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Abstract—Admittance frequency sweep measurements is an 

accepted procedure for characterizing transformer terminal 
behavior for the purpose of frequency-dependent black-box 
modeling. The errors introduced by the measurement cables is 
with one existing practice mitigated by removal of the associated 
shunt capacitance effect. In this work it is shown that the 
accuracy can be greatly improved by usage of a transmission line 
representation of the measurement cables with parameters 
obtained from standard cable data or from S-parameter 
measurements. The procedure is demonstrated for the modeling 
a 45 MVA generator step-up transformer requiring cable lengths 
of six meters and an upper frequency limit of 10 MHz.  
 

Index Terms—Transformer, model, wide-band, black box, 
measurement, cable compensation.  

I.  INTRODUCTION 
REQUENCY sweep measurements is a convenient way of 
characterizing the behavior of complex network 

components like transformers over a wide frequency band. 
Such measurements aim at describing the component's 
terminal behavior in terms of scattering [1] or admittance 
parameters [2-5], or voltage transfer functions [6]. By 
subjecting the obtained frequency domain description to fitting 
with rational functions, a black-box model of the component is 
obtained which can be interfaced [7] with electromagnetic 
transient programs [8] for simulation of general network 
interaction, including resonances and voltage transfer between 
windings [9-12].  

 Some transformer measurement setups are based on direct 
measurement of the transformer's admittance matrix with the 
required short-circuits realized on a connection box that is 
attached to the transformer terminals through (shielded) 
measurement cables. The cables influence the measured result, 
in particular at high frequencies. In [3], it was proposed to 
remove the cable effects by subtracting the cable shunt 
admittances from the associated diagonal elements of the 
measured admittance matrix. This procedure was 
demonstrated to give good results for cables up to 5-m length, 
for frequencies up to 1 MHz. For simulation of very fast 
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transients, however, it may be necessary to extend the 
modeling beyond the 1 MHz range, and it may also be 
necessary to use longer cables.  

This work  demonstrates that removal of capacitance effects 
alone is insufficient if the goal is to consider frequencies up to 
10 MHz and cables in excess of 5 m length. A new cable 
compensation method is introduced which is based on a 
transmission line representation of the measurement cables. It 
is shown how to obtain the line representation using either 
cable standard parameters or S-parameter measurements. The 
new compensation method is applied to an actual case where 
45 MVA generator step-up transformer is to be modeled in the 
range 5 Hz-10 MHz using cables of 5 m and 6 m length. The 
obtained result is compared to that obtained with direct 
measurements using very short measurement cables, both in 
the frequency domain and in the time domain. The 
improvements over capacitive compensation are highlighted. 
The new compensation method was already used by this 
author in [11] and later works, but it was never documented. 

II.  ADMITTANCE MODELING AND MEASUREMENTS CABLES 
The transformer is to be represented by its admittance 

matrix YT which relates terminal voltages vT and terminal 
currents iT, 

 T T T( ) ( ) ( )ω ω ω=i Y v  (1) 

YT is measured using a suitable setup, e.g. as described in 
[3], and finally subjected to modeling by a stable and passive 
rational model,  
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The transformer is connected to the measurement box using 
shielded cables. The cable shields are grounded at both ends, 
on the connection box and on the transformer. At high 
frequencies, the current in each cable conductor returns in the 
metallic shield, eliminating any mutual coupling between the 
cables. Accordingly, each cable can be modeled separately as 
a single-conductor two-terminal transmission line. The cable 
behavior is governed by its length l, and its per-unit-length 
(p.u.l.) series impedance Z and shunt admittance Y, 

 ( ) ( ) ( )Z R j Lω ω ω ω= +  (3a) 

 ( ) ( ) ( )Y G j Cω ω ω ω= +  (3b) 
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One normally assumes G to be zero and C independent of 
frequency.  

