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Abstract. This paper presents an approach to variability modeling where
variability models are made in a separate, generic language CVL (Common
Variability Language) that works with any other language defined by a
metamodel. CVL models specify both variabilities and resolutions of these, and
by executing a CVL model the base product line model is transformed into a
specific product model. Our CVL tool is a generic tool in the sense that the
supported transformations work on any model in any language defined by a
metamodel. We show how the well known notation for variability, feature
diagrams, can be subsumed under CVL as its (partial) concrete syntax. We also
demonstrate the use of a simple, but powerful means for parameterization.
Furthermore we give a worked-out example from the real domain of train
signaling.

1 Introduction

Variability modeling is intended to capture the essence of how one product is similar,
but still different from another. Products that are sufficiently similar are often defined
to form a product line. Product line modeling is different from modeling only one
singular product. A product line model must contain information on product variants
and dependencies. Furthermore the modeling of a product line involves other
competences than those of a software specialist. Typically there are domain experts
that take part in the modeling of the product line, and also in the configuration of the
individual product models.

The competence of domain experts of one (or more) product lines can be
synthesized into a domain specific language (DSL). A DSL contains concepts specific
to the area implying more effective specification by those knowledgeable in the
domain. However, a DSL with merely concepts from the domain will often be too
restricted. Therefore DSLs grow to contain abstraction mechanisms found in general
purpose languages. Our work presented here is about whether the general concepts
related to modeling variability can be defined in a generic language working
seamlessly with any other domain specific language. To achieve this we are creating
CVL — the Common Variability Language.

The product line communities use feature diagrams to depict the user-centric and
domain specific definition of the product line. There is a rich literature on feature
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diagrams and feature models. The different dialects have in common that they give a
description of the alternatives that need to be bound and the constraints to be fulfilled
for a valid product configuration. However, feature diagrams and the corresponding
feature models are user-centric and do not cover the details of the transformations
required to be to implemented in order to get a specific product model according to a
configuration of a feature model. Therefore the connection from the feature models to
the actual software of the product is often defined ad hoc. We want means to describe
any variability formally such that executing the description will yield a product
model. This will then formalize the product creation with the added advantage of
analyzability and maintainability. The CVL language semantics is defined as a
transformation of an original (e.g. a product line model) into a configured, new
product model.

In this paper we present the advanced abstraction mechanisms, the mechanisms
that support feature modeling, and show how the corresponding tool provides a
flexible support of the concrete syntax of CVL.

CVL combines user-centric feature diagrams with an automation-centric approach
to the production of product models. Thereby CVL can serve as the language for
variability for those who design product lines and configure products as well as those
who do the required modeling to produce the right products automatically.

Through a running example we shall show the following:

1. Abstraction mechanisms for reuse, parameterization and choice in CVL.
Feature diagram notation as notation for CVL (but recognizing that feature
diagrams do not cover the whole CVL).

3. A generic way to combine the CVL tool with base language editors.

|38

The paper is organized as follows: Section 2 presents background on feature
diagrams, the Train Control Language (TCL) and CVL basic concepts through our
running example. Section 3 presents the general concepts introduced in CVL to make
variability models flexible and reusable. Section 4 discusses the challenges related to
the concrete syntax of CVL, and also presents the CVL prototype tool. Section 5
presents related work and Section 6 concludes and gives future work directions.

2 Introducing the Running Example and Background

Our running example is from the domain of signaling in train stations using TCL —
Train Control Language [24]. Our example is somewhat simplified relative to real
stations to fit into the format of this paper.

We have designed a feature diagram (Fig. 1) of an imaginary regional station
product line with the variability and commeonalities of stations within a geographical
region. CVL is then introduced, and we provide some of the detailed model fragments
used to define substitutions of the original TCL base model. We superimpose the
CVL fragments on base models in the concrete TCL notation (Figures Fig. 4, Fig. 5
and Fig. 6). The depiction of placements and replacements is only illustration and the
solid and dashed borders are not actual concrete syntax for CVL.
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2.1  Feature Diagrams Exemplified by the Regional Station Product Line

Feature modeling as a technique for defining features, and their dependencies has
been widely adopted in the Software Product Line community. It was originally
introduced by Kang as part of Feature-Oriented Domain Analysis (FODA) [15].
There a feature is defined for the first time as a “prominent or distinctive user-visible
aspect, quality, or characteristic of a software system”. Feature modeling is a means
to reflect user choices and requirements in an early phase of the product design.
Therefore we recognize that to relate to the bulk of work done on feature diagrams we
should make sure that our CVL subsumes the feature models.

