
Information and Software Technology 77 (2016) 56–60
Contents lists available at ScienceDirect

Information and Software Technology
journal homepage: www.elsevier.com/locate/infsof

Emerging themes in agile software development: Introduction to the
special section on continuous value delivery
Torgeir Dingsøyr a , b , ∗, Casper Lassenius c
a SINTEF, Trondheim, Norway
b Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway
c Department of Computer Science and Engineering, Aalto University, Helsinki, Finland
a r t i c l e i n f o
Article history:
Received 19 April 2016
Revised 26 April 2016
Accepted 27 April 2016
Available online 10 May 2016
Keywords:
Agile software development
Software process improvement
Value-based software engineering
Requirements engineering
Continuous deployment
Lean startup
Scrum
Extreme programming

a b s t r a c t
The relationship between customers and suppliers remains a challenge in agile software development.
Two trends seek to improve this relationship, the increased focus on value and the move towards con-
tinuous deployment. In this special section on continuous value delivery, we describe these emerging
research themes and show the increasing interest in these topics over time. Further, we discuss implica-
tions for future research.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction
Since the inception of agile development methods in the late

1990s, there have been a stream of topics of interest amongst
practitioners and the research community. Early research on agile
development focused on extreme programming practices such as
test-first development [1,2] and pair programming [3,4] , on whole
methods such as extreme programming [5] , Scrum and Lean soft-
ware development. We have seen an increase in study quality af-
ter a number of special issues and special sections on agile devel-
opment, a larger number of studies published in journals, and a
larger amount of studies connecting empirical findings to theories
that are taken from more mature research fields [6] .

In this special section, we focus in particular on two recent
trends in research on agile software development: First, the tran-
sition from a focus on agile methods on team level with emphasis
on team performance (illustrated by the focus on pair program-
ming and test first development), to a broader organizational un-
derstanding where more focus is put on value of the developed
product. Second, the transition from iterative development with
initial recommendations on 30 day iterations in Scrum to continu-

∗ Corresponding author at: SINTEF, Trondheim, Norway.
E-mail address: torgeird@sintef.no , xp2015specialissue@gmail.com (T. Dingsøyr).

ous deployment of new features. We describe these two trends as
a focus on continuous value delivery. This is a challenging topic. In
one of the few reliable scientific surveys we have on usage of agile
methods [7] , many respondents indicate that customer/supplier re-
lationships is a one of the main challenges, yet many see improved
customer understanding as an effect of adopting agile development
methods. Furthermore, many report using iterations and practices
such as continuous integration, which is a prerequisite for contin-
uous delivery. The top reasons for adopting agile methods are to
increase productivity, increase product and service quality and to
reduce development cycle times and time-to-market.

But is there anything new in the search for continuous value
delivery? In Beck‘s first book on extreme programming [8] , he
states that we “need to make our software economically more
valuable by spending money more slowly, earning revenue more
quickly and increasing the probably productive lifespan of our
project” (page 11), and the practice of continuous integration was
suggested already then. Also, some have claimed that even the
practices in extreme programming is “old wine in new bottles”
and have been established practices for a long time [9] . We argue
that the ideas of continuous value delivery are old, but that the
possibilities have increased with maturing technology. Further, as
we will see, the ideas have developed since the initiation of agile
methods.

http://dx.doi.org/10.1016/j.infsof.2016.04.018
0950-5849/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.infsof.2016.04.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.04.018&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:torgeird@sintef.no
mailto:xp2015specialissue@gmail.com
http://dx.doi.org/10.1016/j.infsof.2016.04.018
http://creativecommons.org/licenses/by-nc-nd/4.0/

T. Dingsøyr, C. Lassenius / Information and Software Technology 77 (2016) 56–60 57
In the following, we introduce three articles, which have been

extended and revised for this special section. The articles are cho-
sen from the XP2015 conference [10] . Finally, we highlight what
we see as main implications for research on agile software devel-
opment given these trends.
2. What is value?