III.  CABLE ELIMINATION CONSIDERING SHUNT CAPACITANCE 
EFFECT 

In the approach proposed in [3], Z is ignored. As a result, 
the shunt admittance (3b) adds directly to the diagonal 
elements of YT in (1) and the admittance of the transformer 
alone is recovered by subtracting from the diagonal elements 
of the measured admittance matrix Ymeas the cable shunt 
admittance,  

  ( , ) ( , )
T meas( ) ( ) ( )i i i i i ij C lω ω ω= − ⋅Y Y  (4) 

with i indicating the cable connected to the ith terminal.  
This approximation is expected to be sufficiently accurate 

as long as the voltage does not vary substantially along the 
cable and the cable series impedance is small compared to the 
transformer input impedance. This cable elimination method 
will in the following be referred to as the Cap-method.  

IV.  CABLE ELIMINATION CONSIDERING TRANSMISSION LINE 
EFFECT 

A.  Approach 
For each cable the familiar two-terminal admittance matrix 

applies,  

 cable
( ) ( )( ) ( ) ( )

a b
b a

ω ωω ω ω
 =   

Y  (5) 
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 ( ) ( ) ( )Z Yγ ω ω ω=  (8) 

The relation between the measured admittance, Ymeas, and 
the transformer admittance YT can be analyzed using the 
circuit topology in Fig. 1,   

 

 
Fig. 1.  Circuit topology relating transformer admittance matrix YT with 
measured admittance matrix Ymeas.  
 

To see how the measurement cables can be eliminated, each 
cable is represented by its exact PI-equivalent as shown in in 
Fig. 2, 

 
Fig. 2.  PI-model of ith cable.  
 
and it is observed that the cable effect becomes eliminated 
when connecting in series a PI-section with negated elements 
as shown in Fig. 3. This cable elimination method will in the 
following be referred to as the T-line method. 
 

 
Fig. 3.  Elimination of ith cable. 

B.  Elimination of Internal Nodes 
The internal nodes in Fig. 3 are finally eliminated using 

standard Kron reduction [13] as follows.  
The 2n×2n admittance matrix Yaug of the circuit in Fig. 4 is 

established using standard nodal analysis whereby the 
admittance stamp of each component (transformer, 
measurement cables) are added into Yaug. With the n external 
nodes numbered first, the following  partitioning of Yaug 
results, 

 aug ( ) A B

C D
ω  =   

Y YY Y Y  (9) 

Since the current injection from ground to the n internal 
nodes is zero, the lower matrix equation in (9) is zero. From 
this condition one obtains from (9) the n×n admittance with 
respect to the n external nodes as 

 1
ext ( ) A B D Cω −= −Y Y Y Y Y  (10) 

 
Fig. 4.  Circuit used for recovering YT from Ymeas.  

V.  CABLE PARAMETER DETERMINATION 

A.  Standard Cable Data 
Measurement cables are typically specified by their 

characteristic impedance ZC and capacitance per unit length, 
C. The cable inductance per unit length can now be obtained 
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as  

   2
CL C Z= ⋅  (11) 

The resistance can be measured, e.g. using an impedance 
analyzer, or be set to an assumed value, e.g. zero. Also, G can 
be assumed zero. With this information, Ycable(ω) in (5)  can 
be calculated for each measurement cable.  

B.  S-parameter Measurements  
It is also possible to determine Ycable(ω) in (5) using two-

port S-parameter measurements. Here, one measures the 
matrix 

 11 12

21 22
( ) S S

S Sω  =   
S  (12) 

which relates incident (a) and reflected (b) power waves,  

 =b Sa  (13) 

S is a symmetrical matrix (S21=S12) and one also has S11=S22 
due to the symmetry with respect to the two cable ends.  

The scattering matrix is finally converted into admittance 
parameters through the transformation [14], 

 1/2 1 1/2
0 0( ) ( ( ))( ( ))ω ω ω− − −= − +Y R I S I S R  (14) 

where I is the 2×2 identity matrix and R0 is a diagonal matrix 
holding the two reference resistances; in this work 50 Ω.  