Features are typically modeled in the form of tree-like feature diagrams along with
cross-tree constraints, e.g. require/exclude a feature based on the selection of another
feature. A feature diagram is considered to be an intuitive way to visually present the
user choices of the features, and is therefore widely used and extended. In the FODA
notation, a hollow or solid circle in the connection end indicates whether the child
feature is optional or mandatory. Sub-features connected with solid arcs represent
‘OR’ relationship, such that at least one of the sub-features must be selected. On the
other hand, hollow arcs mean alternative (XOR), i.e. at most one of the sub-features
must be selected.

A large number of extensions of FODA has been proposed
([16][12][8][251[11[2][22][5]). The cardinality-based feature diagram proposed by
Czarnecki et al [5] integrates several extensions of the FODA notation. They annotate
features with cardinalities, such as e.g. [1..*] or [2..2]. Mandatory and optional
features can be considered as features with the cardinalities [1..1] and [0..1],
respectively.

Regional Station

/O\

Urban | Rural
0.7 /C\
Af_irt:';;?"s‘a' With Parking No Parking
[1..2]

Parking Track

Legend
/‘\ A mo| A xon

Automatic Extra Security /‘\ OR 1 Mandatory

Fig. 1. Feature diagram of regional station product line

Fig. 1 shows a feature diagram of our running example the Regional Station
product line. We distinguish between Urban and Rural stations where Urban stations
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can have several additional tracks. Urban stations will have 1 or 2 parking tracks
while rural stations may be either with a parking track or without parking.

2.2 Train Control Language

The Train Control Language (TCL) is a Domain Specific Language (DSL) that is
used to specify the interlocking system of train stations [7, 24]. Fig. 2 shows the TCL
concrete syntax as it appears in the TCL editor.' Based on the models from the TCL
editor the source code, documentation and interlocking tables can be automatically
generated.

. TrackCircuit

Saller (FEIIITTTN
: Switch

Signal : | [
e g 2
=000 s ndpoint
L2 ] l li = |
L P J"\ N — LJJ

Fig. 2. Train Control Language constructs

The interlocking system is for avoiding train collisions and safety critical issues, by
coordinating the availability of the train routes, the signaling system and the direction
of the switches at a station, which is handled automatically.

2.3 Common Variability Language

As pointed out in [13] the Common Variability Language approach has focused on
specifying variability in a model separated from the base product line model. There
may be several variability models applying to the same base product line model and
the base model is unaware of the variability models (there are only links from the
CVL model to the base model). Several product resolutions can apply to the same
variability model. CVL is executable, by having specified resolutions of variabilities,
the CVL tool automatically produces the specific product model.

The core concepts of the CVL are substitutions. Models are assumed to consist of
model elements in terms of object that are related by means of references. The CVL
model points out model elements of the base product line model and defines how
these model elements shall be manipulated to yield a new product model. There are
three kinds of substitutions: value substitution, reference substitution and fragment
substitution. The substitution replaces base model elements defined as a placement by
base model elements defined as a replacement. The most elaborate kind of
substitution is that of the fragment substitution as illustrated in Fig. 3. The product
model on the right side is produced from the base model to the left by means of a
fragment substitution. The fragment is defined in CVL by a set of boundary elements

! Note that the names in Fig. 2 are the terms of the concepts and the dashed lines are only for
explaining their extension and are not part of the TCL syntax as such,
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(circles named x” and x”) recording the references in and out of the fragment. In Fig. 3
the boundary elements and the corresponding placement and replacement are
superimposed onto a base model. In the models this is realized by pointers from the
CVL elements to base model elements. A fragment substitution will define a
Placement Fragment (solid-drawn circle around 2 and 3) and one or more
corresponding Replacement Fragment (dashed line around 5, 6, and 7). The idea is
that substitutions define a transformation from a product line model to a product
model. Provided the resolution model, the execution of the CVL transformation will
bind the boundary elements of the placement to the boundary elements of the
replacement e.g. binding a” to a" and b to p". The transformation is generic and relies
on reflection; therefore it can be applied to any language defined by a metamodel.

w/; \ af s 5
24 EJ AN () NI Y - N
1 k(f)\ ! 4 ralh 1 7 | 4
w\ wlff 4 slem N6~
‘\.____/‘/ L ¥ ,."’7'
Base model plus Placement Fragment Replac:en;e.l:lit Fragment Resolved product model

Fig. 3. A simple fragment substitution

2.4 CVL Fragments Superimposed on TCL Models

As a starting point for our product line we have the base model in Fig. 4. It is a simple
station with two tracks, signals and stillers. We have also defined 3 placement
fragments (depicted by superimposed solid-drawn circles). This notation is just for
illustration and the boundary elements have been omitted here. These placements are
candidates for substitutions where a compatible replacement fragment can be inserted.