Many of the recent improvement trends that have influenced
software development practice have a focus on business value.
The agile manifesto focuses on customer collaboration and work-
ing software, and a principle behind the manifesto is to satisfy the
customer through early delivery. Lean production puts emphasis
on value through reducing costs [11] , through eliminating “waste”,
where waste can be waiting time or large inventories (see [12] for
a complete list). Proponents of lean production claim that waste
can be reduced by applying techniques such as value stream map-
ping or just in time production. The recent trend of lean start-ups
[13] takes a similar position on value, making the argument that
waste can be reduced through early learning about customer value.

The improvement trends are not very specific on how they de-
fine value. An obvious reason is that different environments might
have very different interpretations of what gives business value to
them. The general use of the word value ranges from “usefulness
or importance” and “relative worth, utility, or importance” to “the
monetary worth of something” [14] . When value is determined by
usefulness or even monetary worth, at least it suggests that value
of software is assigned by stakeholders outside of the development
team. Proponents of agile development and lean startup would ar-
gue that a development team needs to learn what external stake-
holders value during a development project, while traditional ap-
proaches would argue for understanding the view of value up-
front.

Such an up-front understanding is eminent in traditional
project management. The most popular frameworks for project
management, the project management body of knowledge [15] and
the PRINCE2 framework [16] both focus on the business value of
projects. The project management body of knowledge defines busi-
ness value as both tangible and intangible elements. Tangible ele-
ments include equipment and monetary assets while intangible el-
ements include “good will”, brand recognition or public benefits.
The central idea in PRINCE2 is to achieve benefits with projects,
and the benefits are defined prior to project initiation in a “busi-
ness case”. The business case is under continuous justification and
lists the benefits that are to be achieved.

Also in software engineering, there has been a history of dis-
cussing value. Boehm introduced the term “value-based software
engineering” in 2003 [17,18] , arguing that many practices in the
field are done in a “value-neutral” setting where requirements are
treated as equally important and that accounts of “earned value” in
development projects are focusing on costs and schedule and not
business value. Boehm suggested to integrate value considerations
into principles and practices, suggesting research on a number
of topics including value-based requirements engineering, value-
based planning and control. In his article [17] , he discusses how
software development can be made more value-based, for exam-
ple through conducting more thorough analysis of the benefits to
be achieved by new software, elicitation of value propositions that
stakeholders hold, and conducting business case analyses on soft-
ware projects.

We argue that these ideas now have been taken up more
broadly through the trends of agile software development and lean
software development with an even sharper focus on value.

Predicting the value of software is probably at least as challeng-
ing as predicting the cost of software [19] . Based on experience
from a large development project in Norway, the company Promis

has suggested to estimate value in the form of “benefit points”
[20] . The idea is to get a similar estimate of value to an epic (set of
user stories), as agile development teams often make an estimate
of the development cost in “story points”. The “benefit points” are
also relative to an epic with “known” value to the customer organi-
zation, and then these figures can be helpful in deciding about pri-
ority in a product backlog. The method involves translating over-
all goals of a project or program into how much can be achieved
through implementation of an epic.

To summarize, we see an increased focus on value in improve-
ment trends relevant for software development. This focus has led
to suggestions on how to operationalize calculations on business
value such as from Promis, and also on techniques to advance un-
derstanding of customer needs. A particularly interesting area of
research is using agile techniques in achieving early feedback from
users and customers. The article in this special section on agile
requirements engineering and use of test cases as requirements
(“Multi-Case Study of Agile Requirements Engineering and the Use of
Test Cases as Requirements” by Bjarnason et al.) draws on a rich em-
pirical material to show a variety of practices, and discuss benefits
and challenges when using test cases to elicit, validate, verify and
manage requirements.
3. Continuous deployment and continuous experimentation

As the theoretical approaches to model and assess value up-
front have proven to be challenging, there is a current trend to-
wards using empirical means to understand value. Empirically un-
derstanding customer value relies on the idea of continuous ex-
perimentation , an approach in which potentially valuable features
are delivered to customers, and data is collected to understand
the value of the delivered functionality. In this emerging approach,
different versions of the software might be delivered to different
user groups, making it possible to understand experienced cus-
tomer value and how different feature sets or implementations af-
fect product usage. While relying on other practices, including con-
tinuous integration and continuous deployment, continuous experi-
mentation also requires additional infrastructure to support exper-
iment planning execution and analysis [21] .