VI.  CONSIDERATIONS TO ACCURACY AND PASSIVITY 

A.  Accuracy 
A theoretical comparison of the two cable compensation 

schemes is performed for measurement cables of 6-m length 
using the cable admittance matrix defined by (5), assuming 
frequency-independent p.u.l. parameters. The cable 
characteristic impedance and capacitance are assumed to be  
ZC=50 Ω and C=105 pF/m which by (11) gives a series 
inductance L=0.263 µH/m. The cable resistance (conductor 
plus screen return) is assumed to be 0.001 Ω/m.  

At high frequencies, the transformer input impedance is 
much higher than the cable characteristic impedance. The two 
cable compensation schemes are therefore applied to the 
measurement cable when terminated by an infinite impedance 
at the far end. The admittance seen into the sending end is 
obtained from (5) by elimination of the far end node, 

 
2

send
( )( ) ( )
( )

bY a
a

ωω ω
ω

= −  (15) 

An ideal cable compensation method should now give zero 
admittance seen into the sending end. The lowest resonance 
frequency associated with the sending end admittance is that 
of the cable quarter-wave resonance (16), which is a series 
resonance. A cable length l=6 m gives a resonance frequency 
fλ/4=7.9 MHz. At twice this frequency (15.8 MHz), a parallel 
resonance occurs which appears as an anti-resonance in an 
admittance plot. 

 /4
1 1
4 4 4

vf
l l LCλ τ

= = =  (16) 

Fig. 5 shows the admittance seen into the cable end when 
attempting to eliminate the cable using the Cap-method. At 
low frequencies (below 1 MHz) the method gives the desired 
result of a near zero admittance (infinite impedance). 
However, with increasing frequency the method fails 
completely in eliminating the cable effects.   

Fig. 6 shows the corresponding result when using the T-line 
method. This approach gives as expected a perfect 
compensation of the cable provided that the cable parameters 
are accurately known. The figure shows the result for 
alternative estimates Rest of the p.u.l. series resistance used in 
the compensation scheme. It is observed that even when using 
a resistance which is ten times too small, the error remains 
quite moderate.  

 
Fig. 5.  Cable elimination using Cap method. Admittance seen into sending 
end of a 6-m open-ended cable.  

 
Fig. 6.  Cable elimination using T-line method. Admittance seen into sending 
end of a 6-m open-ended cable having resistance R=0.001 Ω/m. Alternative 
values (Rest) for assumed cable resistance.  

B.  Passivity 
The final model of the transformer is required to be passive 

in order to guarantee a stable time domain simulation. 
Passivity entails that the Hermitian part of the model's 
admittance matrix TY  in (2) has positive eigenvalues (17). In 
addition, 1−R is required to have positive eigenvalues. It is 
essential that the cable compensation does not lead to passivity 
violation in the data and thus the model that is to be extracted.  
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 {( ( ) ( ))} 0 , 1H
k T T k nλ ω ω ω+ > ∀ =Y Y    (17) 

With the Cap method, one subtracts a fixed capacitance jωC 
from the terminal admittance. It may easily happen that an 
extracted model will get a capacitance matrix (R−1 in (2)) with 
one or more negative eigenvalues, thereby violating the 
passivity  condition. The subsequent passivity enforcement by 
perturbation may then lead to non-negligible errors in the final 
model. This problem is in particular relevant for the 
combination of long measurement cables and a high upper 
frequency limit. 

With the T-line method, passivity violations may also result 
if the cable parameters are not accurately known. Fortunately, 
the cable capacitance is normally specified by the 
manufacturer and the inductance can be calculated by (11) 
using the cable characteristic impedance specified by the 
manufacturer. In this situation, the cable resistance is not 
likely to give passivity violations as long as it is specified as 
smaller than (or equal to) the true resistance. A safe choice is 
therefore the cable DC resistance. Alternatively, one may use 
a frequency-dependent resistance (and inductance) for the 
cable, calculated directly from the cable geometry [15].  