lezz ][am J[L?. “m ][Mz IMMM

0 2 I
N N N O O
Placement for Additional Track 1
N o]
B oD oo A
€000 5 Q 1 00000
E (N o——L3 ) "k NP S 1
[l 4 L Ry W Ly L_J
Placement for [ews) oo Placement for
Parking Track 1 Parking Track 2

Fig. 4. Initial Base Model with three placement fragments
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In Fig. 5 we see the replacement fragment Additional Track, which is compatible
with the placement Additional Track 1 in Fig. 4. This fragment will be used to add
any number of additional tracks to the station. The replacement fragment contains a
composite placement fragment that can be replaced by an instance of the Additional
Track recursively, creating e.g. a station as presented in Fig. 7 station C.

03 [p1 ] [Blm ] [A[I[l ] [51 ]

I |
] |
I I
I P ; 5 S 1
] Placement for Additional Track 2 o0 |
1 o |
] 111, ]
e & . T
g A " i 3 |
k r N~ 1
I N 0 I
I o0 o0 !
\ !
il S S e e -

Additional Track
Fig. 5. Replacement fragment Additional Track with one composite placement

Note that the replacement fragment in Fig. 5 also could have been defined on the
initial base model in Fig. 4, but for clarity we have defined it on its own.

Parking Track, Derailer and Remote Switch in Fig. 6 are replacement fragments
concerned with the ability to add parking capabilities to the station.

4 \ - "' =
: Manual Switch | SLock | |
. L S —
1 ) — aul Derailer
H s —) ' | r_————
I Placement for Derailer v \
B g —— !
| 1 |
\
- - - - ’/ N /I
Parking Track Remote Switch

Fig. 6. Replacement fragment Parking Track, Derailer and Remote Switch

A / N / R
o N

P e 2 S

Resolved Products
Fig. 7. Example of produced station

Fig. 7 shows three different products that can be produced based on the base model
fragments.
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3 CVL Abstraction Mechanisms

In Section 2 we presented the user-centric feature diagram and the detailed model
fragment substitutions. We will now introduce the CVL language concepts beyond
those presented in [13] defining user-centric entities such as “Parking Track” that is a
pattern that may occur in Urban or Rural stations.

Recognizing that feature diagrams are user-friendly notations for expressing
variability and since our aim is to provide a complete language for variability we must
also have concepts that logically cover what feature diagrams can express. Still we do
not want to mirror every symbol of the feature diagrams as metaclasses in our
metamodel. We want to find the minimal set of concepts that are expressive enough.

3.1 CVL Language

In Fig. 8 we have extracted the most significant concepts of the CVL metamodel. The
CVLModel, which is the root element, can contain a variability specification,
representing the variability model, and one or more resolution specifications,
representing the resolution models. The variability specifications are divided into two
groups; Executable Primitive and Declaration. The executable primitives form the
flow of the CVL execution, while declarations are used as input for these primitives.
For grouping elements we use two mechanisms that can be nested; Composite
Variability and Iterator. The main difference between these elements is that while all
executable elements in a composite variability will be executed, the iterator represents
a choice, where the resolution model can make a selection of the contained executable
primitives.

Variability Resolution
—1 — ‘__
Specification CVLModl Specification
|
Executable
Iterator Primitive Declaration
Composite | | g _yuion | | Assignment || mnstantiation | Type || Placement
Variability g yp Literal
body
Replacement
Literal
teRef| Replacement | — — j}
1 Fragment
Reference theQbject
.| Replacement
Fragment

Fig. 8. CVL core metamodel excerpts
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The substitution is the simplest form for operation in CVL, and it basically replaces
a placement literal with a replacement literal. The type with the corresponding
instantiation allows structuring variability specifications for reuse.

The semantics of CVL is described generically by a model-to-model
transformation that relates to the actual base language through reflection mechanisms
provided by the modeling platform. This transformation has been implemented in an
extended version of MOFScript [17] that in addition to model-to-text generation
capabilities also supports model-to-model transformations.

As mentioned earlier CVL includes three kinds of substitutions as the core concept:
value substitution, reference substitution and fragment substitution. When executing a
value substitution the valid object is fetched from the base model and the attribute in
this object is retrieved by the property name using reflection. The property is then
updated with the new value. Reference substitution is similar, but instead of changing
an attribute, it changes a reference.

Fragment substitution is more advanced since it replaces a set of objects
(placement fragment) by another set of objects (replacement fragment). The CVL
metamodel for fragment substitution is shown in Fig. 9.