At this moment, research on continuous experimentation is
starting to appear, but as more and more companies move towards
continuous value delivery, its practical importance is likely to be
very significant, and companies’ ability to quickly use data about
customer behavior in innovative ways likely to be a major contrib-
utor to their competitiveness. As the academic research on contin-
uous experimentation is in its early stages, there is much opportu-
nity for ambitious research on the topic in the near future.

Continuous integration (CI) is a software development prac-
tice where software is integrated continuously during development
[22] . CI requires at least daily integration and that each integration
is verified by automated build and tests. As a basic building block
of a working agile implementation, there exists a growing set of
case studies, and experience reports on CI discussing both chal-
lenges and benefits related to the practice, see e.g. [23,24] . And
while there is a lack of synthesizing research, it seems basic is-
sues like what the characteristics of a CI process should be still
needs clarification. E.g., Ståhl and Bosch [24] studied CI in industry
and found that the practices were not really continuous: “activi-
ties are carried out much more infrequently than some observers
might consider to qualify as being continuous”.

Building upon continuous integration, continuous delivery aims
at constantly keeping the software in a releasable state [25,26] .
This is achieved through optimization, automatization and utiliza-
tion of the build, deploy, test and release process [26] . The pro-
posed benefits of continuous delivery include increased visibility,
faster feedback and empowerment of stakeholders [26] . However,

58 T. Dingsøyr, C. Lassenius / Information and Software Technology 77 (2016) 56–60

Fig. 1. Relative interest over time on themes “Scrum”, “extreme programming”, “DevOps” and “continuous integration” based on searches in Google Trends, showing results
for category “computers and electronics/programming”.
when trying to adopt continuous delivery, organizations have faced
numerous challenges [27,28] .

Continuous deployment takes the final step in automation, and
that each change is built, tested and deployed to production au-
tomatically. Thus, in contrast to continuous delivery, there are no
manual steps or decisions between a commit by a developer and
production deployment. The motivation for automating the deploy-
ment to production is to gain faster feedback from production use
to fix defects that would be otherwise too expensive to detect. Re-
search on continuous deployment is still in its infancy, despite the
industrial relevance of the topic [29] .

Interestingly, but not surprisingly, the topics of continuous ex-
perimentation and continuous deployment seem similar to other
agile topics in the sense that they are industry rather than re-
search driven. The state-of-the art is driven by industry and con-
sultants, and research is lagging behind in synthesizing and sys-
tematizing knowledge and helping to validate or dismiss the many
claims made by proponents for various tools and techniques. How-
ever, as the article on the current state of experimentation in prod-
uct development in this special section (“Raising the Odds of Suc-
cess: The Current State of Experimentation in Product Development ”
by Lindgren and Münch) shows, there is a considerable potential in
exploiting these ideas in many companies, and in particular there
are challenges with changing the organizational culture, accelerat-
ing the development cycle speed and also in identifying measures
for customer value.
4. Implications for future research

We argued for an increasing interest in continuous value deliv-
ery as a research topic. This trend has been described by leading
scholars in the software engineering field such as Fitzgerald and
Stol [12] focusing on the trend towards continuous development
and Bosch [30] focusing on the importance of learning. But is the
trend shown in practitioner or researcher interest so far?

In Figs. 1 and 2 we show development practice trends the last
ten years. Fig. 1 is based on Internet searches 1 and indicates rel-
ative interest amongst developers on topics. Fig. 2 shows relative
interest amongst researchers. 2 We have plotted interest in two es-

1 Searches in Google analysed by Google Trends.
2 Measured by the number of articles on topics in the Scopus database.

tablished topics in agile software development, namely the meth-
ods extreme programming (XP) and Scrum. We see that Scrum
has received by far the most interest, and the interest is increas-
ing over time (the drop in 2015 amongst researchers is probably
due to late indexing of articles in the database). The high interest
in Scrum amongst researchers might be due to the general pop-
ularity of Scrum as a development method. It could also be that
Scrum is described as the context of studies, not necessarily that
there is such a high interest in studying Scrum itself. Furthermore,
we have plotted the interest in emerging topics, which we argue is
under the umbrella continuous value delivery, namely DevOps and
the practice of “continuous integration”.