VII.  APPLICATION TO TRANSFORMER MODELING 
The two procedures (Cap-method, T-line method) are in the 

following demonstrated for the modeling of a transformer 
from frequency sweep measurements. With the T-line method, 
the cable admittance representation is determined via standard 
cable data. In Section VIII, some results are shown when 
determining the cable model via S-parameter measurements.   

A.  Transformer Measurements 
The unit is a 45 MVA YNd11 three-phase two-winding 

generator transformer which steps the voltage up from 8.5 kV 
to 137 kV. A pole-residue model (2) is to be extracted based 
on frequency sweep measurements by a setup similar to the 
one in [3].  

The terminal admittance matrix was measured from 5 Hz to 
10 MHz using long cables, giving a 6×6 matrix (long)

measY . The 
measurements used RG214 cables with ZC=50 Ω. The cable 
lengths are given in Table I along with measured capacitances.  
 

TABLE I.   
CABLE LENGTHS IN FIRST MEASUREMENT. (LONG CABLES) 

Winding HV LV 
Phase # A B C a b c 
Cable # 1 2 3 4 5 6 
C [pF/m] 104 105 105 102 102 102 
l [m] 6.2 6.0 6.2 4.8 5.1 4.9 

 
From  ZC and and the p.u.l. capacitances in Table I, the 

inductance is calculated for each cable using (11). With cable 
lengths l=6.0 m and l=5.0 m one obtains from (16) a quarter-
wave resonance frequency fλ/4=8 MHz and 10 MHz, 
respectively. These resonance frequencies fall within the 
10 MHz upper frequency limit of the measurement. A cable 
resistance of R=0.001 Ω/m is assumed in lack of other data.    

In order to validate the two cable compensation approaches, 
new measurements were performed on the transformer with 
reduced cable lengths as shown in Table II.  The new matrix 
associated with the six terminals is denoted (short )

measY . Terminals 
1, 2, 4, 5 were directly grounded on the transformer while 
terminals 3 and 6 had short cables (1.0 m) used for measuring 
a 2×2 subset of (short )

measY  associated with those two terminals. 

The objective is now to recover the elements of (short )
measY  by 

applying the cable elimination methods to (long)
measY .       

 
TABLE II.   

CABLE LENGTHS IN SECOND MEASUREMENT. (SHORT CABLES) 
Winding HV LV 
Phase # A B C a b c 
Cable # 1 2 3 4 5 6 
C [pF/m] − − 105 − − 105 
l [m] 0 0 1.0 0 0 1.0 

 
Figs. 7-9 show the four elements of (long)

measY  and of (short )
measY  

associated with terminals 3 and 6, in the range 100 kHz-
10 MHz. It is observed that the length of the measurement 
cables has a significant impact on the measured admittance 
elements. Element (3,3) is in particular affected since the high-
voltage winding has a smaller shunt capacitance to ground 
than the low-voltage winding. Also, there is with the long 
cable a strong resonance peak in element (3,3) at around 
8 MHz which can be attributed to quarter-wave resonance in 
the connected cable.    

Figs. 7-9 further show the recovering of the four elements 
of (short )

measY  from (long)
measY  by the two alternative cable 

compensation methods, considering the reduction in cable 
lengths defined by Tables I and II. It is observed that the T-
line method gives a much better overall agreement with the 
directly measured (short )

measY  (reference) than the Cap-method. 

With the Cap-method, only the diagonal elements of (long)
measY  

are modified and there is accordingly no change in the off-
diagonal elements in Fig. 9. It is further observed that the 
CAP-method is not capable of removing the false peak in 
element (3,3) at 8 MHz in Fig. 7, consistently with the result 
in Fig. 5. 

 
Fig. 7.  Recovering element (3,3) of (short )

measY  from (long)
measY .  
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Fig. 8.  Recovering element (6,6) of (short )

measY  from (long)
measY .  