Variability
Specification

i

Placement Replacement
Slbstititon Literal Literal
placemenlJ T |
= Placement
Fragment
Fragment Replacement
titut replacement  Fragment
Substitution P Abstract

H

Replacement
Fragment
0.1 Reference

rref Replacement

Fragment

Fig. 9. Fragment Substitution metamodel excerpts

When executing a fragment substitution the model elements in the placement
fragment are first retrieved and deleted. The bindings between the boundary elements
of the placement fragment and replacement fragment are then traversed. The
references of objects inside and outside the fragments are then updated as follows:
References to the placement fragment are updated to refer to objects in the
replacement fragment, and references from the replacement fragment are updated to
refer to the objects that are referred by the placement. We demand that the references
of the placement and the corresponding references of the replacement point to objects
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of the same base language type. Thus, we avoid dangling pointers and keep the
structure of the model consistent.

3.2 CVL Concept for Reuse

Typical concepts for reuse are functions, types and templates. In CVL we have settled
for a type concept and corresponding instantiations. During the execution of the CVL
specification the instantiation of a type will return a replacement fragment, and
instances of the type are therefore replacement fragments.

The body of the type definition is a composite variability such that any
transformation expressible through a series of substitutions can be expressed by the
type. The body is similar to a constructor in C++ and Java since the substitutions will
work on some initial replacement fragment that is eventually returned when the type
has been instantiated during the execution. In other words, the substitutions contained
by the type customize the replacement fragment. The customization is made possible
by the fact that replacement fragments may contain placements.

In order to be able to instantiate a type several times to reuse the composite CVL
substitutions, we need to distinguish between different instances of the type. Since it
is necessary to refer to these instances in subsequent substitutions, CVL defines
replacement fragment reference to store these instances. Other operations, such as
assignment, support dynamically update of the references to these replacement
fragment instances.

Assume that we have a type Parking Track that we instantiate several times. These
parking tracks have to be customized to be automatic, have extra security or both. The
type concept in CVL therefore supports customization of replacement fragments. We
must also express in full detail how these parking are connected to the available
placements in the station. CVL therefore has references that are dynamically updated,
and it has replacement fragment references and the associated assignment exactly for
that purpose.

3.3 CVL Parameterization

Our parameterization of types recognizes that the atomic building block of our
variability descriptions in CVL are the substitutions where replacements are put in the
place of placements. Thus, placements are similar to formal parameters, and
replacements to actual parameters. By allowing replacements (our objects of change)
to contain placements we let the objects contain the possibilities for subsequent
change. Semantically we require that a placement can only be replaced once which
simplifies the semantics and the intuition. Obviously adding yet another train track in
our station implies connecting it to the existing ones by substituting some placements
that are ready for such connection and left there for that purpose.

While traditional parameter transfer brings the values of the actual parameters into
the function prior to its actions, our approach to parameterization is slightly different.
Every instantiation of one of our CVL types will return identical objects, but then
subsequently their internal placements may be replaced. This corresponds to the
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parameter transfer, but it happens after the type instantiation has returned its
replacement fragment.

Let us recapitulate how this may look from the perspective of a replacement
fragment defined before the CVL description is executed. First, the replacement
fragment is defined through selection of pieces of some base model. Let us assume
this definition is to define the starting point for a type. Then the substitutions will start
modifying a copy of this replacement fragment through replacing the contained
placements. Such substitutions may also in fact introduce new placements into the
structure. Finally the type instantiation completes and the replacement fragment is
returned. This is in turn picked up by the substitutions following the type instantiation
and remaining placements may be replaced by new replacement fragments.

Placements do not necessarily need to be replaced. The default is that they remain
untouched.

3.4 CVL Concept for Choice

Feature diagrams are focused on choices: Which variants are to be chosen? We have
defined ome concept, the Iterator, with a lower and upper limit to define the
multiplicities of the choice, and one bit of information that we call “isUnique”.
Together with the grouping construct of composite variability we can cover what
feature diagrams can express, as presented in more detail in Section 4.1.

The semantics of the iterator is as follows: The execution of CVL walks through a
resolution specifications for every iterator. The resolution specification points out
executable primitives contained in the iterator. The number of selected execution
primitives is between the lower and upper limits defined in the iterator. If the iterator
specifies “isUnique™ each selected primitive can only be selected once. The selected
execution primitives are then subsequently executed.

4  Using CVL with Feature Diagrams

Thanks to the mechanisms presented in Section 3, CVL provides a complete solution
to variability modeling. Fig. 10 presents an overview of how CVL is applied to a base
model (or a set of base models). The CVL description can be divided in four:

1. Choices capture a logical, user-centric description of variability. The
CompositeVariability and lterator classes of the CVL metamodel are the key
concepts for capturing choices. CVL choices can be depicted by traditional
feature diagrams.

