PREPRINT!

Team Performance in Software Development: Research

versus Current Advice

Torgeir Dingsgyr, Tor Erlend Faegri, Tore Dyb3a, Barge Haugset, Yngve Lindsjgrn

In 1993, Walz, Elam and Curtis [1] stated that research on "how teams actually go about"
making requirement determinations and design decisions can provide valuable insights for
improving the quality and productivity. Since then, more and more tasks are performed by
software, and software development is increasingly undertaken by teams. This article reviews
studies on factors that influence team performance for co-located teams, and make
propositions on five factors based on solid scientific studies. These propositions are relevant
for practitioners in software teams, project managers, managers and researchers interested in
software development. We ask how these propositions compare with current advice on

software development as condensed in the Agile manifesto.

Team performance has been studied in many disciplines, from management science [2] and
organizational psychology [3] to information systems [S12]. From these disciplines we find
thorough review articles, providing insight on key findings such as the importance of
establishing a common "mental model"” within a team. Many of the studies conducted in other
disciplines have been performed on software development teams [4], because such teams are
examples of knowledge work in an innovative setting. What can the software engineering
discipline learn from these studies? We investigate what main factors influence the

performance of software development teams.

1 © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Reference: Dingsgyr, T., Fegri, T. E., Dyba, T., Haugset, B., and Lindsjgrn, Y., "Team Performance in Software
Development: Research Results versus Agile Principles," IEEE Software, vol. 33, pp. 106-110, 2016. DOI:
10.1109/MS.2016.100

Teamwork and team performance

A team is a small number of people with "complementary skills who are committed to a
common purpose, set of performance goals, and approach for which they hold themselves
mutually accountable” [2]. A team further has common tasks, interact socially, and experience

the same organizational context [5].

Based on a systematic review of empirical studies of factors that influence performance of
software development teams (studies in Table 1, see online appendix), we have constructed
the software team performance model as in Figure 1. Software team performance is
particularly influenced by: team coordination, goal orientation, team cohesion, shared mental
models and team learning. We explain the importance and underlying findings related to each

of these factors:

4)\
Team coordination
g
-
Goal orientation
(.

[Team cohesion Team performance]

[Shared mental models

[Team learning J

Figure 1: Software team performance model.

Team coordination

Software development involves ill-defined, ambiguous and non-routine work, which is
incompatible with detailed, up-front planning [S13]. Coordinating team members is important
for project success [S19], and that the team is able to efficiently adapt to changes in
technology and business needs is important to achieve high software quality [S15].

Coordination is "managing dependencies between activities" [6]. Such dependencies include

shared resources, task assignments and task/subtask relationships. Team coordination
involves creating a common understanding within the team with respect to these
dependencies. Synchronizing and harmonizing individual contributions involves establishing
mechanisms for coordination, like common work breakdown structures, schedules, budgets
and deliverables [S19]. This can involve coordinating work processes, establishing internal

procedures and mechanisms for feedback, and coordinating team member contributions.

Team coordination requires interaction amongst team members. Higher levels of quality and
quantity of team interaction is positively related to project success [S18]. Coordination
through plans is used to assign tasks, allocate physical and economic resources, manage
resource dependencies, and integrate outputs. Tools used for administrative coordination
include budgets, staffing tables, critical path analysis, milestones, inspections, and review
meetings. This type of coordination has a positive impact on team performance [S4]. For
software teams, development methods prescribe many mechanisms for coordination, like
how planning is to be conducted, resources allocated and tasks distributed. The extent of
which development methods are used is positively related to team performance [S13, S4].
Another practice for coordinating work in software teams, the use of coding standards, is also
positively related to team performance [S9]. Managing dependencies in software
development will typically involve providing feedback, as dependencies cannot always be
identified prior to engaging in work tasks. Frequent feedback on work products will impact

the performance of development teams [S12].

There are a number of coordination mechanisms that have been found to influence team
performance, from administrative coordination, use of systems development methods, coding

standards to feedback on work tasks:

Proposition 1: Team coordination practices have a strong positive impact on team performance.

Goal orientation

A team has a common purpose and set of performance goals. Goal or achievement orientation
as well as the ability of the team to define clear goals are factors that influence team

performance.

Goal orientation is important for team performance, both directly as in having clear goals, and

indirectly as in having a goal-oriented team leader. Clear goals and milestones should be

3

established as a part of making effective plans and procedures. “When performing a task as
complex as software development, team members must stay on track and achieve specific
intermediate goals in order to increase their team'’s performance” [S1]. Clearly articulated
goals adopted by the team members have a positive influence on team performance [S10]. For
a team leader, goal orientation is an action style - a propensity to act. Goal orientation can be
regarded as a personality trait, denoting a person’s inclination to set goals, pursue and
achieve them [S13]. Highly goal-oriented persons develop long-range and clear goals. They
are persistent in pursuing them, especially when difficulties occur. The goal orientation of a
team leader contributes substantially not only to individual performance but also to team

performance, such as in the likelihood to keep schedule and budget [S13].