 
Fig. 9.  Recovering elements (6,3) and (3,6) of (short )

measY  from (long)
measY .  

B.  Voltage Transfer Functions 
The significance of accurately recovering the transformer 

admittance matrix is demonstrated for a calculation of voltage 
transfer functions between terminals. Fig. 11 shows a direct 
measurement of the voltage transfer function 6,3 ( )h ω

 
from 

terminal 3 to terminal 6 using the cable lengths in Table II 
with the remaining terminals grounded. The voltage transfer 
function is defined as  

 6
6,3

3

( )
( )

( )
V

h
V

ω
ω

ω
=  (18) 

This reference solution is in Fig. 10 compared with the 
voltage transfer function that can be calculated from the 
admittance matrix (short )Y


which has been derived from (long)

measY  
using the two alternative cable elimination methods. From the 
admittance definition (1) we obtain the voltage transfer 
function as  

 
(short )

6,3 (short )

(6,3)
( )

(3,3)
yh
y

ω = −

  (19) 

Fig. 10 shows that the calculated voltage transfer function 

6,3 ( )h ω


 agrees much better with the direct measurement 

6,3 ( )h ω  (reference) when (short )Y


 has been recovered from 
(long)
measY  using the T-line method. In particular, the peak around 

2 MHz is much more accurately represented, as well as the 
behavior at around 8 MHz. 

 
Fig. 10.  Voltage transfer from terminal 3 to 6. Direct measurement 
(reference) and calculated response from the recovered (short )Y


.  

C.  Simulated Time Domain Waveforms 
The improvements in this example are even more striking in 

the time domain. The transfer functions 6,3 ( )h ω  and 6,3 ( )h ω


 
were fitted in the band 5 Hz-10 MHz with a stable, high-order 
rational function using vector fitting [16-18]. (Passivity 
enforcement is not needed here since the transfer function 
does not interact with the system). In the time domain, a unit 
step voltage is applied to the transfer function input and the 
voltage response (output) is computed via recursive 
convolution [19].  

Fig. 11 compares the step response of the model associated 
with the directly measured 6,3 ( )h ω  with that of 6,3 ( )h ω


 when 

cable compensation is not used. It is observed that the 
measurement cables lead to substantial errors in the simulated 
response, including an overestimate of the peak value and an 
underestimate of the frequency of the dominant 2 MHz 
component.   

Fig. 12 shows the same result when 6,3 ( )h ω


 has been 
obtained using the two cable compensation methods. It is 
observed that the T-line approach gives an excellent 
agreement with the reference solution whereas substantial 
errors remain with the Cap-method.      

 
Fig. 11.  Voltage response on terminal 6 when applying a unit step voltage to 
terminal 3. Simulated responses using rational models extracted from the 
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measured 6,3( )h ω  (reference) and from the calculated 6,3( )h ω


. Without 
cable compensation.   
 

 
Fig. 12.  Same result as in Fig. 11 when applying cable compensation.  

D.  Measured Time Domain Response 
The very accurate result by the T-line method in Fig. 12 is 

in reality overly optimistic since the voltage transfer function 
was computed directly from the raw samples of (short )Y


 . In 

reality, the 6×6 (short )Y


 is first fitted with a rational function 
approximation and thereafter subjected to passivity 
enforcement. In a time domain simulation, terminals 1, 2, 4, 5 
will be grounded using small resistors and the modeling errors 
will show up in the simulation result, possibly with 
magnifications.  

This scenario is investigated using the complete six-
terminal model of the transformer obtained via vector fitting 
[16-18] and passivity enforcement using spectral residue 
perturbation [20]. A step-like voltage is applied to terminal 3 
using a function generator and the voltage response on 
terminal 6 is measured. This result is compared against a 
simulation where the applied (measured) voltage is realized as 
an ideal voltage source.  