2. Fragments and Substitutions are the core concepts of CVL to link variability to
the base models. Fragments allow capturing any arbitrary base model pieces
ranging from a link or an object to a group of object of any complexity.
Substitutions allow substituting placement fragments with alternative
replacement fragments or values.
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3. Types are used to provide reusability and flexibility by decoupling the choices
and substitution/fragments structures. Using types, the structure of the feature
diagram can be mapped to fragments and substitutions.

4. Resolution models capture the decisions associated with choices. Each
resolution model can be executed by the CVL transformation in order to
automatically produce the product model corresponding to a set of decisions.

(2)
) e .
; ~ / Fragments ! Base Models
Cholces -{ Types }-{ and et (expressed using
N \ Substltmions one or more DSLs)
; @) —

Resolution
models ' (4)

CVL
Transformation

Models

Fig. 10. Making feature models executable

To make CVL usable, concrete syntax elements need to be associated with the
CVL concepts. Section 4.1 details how feature diagrams can be used as a concrete
syntax for choice and invocations. Section 4.2 discusses the concrete syntax for
defining fragments and substitutions and details the connection to the DSL tools. For
types and resolution models, the current implementation of the CVL tools uses default
syntax (a tree-view editor). These elements do not pose any major challenges for
concrete syntax definition since they are pure CVL elements. In future work we will
investigate the possibility of using a textual concrete syntax or an extension of the
feature diagram notation to represent types.

4.1 Feature Diagrams as CVL Concrete Syntax

CVL includes the Iterator concept as a general choice mechanism and the
CompositeVariability concept in order to compose these choices. These two
mechanisms allow capturing all common feature diagrams notations. Fig. 11 presents
the mapping between feature diagram symbols and their representation in CVL. All
these symbols are uniquely represented in CVL which make feature diagrams well-
suited as a graphical concrete syntax for that part of the CVL metamodel.

The rationale for defining a few general concepts such as the Iterator in CVL,
rather than reusing an exiting feature diagram metamodel with a metaclass for every
symbol, is to remain general and concise and be able to support various feature
diagram notations.



A Generic Language and Tool for Variability Modeling 12

Semantics |Symbol | CVL Element Comment
i CompositeVariability makes the
Mandatory l :CompVar resolution of a node mandatory for any
instantiation

:lterator The multiplicity [0..1] reflect the fact that
Lower =0 the sub-node can be chosen or not.
Upper =1

Optional

CompositeVariability makes the
resolution of all sub-nodes mandatory
for any instantiation

" The multiplicity [0..*] means that any
‘Iterator number of sub-nodes can be chosen.

OR A\ Lower =1 IsUnigue specifies that each sub-node

AND :CompVar

Upper = -1 can only be chosen once (which
IsUnique = true
corresponds to the usual OR semantics)

:lterator The multiplicity [1..1] means that one
Lowar=] and only one of the sub-nodes can be
Upper =1 chosen (which corresponds to a classic
XOR semantics).

XOR

:terator The multiplicities associated to a choice
. ] Lower = x are mapped {o an Iterator containing the
Multiplicity [x..y] | | uerer=y same multiplicities
* y IsUnique = 1rue

Fig. 11. Mapping between feature diagrams and CVL metamodel

4.2 CVL Concrete Syntax

CVL fragments and substitutions are closely linked to base models elements that are
expressed using a DSL. CVL is designed to be generic with respect to the DSLs used
to express base models and to keep the variability information fully separated from
the base models. These requirements are fundamental in order to keep a good
separation of concerns. However, from a user point of view, the integration of the
variability description with the base model should be as smooth as possible. Even
though the CVL description is kept separate from the corresponding base model it is
by no means independent from the given base model. The base model is oblivious to
the CVL model while the CVL model refers to objects of the base model. Especially,
the definition of fragments and substitutions on base models should be intuitive to the
users who are familiar with the base models. From a concrete syntax point of view, it
means that the syntax of CVL elements in direct relation with the base model needs to
adapt to the concrete syntax of particular base models DSLs.

The process of going from a fragment defined in the concrete syntax of a DSL to
the CVL representation involving boundary elements has to be transparent to the user.
To achieve this, defining a fixed CVL concrete syntax for fragments and boundary
elements is not an option: all the representation of base model elements should use the
base model concrete syntax. The solution proposed by CVL is tight tool integration
with the DSL tools. This way, the usual features of the DSL tools can be used to
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define, connect and visualize fragments. In practice, this solution is viable if the
development effort to connect exiting DSL editors with CVL tools is small.