The team leadership is focused on influencing team members to work according to project
goals. Software team leaders should understand the dynamics of the software development
process, and concentrate on leading through monitoring and evaluating the behaviour of team
members. An alternative approach is to lead through evaluating the outcome that is produced
by team members. Team performance is better if the outcome is evaluated by the whole team
than if a team leader is evaluating [S12]. In addition, having a team champion interpreting and
influencing the team’s environment is positively related to team performance as seen by
external stakeholders: “...reinforcing the importance of maintaining good relations upward in

the organization and managing team progress to higher organizational levels” [S1].

Some development methods such as agile methods argue for teams to self-manage. However,
that self-management increases team performance received only limited support [S12]. Many
development projects have a project manager who is responsible for overall plans and
external communication. So, whether there is a defined team leader or the leadership is
distributed in a self-managing team, the goal-orientation of the leadership impacts team

performance:

Proposition 2: Goal-oriented team leadership has a strong positive impact on team performance.

Team cohesion

A topic that has been widely studied in the teamwork literature is team cohesion. Team

cohesion is "the tendency for a group to stick together and remain united in the pursuit of its

goals and objectives" [7]. Cohesion primarily involves commitment to team tasks, but also

interpersonal attraction of team members and group pride [8].

How important is cohesiveness for software teams? A study of the influence of team
cohesiveness, team experience and team capability on performance, found that cohesiveness
was the dominating factor [S8]. Likewise, team cohesion was the most important team quality
factor in a study linking teamwork quality to team performance [S19]. Some agile
development methods like extreme programming emphasize collective code ownership. If
developers are able to edit code developed by others, this is a form of intensive collaboration.
Such intensive collaboration is unlikely unless the team has a high cohesion. More collective
code ownership leads to fewer program bugs, which is a measure of software product quality
[S9]. That collective code ownership leads to product quality then suggests that team

cohesion has an indirect positive impact on product quality.

The opposite of cohesive teams are teams with conflicts. Conflicts over priorities of tasks or
how to organize work can negatively influence the performance of a team. Conflicts can have
strong negative impact on both software product success and customer satisfaction [S2].
However, there are different types of conflicts. Relationship conflicts have a negative
influence on performance, while task conflicts have a positive influence on performance [S7].
Why do conflicts have a positive impact on performance? It could be because task conflicts
make a team see new possibilities, avoiding "groupthink". Conflicts are probably inevitable in
teamwork. The question is then how to manage conflicts when they appear. Teams that focus
on conflict management are shown to perform better, according to a study measuring
performance both as team and product performance [S6]. Conflicts can be managed in a
number of ways. Imposing a solution on a team has a negative impact on performance, while
recognizing disagreements and either engaging in a collaborative problem solving or seeking

a compromise solution has a positive impact on performance [S2].

To summarize, there are several studies connecting cohesiveness and performance, with
different operations of performance: team efficiency, team effectiveness and software product
quality. Relationship conflicts will negatively influence performance, while task conflicts has a
positive influence on performance. Conflict management is important in development teams,
and teams should primarily engage in collaborative problem solving to reach an agreement to

which team members can commit. We make the following proposition:

Proposition 3: Team cohesion has a strong positive impact on team performance.

Shared Mental Models

Software development is non-routine work that depends on the ability to acquire,
communicate and make use of relevant knowledge. Shared mental models is knowledge held
by team members that enable them to understand the tasks, the relationships among tasks,
and to coordinate their actions and interactions [3, 9]. A development process such as Scrum
can then be a shared mental model if a team has the same understanding of main activities
and how they are related. If a team has established a shared mental model, this is believed to
lead to team members anticipating each other’s needs, and adjusting work strategies in
accordance to changes in the team or in tasks. Shared mental models can thus be useful in

understanding and explaining a wide range of collaboration patterns among team members.

Shared mental models result from knowledge sharing and subsequent discussions within the
team. As has been found in other disciplines, the shared mental models positively affects team
performance [S10]. The models may include a shared understanding of the team’s goals,
which also is shown to contribute to software team performance [S10]. A facet of mental
models is the degree of knowledge and expertise of the project team, which is shown to lead
to lower development costs. With less shared mental models there will be a reduction in team

performance measured as the speed to market [S16].