Fig. 13 shows the measured voltage response (reference) 
and the simulated responses using the complete model with 
measurement cables eliminated by the two alternative 
approaches. As in the previous examples, the T-line method 
leads to a significantly more accurate result than the Cap-
method. With the Cap-method, a high-frequency component is 
observed which has almost zero damping. For lower frequency 
components, there is no practical difference between the two 
approaches as shown in the extended time window in Fig. 14.   

 
Fig. 13.  Applying a near unit step voltage to terminal 3. Measured response 

(reference) and simulation using a rational model of (short )Y


.  

 
 
Fig. 14.  Extended time window of Fig. 13.  

E.  Simulated Voltage Transfer in Opposite Direction 
Similar investigations as in Section VII-C were made for 

the voltage transfer in the opposite direction. Fig. 15 shows 
the simulated voltage response on terminal 3 when applying a 
unit step voltage on terminal 6. The reference denotes the 
simulation result based on the the directly measured voltage 
transfer function with use of short cables. In this case, the 
voltage waveform is dominated by a slow oscillation of about 
10 kHz. Still, the (long) measurement cables result in a 
significant reduction of the oscillation frequency due to the 
relatively small capacitance of the high-voltage winding. Both 
compensation methods lead to a similar result as the 
oscillation frequency is very small compared to the cable 
quarter wave frequency.  

Fig. 16 shows the first 2.5 microseconds of the initial 
transient, revealing high-frequency oscillations above 1 MHz.  
The two compensation methods lead to a significant 
improvement in accuracy, in particular when using the T-line 
method. 
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Fig. 15.  Voltage response on terminal 3 when applying a unit step voltage to 
terminal 6. Simulated responses using rational models extracted from the 

measured 3,6 ( )h ω  (reference) and from the calculated 3,6 ( )h ω


.  

 
Fig. 16.  Expanded view of Fig. 15.  

VIII.  CABLE MODELING USING S-PARAMETERS  
The accuracy of the cable model used with the T-line 

method can potentially be improved by utilizing the S-
parameter measurement capability of the VNA, in this case 
Agilent E5061B-3L5. To investigate this possibility, elements 
S1,1 and S2,1 were measured for the six cables in Table I. 
Fig. 17 shows the measured elements of the 6.2 m cable used 
for connecting terminal 1.  

 
Fig. 17. Measured S1,1 and S2,1 of 6.2 m cable (magnitudes).  

 
Using (14), the scattering matrix is converted into the 

associated admittance matrix, Ycable. The admittance matrix is 
subjected to eigenvalue decomposition into common mode 

and differential mode eigenvalues  

 1 com
cable

diff

0
0

λ
λ

−  =   
T Y T  (20) 

using the transformation matrix  

 
11 1

1 1 2
 =  − 

T  (21) 

Fig. 18 shows the eigenvalues of Ycable. The same plot also 
shows the eigenvalues when Ycable has been calculated from 
p.u.l. cable parameters using (5), along with a DC resistance 
for the centre conductor of 5.7 mΩ/m stated by the data sheet. 
It is observed that the eigenvalues are very close at 
frequencies above 10 kHz. At lower frequencies, the small 
(common mode) eigenvalue obtained from S-parameters 
becomes highly inaccurate in the relative sense as the expected 
capacitive behavior is lost. Since the transformer involves a 
delta winding, the capacitive behavior should be retained in 
order not to have a false ohmic connection to earth. This 
inaccuracy is rectified as follows. At 100 kHz, the common-
mode eigenvalue has a linear behavior in the log-log plot and 
the real part is found to be much smaller than the imaginary 
part, indicating a capacitive behavior. Using a sample at this 
frequency, λ0(ω0), the samples for this eigenvalue at lower 
frequencies are replaced with 

          com com 0
0

( ) Im{ ( )k
k j

ω
λ ω λ ω

ω
→  (22) 

where Im{} extracts the imaginary part. Fig. 19 shows the 
effect of rectifying the small eigenvalue. 

Finally, the corrected Ycable is recovered using the inverse 
transformation (23) with comλ  denoting the corrected 
eigenvalue.  

