shown in Figure 11 as white dots, and agree 
with the linearized blade-element momentum equations at the zero-frequency limit. 

In order to verify the linear model at higher frequencies, nonlinear time-domain simulations 
were performed using the FAST/AeroDyn program [17].  AeroDyn, the aerodynamics module, 
employs a quasi-steady blade-element momentum method at windspeeds below 8 m/s, and a 
generalized dynamic wake (also known as acceleration potential [5]) method at windspeeds above 
8 m/s.  This latter method solves for the pressure drop across the rotorplane, as a function of radial 
and azimuthal coordinates, based upon a linearization of the Euler equations of inviscid fluid flow; 
it is thus more advanced (though not necessarily more accurate) than the basic blade-element 
momentum analysis. 

The FAST/Aerodyn simulations were run with a spatially-uniform, time-varying wind field 
input.  The wind was given a sinusoidal fluctuation about a mean windspeed.  The frequency of the 
oscillation was set to 0.005, 0.2, or 1.0 Hz.  For each frequency, three simulations were run, with 
different amplitudes.  The smallest amplitude was set to 1% of the mean windspeed, and represents 
a perturbation about the mean value.  The next amplitude was set to 10% of the mean windspeed, 
which is in the vicinity of the standard deviation due to turbulence.  Finally, the amplitude was set 
to 50% of the mean windspeed, which represents a severe gust, being more than three standard 
deviations above and below the mean.   

The results indicate that the linearized state equations give a reasonable estimate of the 
fluctuation in aerodynamic forces, even for windspeeds which depart significantly from the point of 
linearization.  An important caveat is that the comparisons in Figure 11 do not include pitch control 
actions, nor the elastic response of the structure. 
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Figure 11: The magnitude of the sensitivity of aerodynamic forces (per unit spanwise length) with respect to sinusoidal 
fluctuations in the incoming axial and tangential components of the windspeed.  Lines show the results for the linearized 
state space representation of the aerodynamics in the STAS program.  These are compared with a nonlinear quasi-steady 
BEM calculation (speedyBEM.m) and, for the axial velocity component, nonlinear time-domain analyses using 
FAST/AeroDyn. 

5.2 Structural Dynamics 
The structural dynamic analysis has been verified by comparing with the Fedem finite 

element analysis program, as well as published results obtained with the FAST, Adams, and 
HAWCStab2 programs. 

5.2.1 Parked Condition 
A static analysis was conducted in order to compare the displacements obtained using the 

full set of degrees-of-freedom against those obtained with modal reduction.  A force of 100 kN in 
the Z p direction was applied to each of the three blades at the 6th node from the hub.  The modal 
analysis employed 20 modes for the tower, 8 for the nacelle, 18 for the driveshaft/hub, and 20 for 
each blade.  The full model had 575 degrees-of-freedom, while the reduced model had 100.  
Displacements were observed to be nearly identical. 

Natural frequencies obtained with the present analysis were compared with those from the 
Fedem finite-element analysis program, for the DTU 10 MW wind turbine, and from Jonkman et 
al. [16], for the NREL 5 MW wind turbine.  The results are shown in Table III and Table IV.  A 
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brief description of each mode is given; the higher modes become more complicated and difficult 
to identify. 

In Table III, the Fedem and STAS models were nominally of the same turbine geometry, to 
the extent that this is specified by Bak et al. [2].  The specification of the foundation was also the 
same.  However, the models were created independently by different analysts, and no effort was 
made to equalize them, for example, by using an identical element distribution.  It is suspected that 
some of the details of modelling, especially of the driveshaft, monopile, and seabed properties, are 
responsible for the observed differences.  The same can be said for the comparison in Table IV.  
Overall, the results indicate that there are no gross errors in the structural portion of the model. 

 
Figure 12: A comparison of full and reduced models under static thrust loading of the rotor.  At left: the (exaggerated) 
displaced shape relative to the undeformed position, looking at the turbine from the side.  At right: a plot of blade 2 
flapwise displacements (relative to the global coordinate system, and with blade pitch set to zero) versus zg coordinate; 
the location of the applied load is shown. 

Table III: A comparion of natural frequencies obtained with the present program, with full and reduced degrees-of-
freedom, with those from the Fedem finite element program.  Results for Fedem and the present analysis were obtained 
for the DTU 10 MW wind turbine, installed atop an offshore monopile foundation in 30 m water depth.  Selected 
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frequencies, published by DTU for a land-based turbine, are also shown.   Fedem results courtesy of L. Eliassen, NTNU.

 

 
Table IV: A comparison of natural frequencies obtained with the present program against those published by Jonkman et 
al. [16] for the NREL 5 MW wind turbine.