The importance of shared mental models is shown by a study comparing the relative effect of
mental models and demographic similarities such as age, tenure and gender, which finds that

shared mental models has a larger effect on team performance [10].

Proposition 4: Shared mental models have a strong positive impact on team performance.

Team learning

While shared mental models reflect the state of the team, team learning blends process and
state [5]. Team learning is an “ongoing process of reflection and action, characterized by
asking questions, seeking feedback, experimenting, reflecting on results, and discussing errors
or unexpected outcomes of actions” [11]. By monitoring and reflecting upon past events the
team becomes reflexive and thereby able to adjust and adapt the team’s objectives, strategies

and processes to current or anticipated circumstances [12, 13]. Team learning results in “a

relatively permanent change in the team’s collective level of knowledge and skill produced by
the shared experience of team members” [14]. Through the team learning process the team

makes changes to adapt or improve [15].

For software teams, there is a positive relationship between skills and expertise and team
performance [S8]. A variety of skills, like task skills, development method skills and
application domain skills have a positive influence on performance [S5]. The presence of
expertise in a development team leads to increased performance, and further, expertise
coordination has been found to be more important than years of experience and project plans

for team performance [S4].

Skills and expertise can be increased when teams learn. Team learning also has a direct
positive effect on software team performance [S11], and in particular software team
effectiveness [S17]. Work satisfaction among developers can also be improved from team

learning [S11].

Proposition 5: Learning has a strong positive impact on team performance.

Team performance and current advice on development

The five factors above are also found in general team performance models [3, 5], and we
propose that these five factors have strong impact on the performance of software
development teams. How do the propositions compare with what is communicated in current
advice on development? We choose to discuss our propositions in light of the twelve
principles behind the Agile manifesto, as these principles have had a large influence on
transformation of software development practices in recent years, and the agile methods also

have a strong focus on teamwork:

Team coordination: One principle states that software should be delivered frequently. Short
development iterations will put emphasis on coordination in a team. The principles do not
state how coordination should be conducted, but in Scrum this is done through frequent short
meetings (daily stand-ups), and through common planning, review and retrospective
meetings for each iteration. Thus, current advice is somewhat implicit on the importance of

coordination.

Goal-oriented leadership: An agile principle states that the "best architectures,

requirements, and designs emerge from self-organizing teams". Further a principle places

7

emphasis on customer satisfaction through focus on delivering "valuable software", and that
"working software is the primary measure of progress". We find principles giving advice on
types of goals that teams should have, and what constitutes project success. However, there is
little guidance in agile methods as to how self-management can be successfully utilized to
reach project goals. It is an open question whether self-management leads to goal-orientation,
and indeed there are mixed findings regarding the connection between self-management and
team performance [16]. Also, through empirical studies of agile development teams, we have

seen few examples of teams that can be said to be self-managing [17].

Team cohesion: A principle states that "business people and developers must work

together daily throughout the project"”. In Scrum, there are practices for making the team stick
together and remain united like the daily stand-up meetings as well as joint planning and
review meetings for each iteration. Extreme programming puts more emphasis on
development practices, of which pair programming and shared code ownership are practices
that could foster and show team cohesion. Thus, we find little advice on principle level, but
concrete practices that support cohesion in various agile development methods. Conflicts is a
theme which is not discussed in agile methods apart from providing arenas for making
decisions and facilitating a process of negotiating task conflicts such as the practice of

planning poker for effort estimation.

Shared mental models: There are no explicit mentioning of shared mental models in
principles or practices of agile development, but one principle implicitly describes the
importance of establishing shared mental models in stating that face-to-face conversation is
"the most efficient and effective method of conveying information to and within a
development team". Agile methods themselves can be seen as powerful shared mental models.
Scrum for example has very few roles, practices and artifacts. This simplicity could facilitate a
clear common understanding of how the development process is to be conducted. In Scrum,
the focus on detailed short-term planning and frequent information exchange within the team

are factors that could enable shared mental models.

Team learning: One principle focuses on the importance of team learning: "at regular
intervals, the team reflects on how to become more effective, then tunes and adjusts its
behavior accordingly". This form of learning focuses on process improvement in
retrospectives, but there are other practices in agile methods to foster learning about domain
and technologies, like demonstrations, planning poker and coding dojos for whole teams and

pair programming between two individuals in a team.

8

We have made five propositions on factors that have a strong positive impact on team
performance for co-located software development teams. We see that only team learning is
directly addressed in a principle of agile software development, the other four factors are
indirectly addressed in agile practices found for example in Scrum and Extreme programming.
Our findings are important for practitioners, because they highlight what effect practices
should have, which could lead to increased understanding of why practices should be
followed, leading to changes in how they are performed. An example is that a lack of precision
in discussions on work tasks in daily stand-ups will limit the coordination effects of such
meetings. Further, our five factors highlight areas that could be the focus of new practices,

which could further increase team productivity.