          1com
cable,corrected

diff

0
0

λ
λ

− 
=  

 
Y T T


 (23) 

 
Fig. 18. Eigenvalues of Ycable.  
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Fig. 19. Eigenvalues of Ycable after correcting the common-mode eigenvalue.   
 

Using the described procedure, an admittance 
representation Ycable is established for each of the six 
measurement cables and used for removing the cable effect 
from the transformer measurements. Fig. 20 compares the 
frequency domain result for the voltage transfer from terminal 
3 to 6, corresponding to Fig. 10 in Section VII. The results are 
seen to be nearly identical which is not surprising giving the 
close agreement at high frequencies in Fig. 18.   

One technical detail is in order regarding Fig. 20. After 
removing the effect of the six cables, a 1-m cable model was 
inserted in series with terminals 3 and 6 to allow the 
comparison with the direct measurement (blue trace in 
Fig. 19). The model of the 1-m cable was obtained using p.u.l. 
parameters via (5).  

 
Fig. 20. Voltage transfer from terminal 3 to 6. Calculated from the recovered 
matrix (short )

measY


.  

IX.  ERRORS WITH THE CAP-METHOD  

A.  Error Limits  
The errors with the CAP-method depend on the cable 

length, the upper frequency limit considered, and on the 
loading impedance. In the case that the load is purely resistive 
and the cable resistance is negligible, the error can be plotted 
as function of the product between frequency and cable length. 
Fig. 21 shows the calculated relative error for alternative 
values of the load resistance, for a cable with assumed 
parameters ZC=50 Ω, C=105 pF/m and R=0. For instance, with 

a 10 kΩ load resistance, the error is 30% at 1 MHz with a 
cable length of 5 meters.   

 
Fig. 21. Relative error in recovered resistive load by CAP-method.  

B.  Errors Induced by Passivity Enforcement 
As mentioned in Section VI-B, cable elimination by the 

CAP-method often leads to passivity violations in the reduced 
admittance matrix.  To demonstrate this effect, we emulate a 
measurement where the admittance of a 10 kΩ resistor has 
been measured using a 6-m cable having parameters 
R=0.0057 Ω/m, ZC=50 Ω, C=105 pF/m. We next apply the 
CAP-method to eliminate the cable effect, and fit a rational 
model (2) to the reduced admittance using  vector fitting [16]. 
This single-port model is finally subjected to passivity 
enforcement by the residue perturbation method described in 
[20]. 

Fig. 22 shows the result from this example. It is observed 
that the CAP-method substantially reduces the deviation of the 
reduced admittance (Yred) from the actual load admittance, 
Yload, giving a good agreement up to about 1 MHz. Yred is seen 
to be fitted very accurately using vector fitting. However, the 
model has a negative term R−1 in (2). The subsequent passivity 
enforcement step is seen to  introduce a quite large error in the 
recovered load admittance, even at low frequencies.  

 
Fig. 22. Recovering the admittance of a 10 kΩ resistor using CAP method to 
compensate 6-m measurement cables. Effect of passivity enforcement on final 
model.  
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X.  CONCLUSION 
Measurement cables can lead to substantial errors in the 

measurement of transformer admittance matrices at high 
frequencies. In this work a cable compensation method was 
introduced based on a transmission line representation of the 
measurement cables. The new method was found to greatly 
improve the accuracy of the corrected admittance matrix 
compared to an existing approach which considers only the 
cable shunt capacitances. The improvements were 
demonstrated for a measurement on a 45 MVA generator step-
up transformer. Two alternative procedures were considered 
for establishing the transmission line model, using either per-
unit-length parameters or S-parameter measurements. The  
procedures were found to give a similar accuracy for the 
extracted transformer model at high frequencies.  

The admittance measurement method is quite general and  
can be used for the terminal characterization of other 
components as well, e.g. shunt reactors [21] and motors. 
Therefore, the presented cable elimination method can find 
use in many applications.    
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