For practitioners, we see that there is a decline in the interest
in extreme programming, while the interest in Scrum is increasing
over time. There is an increase in interest on continuous integra-
tion from 2006 to 2015, and a sharp increase on DevOps in the
last years. For researchers, we see a sharp decline in interest on
extreme programming, a steady increase in interest on Scrum and
continuous integration and a more sharp increase in interest on
continuous integration. A striking difference between practitioners
and researcher is the relative higher interest in Scrum amongst re-
searchers. Another difference is the high interest in continuous in-
tegration amongst practitioners, while this topic is more or less on
the same level as DevOps and extreme programming amongst re-
searchers.

The final article in this special section focuses on giving voice
to practitioners in discussions on future research. The article “The
challenges that challenge: Engaging with agile practitioners’ concerns”
by Gregory et al. provides a thorough review of existing discussions
on research directions, and draws on a rich material from practi-
tioners in order to discuss future research directions. They identify
the trends we have discussed in this introduction, such as the in-
creasing focus on organisations, including a tighter collaboration
between business and technical staff, as well as a general focus on
demonstrating product value from agile methods. They also iden-
tify a number of other research areas, such as the emerging focus
not on agile adoption as most organizations at least claim to do
agile development, but on sustaining agility in projects and organ-
isations.

T. Dingsøyr, C. Lassenius / Information and Software Technology 77 (2016) 56–60 59

Fig. 2. Relative interest over time on themes “Scrum”, “extreme programming”, “DevOps” and “continuous integration” based on searches for publications in the Scopus
scientific database.
Acknowledgments

We would like to thank the program committee members for
the XP2015 conference for their effort in reviewing conference pa-
pers, nominating papers and finally for reviewing selected arti-
cles for this special section. We would also like to thank Claes
Wohlin for guidance regarding the special section. The work with
this section has partially been supported by the project Agile 2.0
funded by the Research council of Norway through grant 236759
and by the companies Kantega, Kongsberg Defence & Aerospace,
Sopra Steria, and Sticos, and by TEKES, the Finnish Funding Agency
for Innovation, as part of the Need for Speed (N4S) programme.
References

[1] H. Erdogmus , M. Morisio , M. Torchiano , On the effectiveness of the test-first
approach to programming, IEEE Trans. Softw. Eng. 31 (2005) 226–237 .

[2] D. Janzen , H. Saiedian , Test-driven development: concepts, taxonomy, and fu-
ture direction, Computer 38 (Sep 2005) pp. 43–+ .

[3] V. Balijepally , R. Mahapatra , S. Nerur , K.H. Price , Are two heads better than one
for software development? The productivity paradox of pair programming, MIS
Q. 33 (Mar 2009) 91–118 .

[4] J.E. Hannay , T. Dybå, E. Arisholm , D.I.K. Sjøberg , The effectiveness of pair pro-
gramming: a meta-analysis, Inf. Softw. Technol. 51 (Jul 2009) 1110–1122 .

[5] T. Dybå, T. Dingsøyr , Empirical studies of agile software development: a sys-
tematic review, Inf. Softw. Technol. 50 (2008) 833–859 .

[6] T. Dingsøyr , S. Nerur , V. Balijepally , N.B. Moe , A decade of agile methodolo-
gies: towards explaining agile software development, J. Syst. Softw. 85 (2012)
1213–1221 .

[7] P. Rodriguez , J. Markkula , M. Oivo , K. Turula , Survey on agile and lean usage in
finnish software industry, in: Proceedings of the ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement, Lund, Sweden,
2012 .

[8] K. Beck , Extreme Programming Explained: Embrace Change, Addison-Wesley,
20 0 0 .

[9] M.-R. Hilkka , T. Tuure , M. Rossi , Is extreme programming just old wine in new
bottles: a comparison of two cases, J. Database Manag. 16 (2005) 41 .

[10] C. Lassenius , T. Dingsøyr , M. Paasivaara , in: Agile Processes, in Software Engi-
neering, and Extreme Programming: 16th International Conference, XP 2015,
Proceedings vol. 212, Helsinki, Finland, May 25-29, 2015, Springer, 2015 .

[11] K. Conboy , Agility from first principles: reconstructing the concept of agility in
information systems development, Inf Syst Res 20 (2009) 329–354 .

[12] B. Fitzgerald, K.-J. Stol, Continuous software engineering: a roadmap and
agenda, J Syst Softw (2015), doi: 10.1016/j.jss.2015.06.063 .