For researchers, these findings are important because they connect practices in software
development to a wider body of knowledge. This is important, for example in evaluating the
outcome of practices, where future work could make use of established concepts in team

research to increase internal validity of studies.

Comparing the results of our systematic review to overview articles on teamwork reveals that
there are a number of factors identified in other domains that have not yet been sufficiently
studied on software teams. In particular, central claims in agile software development, like
that self-management leads to higher team performance needs further investigation. Further,
team performance is challenged by more and more complex development projects, work
distribution, time zones and sociocultural differences in global software development.
Software development remains an archetype of knowledge work, which should grant
attention from a number of research disciplines. The team remains the core organizational

form in software development.
References

[1] Walz, D. B, Elam,].]., and Curtis, B., "Inside a software design team: Knowledge
aqgcuisition, sharing and integration," Communications of the ACM, vol. 36, pp. 63-77,
1993.

[2] Katzenbach, J. R. and Smith, D. K., "The Discipline of Teams," Harvard Business Review,
vol. 71, pp. 111-120, Mar-Apr 1993.

[3] Salas, E., Sims, D. E., and Burke, S. C., "Is there a "Big five" in teamwork?," Small Group
Research, vol. 36, pp. 555-599, 2005.

[4] Dingsgyr, T. and Dyba, T., "Team Effectiveness in Software Development: Human and
Cooperative Aspects in Team Effectiveness Models and Priorities for Future Studies,"

[5]

[6]
[7]
[8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

in Workshop on Co-operative and Human Aspects of Software Engineering, International
Conference on Software Engineering (ICSE), Zirich, Switzerland, 2012, pp. 27-29.
Mathieu,]., Maynard, M. T., Rapp, T., and Gilson, L., "Team effectiveness 1997-2007: A
review of recent advancements and a glimpse into the future," Journal of Management,
vol. 34, pp. 410-476, Jun 2008.

Malone, T. W. and Crowston, K., "The interdisciplinary study of coordination," ACM
Computing Surveys, vol. 26, pp. 87-119, Mar 1994.

Mudrack, P. E., "Defining group cohesiveness - a legacy of confusion," Small Group
Behavior, vol. 20, pp. 37-49, Feb 1989.

Mullen, B. and Copper, C., "The relation between group cohesiveness and performance
- an integration," Psychological Bulletin, vol. 115, pp. 210-227, Mar 1994.
Cannon-Bowers, |. A,, Salas, E., and Converse, S., "Shared mental models in expert team
decision making," in Individual and group decision making: Current issues, N.]. Castellan,
Ed., ed Hillsdale, NJ: Lawrence Erlbaum, 1993, pp. 221-245.

Kang, H. R, Yang, H. D., and Rowley, C., "Factors in team effectiveness: Cognitive and
demographic similarities of software development team members," Human Relations,
vol. 59, pp. 1681-1710, 2006.

Edmondson, A. C., "Psycological safety and learning behavior in work teams,"
Administrative Science Quarterly, vol. 44, pp. 350-383, 1999.

Miiller, A., Herbig, B., and Petrovic, K., "The Explication of Implicit Team Knowledge
and Its Supporting Effect on Team Processes and Technical Innovations," Small Group
Research, vol. 40, pp. 28-51, February 1, 2009 2009.

Gebert, D., Boerner, S., and Kearney, E., "Cross-functionality and innovation in new
product development teams: A dilemmatic structure and its consequences for the
management of diversity," European Journal of Work and Organizational Psychology,
vol. 15, pp. 431 - 458, 2006.

Ellis, A. P.]., Hollenbeck, J. R, Iigen, D. R., Porter, C. O. L. H., West, B.]., and Moon, H.,
"Team learning: Collectively connecting the dots," Journal of Applied Psychology, vol. 88,
pp. 821-835, 2003.

Edmondson, A. C,, "The local and variegated nature of learning in organizations: A
group-level perspective," Organization Science, vol. 13, pp. 128-146, Mar-Apr 2002.
Cohen, S. G. and Bailey, D. E., "What makes teams work: Group effectiveness research
from the shop floor to the executive suite," Journal of Management, vol. 23, pp. 239-290,
1997.

Moe, N. B., Dingsgyr, T., and Dyb3, T., "Overcoming Barriers to Self-Management in
Software Teams," IEEE Software, vol. 26, pp. 20-26, 2009.

Kitchenham, B. A., "Guidelines for performing Systematic Literature Reviews in
Software Engineering Version 2.3," Keele University and University of Durham, EBSE
Technical Report2007.