MOF
(ECore)
/ "\
{ CVL ( psL
= f
CVL Model —~ f---»(  domain
model
( prmeeee > CVL Generic Object Editor
i:-> DSL Editor Interface Editors
i 2 4 DSL
b 2 Edit
CvL Fragment Editor ( CVL Enabled Editors ) tor
Editor
Feature Diagram Editor Analyzers
Transformations DSL
Resolution Editor
Code Generators | 100IS
CVL

Tools{ CVL Analysis & Transformation

Fig. 12. Feature Diagrams as concrete syntax of CVL

Fig. 12 presents the way CVL tools and DSL tools are integrated. The right side of
the figure presents a particular DSL and the set of tools associated with it. No
particular assumption is made on the DSL except that, for integration with the
prototype implementation of CVL, the metamodel of the DSL should be defined using
MOF [18] and more specifically the Eclipse implementation of it (ECore). Other than
that, the concrete syntax of the DSL can be textual, graphical or any intermediate
between these two. For editing fragments and substitutions, the CVL tool defines an
interface which must be implemented by the DSL editor in order to allow defining,
connecting and visualizing fragments.

public interface ICVLEnabledEditor {

// Highlight in the editor the ohject identified by :mi id
public veid highlightObject (String xmi_id, int color);

// Remove highlighting for all cbject in the editor

public void clearHighlighting();

// Get the editor selection

public ArrayList<Object> getSelectedObjects();

// Set the selection of the editor

public void selectObjects (ArrayList<String> objects);

Fig. 13. Java interface for CVL editor integration

The complete CVL interface for DSL editors is presented in Fig. 13. This interface
allows getting and setting the base model objects selected in the DSL editor as well as
highlighting base model objects. The CVL editor interoperates with any editor
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implementing this interface. The selecting capabilities are used to make selections and
links to the base model objects, and the highlighting capabilities allow displaying the
variability with the DSL concrete syntax. The advantages of this interface are:

1. It requires only typical editor features. Almost any DSL editor will already
include a selection mechanism and some mechanisms for highlighting objects.

2. Tt is suited for any kind of concrete syntax and easy to customize. Selection
and highlighting can be implemented for textual and graphical editors.

In total the interface counts 4 operations. To implement the CVL enabled version
of the DSL editor we extend the DSL editor by implementing the interface. This
interface allows building fragments from selections in the base model editor. The
fragments boundary elements are automatically created by traversing the base model
and identifying pointers going from and to the selected objects. The interface then
also allows visualizing fragments by highlighting corresponding objects in the base
model editor. Finally, for the definition of bindings for substitutions, the interface is
used to choose and visualize how placements and replacements should be connected.

4.3 Validating the Feasibility of the CVL Approach

To validate the feasibility of the CVL approach including the tooling support, the
CVL interface has been implemented for 4 different languages and editors: TCL [7,
24], UML, APRIL (a DSL for payroll reporting [26]) and the generic object editor
provided with the Eclipse modeling framework. The editors for the TCL and APRIiL
have been built using GMF [10] and subsequently extended to implement the
interface. In all the three cases the extension was simple and required around 150
lines of Java code. Because both TCL and APRIL editor are based on GMF/GEF, the
integration code is shared and can be reused with any other GMF based editor. The
result of this integration with the TCL editor is presented in Fig. 14. The CVL editor
is in the left pane and interacts with the TCL editors in the right panes.

CVL does not require the union of all products to be available as model elements
in one model, as e.g. FeatureMapper [14] or PureVariants’ Enterprise Architect
integration [21]. The product line in Fig. 14 has been specified using two different
TCL models, the top right is the starting point and the bottom right provides building
blocks that can be (re)used. This capability of using fragments from different models
enables extensive reuse, and several CVL descriptions can utilize the same base
models. Different fragments can also intersect with each other. One of the enablers for
this is the fact that CVL is described in a separate model with links only from CVL to
the DSL.

Selecting a CVL element in the left side CVL editor, will highlight the
corresponding TCL elements in the right side editors, The placement and
replacements have been automatically generated from selections in the TCL editor. In
the CVL enabled TCL editor we have used coloring to display the CVL concrete
syntax on TCL. Selecting the Insert into Track? CVL element will highlight the
elements in the TCL editor. The placement (elements that will be deleted) are colored
red and the connecting elements orange, the elements of the replacement will be blue
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and the connecting elements will be colored green. The CVL concrete syntax is in this
way a combination of CVL and TCL. A default concrete syntax is provided, but this
can be changed to better fit the target DSL. The visualization can be used as
assistance when defining the actual bindings between the boundary elements (when
this is necessary).