[13] E. Ries , The lean startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses, Crown Books, 2011 .

[14] Webster’s, Encyclopedic Unabridged Dictionary of the English Language,
Gramercy Books, New York, 1989 .

[15] PMI, A Guide to the Project Management Body of Knowledge, 5th edition,
Project Management Institue, 2013 .

[16] C. Bentley , Prince2: A Practical Handbook, Routledge, 2010 .
[17] B. Boehm , Value-based software engineering: reinventing, ACM SIGSOFT Softw.

Eng. Notes 28 (2003) 3 .
[18] S. Biffl, A. Aurum , B. Boehm , H. Erdogmus , P. Grünbacher , Value-Based Soft-

ware Engineering, Springer Science & Business Media, 2006 .
[19] M. Shepperd , Cost prediction and software project management, in: Software

Project Management in a Changing World, Springer, 2014, pp. 51–71 .
[20] K. Strand , K. Karlsen , Agile Contracting and Execution, PROMIS, 2014 .
[21] F. Fagerholm , A.S. Guinea , H. Mäenpää, J. Münch , Building blocks for con-

tinuous experimentation, in: Proceedings of the 1st International Workshop
on Rapid Continuous Software Engineering, Hyderabad, India, ACM, 2014,
pp. 26–35 .

[22] Fowler, M. (2006). Continuous Integration.
[23] Eck, A., Uebernickel, F., and Brenner, W., “Fit for continuous integration: how

organizations assimilate an agile practice,” 2014.
[24] D. Ståhl , J. Bosch , Automated software integration flows in industry: a multi-

ple-case study, in: Companion Proceedings of the 36th International Confer-
ence on Software Engineering, New York, NY, USA, 2014, pp. 54–63 .

[25] Fowler, M. (2013). Continuous Delivery.
[26] J. Humble , D. Farley , Continuous Delivery: Reliable Software Releases Through

Build, Test, and Deployment Automation, Addison-Wesley Professional, 2010 .
[27] G.G. Claps , R.B. Svensson , A. Aurum , On the journey to continuous deployment:

technical and social challenges along the way, Inf. Softw. Technol. 57 (2015)
21–31 .

[28] S. Neely , S. Stolt , Continuous delivery? Easy! just change everything (Well,
maybe it is not that easy), in: Agile Conference (AGILE), 2013, 2013,
pp. 121–128 .

[29] P. Rodríguez , et al. , Continuous deployment of software intensive products and
services: a systematic mapping study, J. Syst. Softw. (2016) .

[30] J. Bosch , Speed, data, and ecosystems: the future of software engineering, IEEE
Softw. 33 (2016) 82–88 .

http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0001
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0002
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0003
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0004
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0005
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0006
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0007
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0008
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0009
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0010
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0011
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0011
http://dx.doi.org/10.1016/j.jss.2015.06.063
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0013
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0014
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0015
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0016
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0017
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0018
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0019
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0020
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0021
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0022
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0023
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0024
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0025
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0026
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0027
http://refhub.elsevier.com/S0950-5849(16)30082-9/sbref0027

60 T. Dingsøyr, C. Lassenius / Information and Software Technology 77 (2016) 56–60
Torgeir Dingsøyr focuses on software process improvement and knowledge management as chief scientist at the SINTEF research foundation. In particular, he has studied
agile software development through a number of case studies, co-authored the systematic review of empirical studies, co-edited the book Agile Software Development:
Current Research and Future Directions , and co-edited the special issue on Agile Methods in the Journal of Systems and Software. He wrote his doctoral thesis on Knowledge
Management in Medium-Sized Software Consulting Companies at the Department of Computer and Information Science, Norwegian University of Science and Technology, where
he is an adjunct professor.
Casper Lassenius is an associate professor of software engineering at Aalto University. His research interests include agile and lean software development in small and large
contexts, global software engineering, software measurement, and industrial software testing. He has PhD and M.Sc degrees from Helsinki University of Technology.

	Emerging themes in agile software development: Introduction to the special section on continuous value delivery
	1 Introduction
	2 What is value?
	3 Continuous deployment and continuous experimentation
	4 Implications for future research
	 Acknowledgments
	 References