Dyba, T. and Dingsgyr, T., "Empirical Studies of Agile Software Development: A
Systematic Review," Information and Software Technology, vol. 50, pp. 833-859, 2008.

Author biographies

Torgeir Dingsgyr (torgeir.dingsoyr@sintef.no) is a chief scientist at the SINTEF research

foundation, Trondheim, Norway. He is also an adjunct professor at the Department of

Computer and Information Science, Norwegian University of Science and Technology.

10

Tor Erlend Feegri (tor.e.fagri@sintef.no) is a research scientist at the SINTEF research

foundation.
Tore Dyba (tore.dyba@sintef.no) is a chief scientist at the SINTEF research foundation.

Bgrge Haugset (borge.haugset@sintef.no) is a research scientist at the SINTEF research

foundation.

Yngve Lindsjgrn (ynglin@ifi.uio.no) is a lecturer at the Department of Informatics, University

of Oslo.

11

Table 1: Primary studies on team performance.

Study Study aim

Reference

S1 Behavioural and technical factors in team Guinan, P.]., Cooprider, J. G., and Faraj, S., "Enabling
performance software development team performance during
requirements definition: A behavioral versus technical
approach,” Information Systems Research, vol. 9, pp. 101-
125, Jun 1998.

S2 Conflicts in software development teams Gobeli, D. H,, Koenig, H. F., and Bechinger, I., "Managing
conflict in software development teams: A multilevel
analysis,"” Journal of Product Innovation Management, vol.
15, pp. 423-435, Sep 1998.

S3 Cooperation skills and personality for shared Yang, H. D, Kang, H. R,, and Mason, R. M., "An exploratory

mental models study on meta skills in software development teams:
antecedent cooperation skills and personality for shared
mental models,” European Journal of Information Systems,
vol. 17, pp. 47-61, Feb 2008.
S4 Coordinating expertise in software development Faraj, S. and Sproull, L., "Coordinating expertise in software
teams development teams,” Management Science, vol. 46, pp.
1554-1568, Dec 2000.
S5 Develop a model that considers team task skills as Chan, C. L., Jiang, J.]J., and Klein, G., "Team task skills as a
a moderator to the more specific application facilitator for application and development skills,” [EEE
domain and development methods skills. Transactions on Engineering Management, vol. 55, pp. 434-
441,2008.

N¢ Effect of intra-group conflict on team performance | Sawyer, S., "Effects of intra-group conflict on packaged
software development team performance,” Information
Systems Journal, vol. 11, pp. 155-178, Apr 2001.

S7 Effect of team diversity on performance Liang, T. P,, Liu, C. C,, Lin, T. M., and Lin, B., "Effect of team
diversity on software project performance," Industrial
Management & Data Systems, vol. 107, pp. 636-653, 2007.

S8 Examine the influence of team cohesiveness, Lakhanpal, B,, "Understanding the factors influencing the

experience and capability on team performance performance of software-development groups - an
exploratory group-level analysis," Information and
Software Technology, vol. 35, pp. 468-473, Aug 1993.
S9 Examine the role of collective ownership and Maruping, L. M., Zhang, X. J., and Venkatesh, V., "Role of
coding standards on team performance collective ownership and coding standards in coordinating
expertise in software project teams," European Journal of
Information Systems, vol. 18, pp. 355-371, Aug 2009.
S10 Influential characteristics of information systems Ly, Y. B, Xiang, C.]., Wang, B.,, and Wang, X. P., "What affects
development team performance information systems development team performance? An
exploratory study from the perspective of combined socio-
technical theory and coordination theory,” Computers in
Human Behavior, vol. 27, pp. 811-822, Mar 2011.
S11 Knowledge integration in information systems Janz, B. D. and Prasarnphanich, P., "Freedom to cooperate:

12

development teams

Gaining clarity into knowledge integration in information
systems development teams," IEEE Transactions on

Engineering Management, vol. 56, pp. 621-635, 2009.

S12

Managerial control and team level control in design

teams

Henderson, J. C. and Lee, S., "Managing i/s design teams - a
control theories perspective,” Management Science, vol. 38,

pp-757-777, Jun 1992.

S13

Relationship between design method, goal

orientation and team effectiveness

Sonnentag, S., Frese, M., Brodbeck, F. C., and Heinbokel, T.,
"Use of design methods, team leaders' goal orientation, and
team effectiveness: A follow-up study in software
development projects,” International Journal of Human-

Computer Interaction, vol. 9, pp. 443-454, 1997.