= & Stalion
& 1 Regond Station EEE |ERE e
B9 b (S O | o

= 2 Urban xor Rural[1..1]
£ “# Lrban
() AddtionalTradRef1
{3 AddtiondTrackRel2 cooo o &
= 7 Addtiona Tracks [0..1] ' (S ¥ i3
S -+ Addtionl Tradks 0
{2} addtionalTracfef2 = AddtionalTracRef |

& AddzionalTradRef] 1= Addtional Tracks{)

ER Jirceit rta Tiad2|
& [ Insert ko Addtional Track
4 2 Paking Track[1..2] v
= « Rural —F
= 7 VithParking xor NoPerling[1..1] [}
= + WehPakng e
{3 RrabatingTragnef

@ RuraParkingTracdef := Parking Track() - “
= 7 Space for Parking Track [1..1] # ¥ |
% (@ Insert into Space |
% {8 Tnsert o Space 2

+ NoPaking Ve, ﬁ

E a Regionsl Station

g T H N =D 6D 65
o
)

Fig, 14, Screenshot of the CVL editor together with the TCL graphical editor

For the integration with UML, the interface was implemented on top of the
Papyrus UML editor [19].

4.4 The Example Revisited

Having introduced the mechanisms of CVL, we now return to our running example
and recapitulate how we come from a feature diagram (shown in Fig. 1) to the
automatic production of a station product (say: an urban station with an additional
track and a parking track where the parking track will have extra security).

The feature diagram shown in Fig, 1 can be created without any knowledge of the
underlying TCL. It represents an overview of the intuitive variants of stations that are
available in our product line, but it does not contain enough information to generate
the products. To produce a product we need a resolution model and a well-defined
relation to base models (in TCL).

The CVL model defining the product line expressed in the feature diagram is
illustrated in Fig. 15a. It contains a variability model (Station) and a resolution model
specifying the resolution for a product.
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The Station variability model in CVL is initially defined by the feature diagram of
Fig. 1,> and Fig. 15b and c illustrates this. Fig. 15b shows that the variability model
contains three types representing the reusable elements (Regional Station, Additional
Tracks and Parking Track) and Fig. 15¢ shows the choices by iterators depicted as
diamonds with question mark. We see the choice between Urban and Rural stations
and in the Urban station the choice concerning additional tracks and parking tracks.

The CVL model shown in Fig. 15b and ¢ contains more than what can be derived
from the feature diagram. There are substitutions with corresponding placements and
replacements plus definition and usage of replacement fragment references. These
CVL elements define the precise relationship with the base model(s) defined in TCL.

The CVL elements defining placements, replacements and substitutions have been
created with our CVL tool. TCL elements are selected in the CVL-enhanced TCL
editor shown in Fig. 14, and CVL constructs created to refer the selection. Feedback
is given through configurable highlighting mechanisms with the TCL editor.

To create the substitutions it is also needed to connect the boundary elements
properly and our boundary element editor is helping to perform this without too much
intricate knowledge of the DSL’s metamodel specifics. Fig. 15d shows the definition
of the Regional Station replacement fragment shown in Fig. 4 including also the
necessary boundary elements. (Please refer to Fig. 3 for explanation of boundary
elements.)

Furthermore we show how dynamic instantiations of Additional Tracks are
defined. The Additional Tracks iterator (expanded in Fig. 15e) contains one
alternative (Additional Tracks composite) that can be chosen several times (isUnique
is false). This composite includes an assignment and an instantiation of the Additional
Tracks type. The assignment stores the last inserted track to be able to build a
fragment with arbitrarily many tracks. An iterator then gives the choice whether the
returned replacement fragment should be inserted directly onto track 2 (Fig. 4) or onto
another additional track (Fig. 5).

Details of the Parking Track are given in Fig. 15f and g, where the Parking Track
type is instantiated and the returned replacement fragment substituted either onto the
left (Space 1) or right (Space 2) side of the station.

This concludes our walkthrough of the variability model that defines a product
line. By defining resolution models specific products of this product line can be
produced. The resolution model illustrated in Fig. 15h specifies a three track station
with a parking track on the left side of the station. The first iterator (Urban xor Rural)
is resolved by choosing Urban. The Additional Tracks iterator is resolved by choosing
the Additional Tracks composite only once. The Connect iterator is resolved by
inserting the track onto Track 2. The Parking Track iterator is resolved by choosing
the composite Space 1. At last the Extra Security composite is chosen in the iterator
Automatic or Extra Security. Different products can be produced by making other
selections in the resolution model,

Then we execute the CVL model comprising the variability model and the
resolution model. The execution traverses the variability model and for every iterator
it looks for the selected choices in the resolution model. The result is a TCL model of