 

 

5.2.2 Operating Conditions 
Analysis under operating conditions includes the coupling between aerodynamic and 

structural loads, as well as the multi-blade coordinate transformation, and is therefore far more 
demanding than analysis under parked conditions.   



 

PROJECT NO. 
502000059-10 

REPORT NO. 
TR A7474 
 
 

VERSION 
1.0 
 
 

65 of 68 

 

Table V lists the natural frequencies and damping ratios of the NREL 5 MW wind turbine, 
when rotating at its operating speed, at a windspeed of 19 m/s.  The values are open-loop, including 
no generator torque or blade pitch response.  The windspeed of 19 m/s was chosen as this is 
directly between the operating conditions for which Stol [25] and Sønderby [26] reported natural 
frequencies and damping ratios.   

 
Table V: A comparison of natural frequencies and damping ratios while operating at a high windspeed.  Results are 
shown with and without the gyroscopic and centrifugal terms in the equations of motion.  The calculations are performed 
"open-loop", that is, with no control system, a free driveshaft, and locked pitch and yaw bearings.  The damping of 
driveshaft torsion is low, as the present model does not consider the rather high damping associated with a geared 
drivetrain; in reality this mode will be even more highly damped by the generator torque.  (*) The specification of the 
NREL 5 MW turbine does not include the bending properties of the driveshaft.  The present driveshaft was given 
reasonable dimensions, but these should not be interpreted as final values for the driveshaft modes.

 

It is observed that the centrifugal and gyroscopic terms make little contribution to the 
response.  (The effects of centrifugal stiffening are included in both cases.) 

Figure 13 shows the open-loop transfer function between the collective rotor-average 
windspeed and the driveshaft rotational speed.  This was obtained by setting the collective 
amplitudes (in multi-blade coordinates) of uz velocity inputs to 1, at all the blade elements.  Two 
sets of results were generated: one using the baseline structural damping expected for a gearless 
drivetrain, and the other using a weak induction-generator-type reaction of the driveshaft torsion, to 
match the damping of the first torsional mode assumed by Sønderby [26].  The equivalent transfer 
function obtained by Sønderby, using the HAWCStab2 program, is also shown.  The transfer 
function matches closely in the range between 0.25 Hz and 1.75 Hz.  Above this frequency, the 
results diverge due to differences in the driveshaft model, as evident in the different frequencies 
obtained for the second driveshaft torsional mode.  (The specification of the NREL 5 MW turbine, 
Jonkman et al. [16], does not include the driveshaft design, so it is not surprising that different 
modelling assumptions were made.)   Differences in the low-frequency response approaching 0 Hz 
are also evident.  The reason for the discrepancy at low frequencies is not known; it was found not 
to be related to the model of dynamic inflow, nor is it related to the gyroscopic or centrifugal terms.  
It is noted that a linear model might not give meaningful results for the open-loop response of a 
rotor to low-frequency fluctuations in the wind, which could lead to large variations in speed.  In 
reality, the generator torque response would govern the dynamics at low frequencies. 
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Figure 13: The open-loop transfer function between collective rotor-average windspeed and driveshaft speed, compared 
with values from the HAWCStab2 program, published by Sønderby [26].  Upper row: windspeed of 14 m/s, lower row: 
windspeed of 20 m/s.  NREL 5 MW turbine.  Results are shown for the baseline damping, representative of a direct-drive 
generator, and a damping value which approximates that used by Sønderby for the first drivetrain torsion mode. 

6 Conclusions 
A set of Matlab/Octave scripts have been developed, which output the state matrices 

describing a linear aeroelastic model of an offshore wind turbine.  The model is open-loop; 
controls, actuator models, and environmental loads can be added by augmenting the given matrices. 

The model has been verified by comparing natural frequencies, damping ratios, and 
frequency transfer functions against results obtained from other programs.  It appears to give 
adequate results for the design and analysis of control systems for offshore wind turbines.  The 
model is intended to be incorporated into the STAS wind power plant analysis program, as the 
basis for evaluating the turbines' dynamic response under actions of the local and supervisory 
control systems. 

In future work, the model could be improved in several ways.  To increase the speed of 
computation, the aerodynamic modes could be reduced, following Sønderby [26].  Center-of-
gravity and shear-center effects could be accounted for in the blade element cross-sections, which 
would allow the model to be used to predict flutter instability.  The present model is fully linear; if 
combined with a nonlinear quasi-static solution, the model could be linearized about the deformed 
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position of the turbine structures.  There is a need to develop a version of the multi-blade 
coordinate transform that can account for a first-order perturbation or a stochastic fluctuation in the 
rotational speed.  The response at low frequencies should be verified against nonlinear time-domain 
simulations.  Finally, the computation of the cG  and kG  terms should be revisited, as it was 
observed that many of these evaluate to zero, and thus could be eliminated from the computation. 
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