S14

Shared mental models and team effectiveness

Kang, H. R, Yang, H. D., and Rowley, C., "Factors in team
effectiveness: Cognitive and demographic similarities of
software development team members,” Human Relations,

vol. 59, pp. 1681-1710, 2006.

S15

Software development team flexibility antecedents

Li, Y. Z,, Chang, K. C.,, Chen, H. G., and Jiang, J.]., "Software
development team flexibility antecedents,” Journal of

Systems and Software, vol. 83, pp. 1726-1734, Oct 2010.

S16

Team memory in software development projects

Keskin, H., "Antecedents and consequences of team
memory in software development projects,” Information

and Management, vol. 46, pp. 388-396, 2009.

S17

Team reflexivity in innovative teams

Hoegl, M. and Parboteeah, K. P., "Team reflexivity in
innovative projects,” R&D Management, vol. 36, pp. 113-
125, 2006.

S18

The effect of team dynamics and organizational

support on ICT project success

Gelbard, R. and Carmeli, A., "The interactive effect of team
dynamics and organizational support on ICT project
success," International Journal of Project Management, vol.

27, pp. 464-470, Jul 2009.

S19

Understand the impact of teamwork quality on

team performance

Hoegl, M. and Gemuenden, H. G., "Teamwork quality and the
success of innovative projects: A theoretical concept and
empirical evidence," Organization Science, vol. 12, pp. 435-

449, Jul-Aug 2001.

13

WEB EXTRA: Team Performance in Software Development:

Research versus Current Advice

Torgeir Dingsgyr, Tor Erlend Faegri, Tore Dyb3a, Barge Haugset, Yngve Lindsjgrn

This material complements the Voice of Evidence column, “Team Performance in Software
Development: Research versus Current Advice” (IEEE Software, XXX). That column
summarized results from a systematic review on team performance for software development
teams. This extra material provides details on research method and shows connections

between findings and primary studies.

A central concept in studies of teams is team performance.2 We use this term to refer to
evaluations of the results of the teamwork. There are a number of results of the work of
software development teams, from the quality of the software to the ability of the team to
meet project goals and budgets. But also the motivation of team members to work together in
the future, often measured by job satisfaction, is included in this broad definition of

performance.
How this review was conducted

A systematic review [18] is characterized by a defined research question, identification of
inclusion and exclusion criteria, search for relevant studies, critical appraisal, data extraction

and synthesis. We conducted this review as follows:

Research question: What main factors influence the performance of software development

teams?

Inclusion and exclusion criteria: We included empirical survey studies of team performance

conducted on co-located professional software development projects, published in scholarly

2 Some studies refer to team performance as the process of conducting teamwork, while the evaluation of the
outcome of the teamwork is referred to as team effectiveness [8]. We consequently use team performance to
refer to evaluation of all team outcomes, like ability to meet project goals, budget and schedule, the quality of
software developed, development effectiveness and efficiency, and also include team member's job satisfaction.

Some studies also include learning as one indicator of team performance.

14

journals. We excluded studies on students, on particular development practices, and on

distributed and global development teams. The reason for focusing on surveys was that these
studies are conducted on industry participants; show causal relationships and it is also a way
of limiting the number of studies. We focus on co-located teams to address team factors only,

and exclude factors related to temporal, geographical or sociocultural distance.

Data sources and search strategy: We conducted searches in the ISI Web of Knowledge and

Scopus in October 2011 with the following search string:

Title=(Team OR group OR teamwork) AND Topic=Software AND Document Type=(Article OR

review).

Figure 1 shows the study selection process.

Identify relevant studies through

Stage 1 database search ” n=2542
Stage 2 Exclude studies on the basis of titles > n =208
) 4

Exclude studies on the basis of > - 79
Stage 3 abstracts n=
4
Stage 4 Critically appraise studies > n=19

Figure 1: Stages of study selection process.

15

Citation management, retrieval and inclusion decisions: The 2542 citations retrieved at stage 1
were imported to a reference management package, and then exported to a spreadsheet,
where further decisions were recorded. At stage 2, two authors excluded studies that were
clearly not related to teamwork in software development. At stage 3, reading full abstracts
further excluded irrelevant studies. Many studies were excluded because they were
conducted on student teams, or because the teams were not co-located. All text was read by
two authors independently, and by a third author in case of disagreement. At stage 4, we
excluded non-survey studies, and studies which did not have a research question or one or
more hypotheses related to team performance. This left 19 studies for quality assessment

(Table 1 in published article).