* Our tool is not finished on this point and the figure is made with Visio and the corresponding
CVL model produced manually.
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the Urban station with three tracks and a parking track with extra security. This
station can then be fed into TCL-specific tools such as code generators or validators.
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¥ e Station
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Fig. 15. Regional Station product line in CVL

S5 Related Work

The main idea behind CVL as a language for specifying variability models has been
related to other approaches in the SPLC'2008 paper on CVL, [13]. It is not a new idea
to make variability models orthogonal to the product line models see e.g. [20], and [3]
where the main reason for making a separate variability model is for tracing
variabilities across different artifacts, but the new thing with our approach is that
elements of the variability models have unidirectional links to the elements of the
base product line model that are subject to variation. Other approaches have the links
the other way, see e.g. [6] and [4], combined with annotations of the product line
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model elements, while the CVL approach does not require any annotation of the base
product line model. Other approaches to variability just make variability annotations
of UML models, e.g. by means of profiles with stereotypes (e.g. [9], [27] and [11]),
and thus have no explicit, separate variation models.

Feature diagrams as such have been surveyed in a number of papers. Feature
diagrams is not the main subject of this paper, but rather the use of them for
generating specific product models. The use of feature diagrams falls in two main
categories: as stand-alone specifications of features as part of requirements
specification, and as specifications that are linked to base product line models and are
executable in the sense that selecting a configuration of features may produce a
specific model.

The most primitive way of making feature diagrams executable is by translating
them to models/programs in either some general purpose model transformation
language or just to a general purpose programming language. Formalizing feature
diagrams (as e.g. [23]) helps in this respect, but may also just have the purpose of
making stand-alone feature diagrams more precise. Feature diagrams are supposed to
specify features of a product at a domain specific level and at a level where the
detailed transformations are not provided - with the implication that the above
translation must be comprehensive. If the links to the base models are not part of the
feature diagrams, then these relations must be provided as part of the translation.

The FeatureMapper [14] approach is similar to the CVL approach in that the tool
maps features to elements of the models. It also applies to arbitrary languages defined
by metamodels, it has support for recording of modeling steps associated with a
feature, but it Jacks the support for model fragments with boundary elements as
supported by CVL.

A more specific approach is the template-based approach in [4]. This approach has
many similarities with our CVL approach, in that feature diagrams are separate from
the base product line model, and in that the approach applies to any model in any
language defined by a metamodel in MOF. However, it links from the base product
line model to the feature diagrams, and it still annotates the base product line model.
The CVL approach has the links the other way around, with the implications that
there may be more than one feature diagram for each base product line model. The
same model may therefore be used as the base for many product lines, without having
to consider that when making the base model. Furthermore, as CVL primitives may
produce new models based upon fragments of the base model, the base model does
not have to include the union of all features,

The reason that the template approach has annotations of the base model is that
often more than one model element have to be removed or exchanged by a given
configuration, and the feature diagram modeller has to specify this by means of
annotating all the affected model elements. In the CVL approach, selecting a model
fragment as subject for variation (consisting of several base model elements), the tool
will find the boundary elements to the rest of the base model.

The type concept of CVL may be compared with the notion of feature diagram
references [6]. While the semantics of a feature diagram references amounts to a
‘macro-like expansion of the referenced diagram in the place of the reference, CVL
supports instantiations of types.
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Another main difference from other approaches is that CVL may in fact express
the construction of models based upon base model fragments, while other approaches
rely on the base model being a model that has the union of all features. Feature
models thereby simply specify possible configurations of features, and the
transformations are simply removing model elements and possible setting values of
model element properties.

6 Conclusions and Further Work

We have shown how the CVL approach solves variability modeling in a generic and
flexible way. CVL comprises feature diagrams as (partial) concrete syntax. The CVL
tool has devised a simple, yet powerful way to let the variability modeling be
performed in the look-and-feel of the base model language and tools. CVL has few
but powerful abstraction mechanisms with a novel parameterization approach where
replacements contain placements for further substitutions. We have validated the
approach by a set of experiments on several different base language tools.

CVL is executable, and with feature diagrams as concrete syntax for parts of CVL,
feature diagrams also become executable. The semantics of CVL is now given
precisely by the execution of the CVL tool, but we will go on to provide a formal
semantics on which analysis tools can be based. The idea is that analysis performed
on the base product line model will not have to be done in its entirety for specific
product models, as these have come out of the restricted transformations in CVL and
not out of general transformations. In the future we will include more general
constraints between features, and make more experiments with how to visualize the
type and instantiation concepts in the generic CVL tool.
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