Quality assessment: The final selection of studies were assessed according to eight criteria,
adapting Dyba and Dingsgyr’s [19] criteria for surveys, see Tables 1 and 2. For the 19 articles
assessed for quality, each article was assessed by the three first authors, and final quality
scores were calculated by taking the mode of all three scores. For four of the 152 scores, there
was not agreement between two assessors, and there we used the mean value. The maximum
possible score was 32. The average was 18.7, with 14 as the lowest score and 22 as the
highest. The article with score 14 lacked a discussion of researcher bias (criteria 5) and study
limitations (criteria 6). These were also the criteria with the lowest overall scores. The studies
scored best on clear study aims (criteria 1) and description of questionnaire design and
definitions of measures (criteria 3). We did not exclude any studies based on the quality

assessment.

Data extraction: We extracted research questions, hypotheses, context description of surveys,
and key information like number of teams studied, number of respondents, team size, way of
measuring performance as well as test type and significance level. All information was

recorded in a spreadsheet.

Synthesis of findings: We derived the factors in this article by grouping studies and identifying
factors that had at least three studies showing an influence on team performance. We then
assigned one researcher per group for thematic synthesis of identified findings, based on
confirmed and rejected hypotheses related to team performance. The connection between

factors and primary studies are shown in Tables 3-7.

16

Limitations: We only investigated empirical surveys, not other types of studies. However, the
factors identified correspond to factors identified in general team performance models, based

on broad literature reviews [3, 5].

Acknowledgement

The work was carried out in the projects TeamIT and Agile 2.0 supported by the Research
council of Norway through grants 193236 and 236759. Agile 2.0 is also supported by the

companies Kantega, Kongsberg Defence & Aerospace, Sopra Steria, and Sticos.

Table 1. Quality assessment of primary studies, see Table 2 for quality checklist. The reference
refers to studies listed in Table 1 in main article.

‘Reference 1 2‘3 4 5 6 7‘8 Total score

S1 313 (3 (3 (12 (3]|3]21
S2 2 1312|302 (2]|2]16
S3 313 (3 (3 (0|3 (3]|3]21
S4 3 (1322|133]|3]20
S5 312 (3 (3|02 |3 |2]18
S6 313 (3 (3 (1|3 (3]|3]22
S7 312 (3 (2|02 |3 |2]17
S8 312 (2201|112 |2]14
S9 313 (3 (3 (12 (3]|3]21
S10 312 (3 (2|12 |3 |2]18
S11 313 (3 (3 (1|3 (3]|3]22
S12 313 (3 (3 (1|1 |2]|2]18
S13 312 (3 (2 (1|2 |2 |2 |17
S14 313 (3 (2|03 |3 |3]20
S15 312 (3 (2|1 |2 |3 |2]18
S16 212131202 (2]|2]15
S17 313 (3 (3 (12 (3]|3]21
S18 312 (22|02 |3]|2]16
S19 313 (3 (3 (12 (3]|3]21

17

#

\Criteria

Category: Questions on Aims

Table 2. Quality Checklist

Things to consider

1.

Do the authors clearly state
the aims of the research?

Do the authors state research questions, e.g., related to time-to-market, cost, product quality,
process quality, developer productivity, and developer skills?
Do the authors state hypotheses and their underlying theories?

Category: Questions on Design, Dat

a Collection, and Data Analysis

2. | Do the authors describe the | Do the authors explain how the sample and target population were defined and selected?
sample and the target Do the authors state to what degree the sample is representative of the target population?
population? Do the authors explain why the sample they selected was the most appropriate for providing

insight into the type of knowledge sought by the study?
Do the authors report the sample size and response rate?

3. | Do the authors describe the | Do the authors explain how items and measurement scales were defined and selected (e.g.,
design of the questionnaire | domain of concepts, multiple-item scales, units, counting rules)?
and define the measures? Are quality control methods used to ensure consistency, completeness and accuracy of

collected data?

Are reliability and validity analyses performed (e.g. Cronbach’s alpha, item-scale correlations,
factor analysis)?

Do the authors append the questionnaire?

4. | Do the authors define the Do authors justify their choice / describe the procedures / provide references to descriptions of

data analysis procedures? the procedures?
Do the authors report significance levels and effect sizes?
Do the authors perform analyses of possible nonresponse bias?
Do the authors report or give references to raw data and/or descriptive statistics?

5. | Do the authors discuss Were the authors the developers of some or all of the treatments? If yes, do the authors discuss
potential researcher bias? the implications anywhere in the paper? (If the authors developed the treatments (or parts of

them) without discussing the implications, the answer to question 5 is “not at all”.)

Do the authors critically examine their own role, potential bias and influence during the
formulation of research questions, sample recruitment, data collection, and analysis and
selection of data for presentation?

6. | Do the authors discuss the Do the authors discuss external validity with respect to subjects, materials, and tasks?

limitations of their study?

If the study used novel measures, is the construct validity of the measures discussed?
Do the authors discuss the credibility of their findings?

Category: Questions on Study Outcome

7.

Do the authors state the
findings clearly?

Do the authors present results clearly?

Do the authors present conclusions clearly?

Are the conclusions warranted by the results and are the connections between the results and
conclusions presented clearly?

Do the authors discuss their conclusions in relation to the original research questions?

Are limitations of the study discussed explicitly?

Is there evidence that the
survey can be used by other
researchers / practitioners?

Do the authors discuss whether or how the findings can be transferred to other populations, or
consider other ways in which the research can be used?
To what extent do authors interpret results in the context of other studies / the existing body

of knowledge / theories?

Each question is answered on a 4-point scale where:

“3 = Fully” means all questions listed in the “consider” column can be answered with “yes”

“2 = Mostly” means the majority of all (but not all) questions listed in the "consider” column can be

answered with “yes”

“1 = Somewhat” means some (but the minority) of the questions listed in the "consider" column can be

answered with “yes”

“0 = Not at all” means none of the questions listed in the "consider" column can be answered with “yes”

18

Table 3: Accepted hypotheses linking team coordination and team performance.

‘ Hypotheses Study
Adherence to coding standards is positively related to software project technical quality (i.e., it should negatively S9
relate to the number of errors in the software code).

Anticipation capability will have a positive relationship with the software development team’s flexibility. S15
Conventional team factors (presence of expertise, professional experience, administrative coordination, and S4
software development methods) are positively related to team performance.

In general, increases in both managerial control and team-member control hava a positive effect on I/S design S12
team performance.

In general, increases in team-member outcome control will have a significant positive effect on I/S design team S12
performance.

Organizational support will moderate the relationship between team dynamics and project success. The positive S18
relationship between team dynamics and project success will be stronger among teams that report higher levels of
organizational support.

Team dynamics will be positively related to project success. S18
The extent to which design methods are used in the software development process is positively related to team S13
effectiveness.

Table 4: Accepted hypotheses linking goal-oriented leadership and team performance.

‘ Hypotheses Study
Clarity of mission is positively related to ISD team performance. S10
In general, increases in both managerial control and team-member control have a positive effect on I/S design S12
team performance.

Team leaders goal orientation is positively related to team effectiveness, in addition to the use of design methods. S13
Visionary processes are positively related to team performance. S1

Table 5: Accepted hypotheses and research questions linking team cohesion and team

performance.

Hypotheses / Research questions

Collective ownership is positively related to software project technical quality (i.e., it should negatively relate to

the number of errors in the software code).

S9

19

Group cohesiveness would be positively related to the group's performance level S8
How does the conflict management style relate to success? S2
Teamwork quality (including cohesion) is positively related to the performance of teams with innovative projects. S19
What effects do these factors have on packaged software development team performance? S6
What factors most affect the level of intragroup conflict in packaged software development teams? S6
What kinds of relationships exist between the composition of software teams and performance? S7
What relation do conflict intensity and context have with project success? S2

Table 6: Accepted hypotheses linking shared mental models and team performance.

‘ Hypotheses Study

As memory dispersion increases, the positive effect of procedural memory on speed- to-market will be increased. S16
Clarity of mission is positively related to information systems development team performance. S10
Declarative memory will be positively associated with less development cost. S16
Team members’ shared mental models have a more positive influence on software development team S14
effectiveness than do demographic (age, tenure and gender) similarities.

Team-members’ shared mental models is positively associated with software development team effectiveness. S3

Table 7: Accepted hypotheses linking team learning and team performance.

‘ Hypotheses Study

Conventional team factors (presence of expertise, professional experience, administrative coordination, and S4

software development methods) are positively related to team performance.

Cooperative learning exhibited in an ISD team is positively related to ISD work performance. S11

Cooperative learning exhibited in an ISD team is positively related to individual work satisfaction. S11

20

Expertise coordination processes (recognizing where expertise is needed, knowing where expertise is located, and S4
bringing expertise to bear) are positively related to team performance.

Expertise coordination processes are positively related to team performance above and beyond traditional factors. S4
Team reflexivity is positively related to team effectiveness. S17
The impact of application domain skills on software development project management success is increased for S5
higher levels of the team task skills.

The impact of application domain skills on software development process success is increased for higher levels of S5
the team task skills.

The impact of development methods skills on software development project management success is increased for S5
higher levels of the team task skills.

The impact of development methods skills on software development process success is increased for higher levels S5
of the team task sKills.

The software development group's capability would be positively associated to the group's performance S11
The software development group's experience would be positively associated to the group's performance S11

21

