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Electrical power systems all over the world are steadily being tied more closely 
together by strengthening of local national connections, as well as more ties across 
borders to neigh-boring countries.

 It is a challenge both in design and operation of an expanding interconnected 
power system, to ensure that geographically distributed power supply and demand 
becomes matched in an optimal way. – I.e. a way that provides for proper buy/
sell situations for all participants of the power market, and where agreed-upon 
qualities of delivery conditions are met.

 To succeed in the stated optimal large-scale matching of electrical power 
production and demand, mathematical models have to be applied on two main and 
interrelated levels:  

On economy level market driven optimal power flow analyses have to be 
applied to match distributed and partly price sensitive demand, to distributed and  
«competing» production facilities. Such facilities may e.g. include large scale 
thermal plants cost-evaluated via defined fuel costs, reservoir hydro plants that are 
cost-evaluated via computed time-variable water values, and forced power input 
from distributed facilities based om power from firstly sun/wind/small waterfalls. 
See SINTEF Energy Research Report TR A4651, [11].               

World-wide considered, there is strong motivation for more sustainable 
behaviour within the energy sector. Such behaviour is first of all achieved via 
properly specifying the terms defined fuel cost above, and by prioritising increasing 
the world-wide capacity of what above is termed forced power input.  
 
On technical level power system dynamic analyses have to be conducted as part 
of the processes of initially defining proper power quality constraints, and next 
following up by checking quality conditions during operation. 

This report deals with power system dynamic analysis. Central to the presented 
methodology is the development of a stock of compact sub models for modeling 
of power system components.  

Formulation and solution-wise, problem complexity becomes thereby largely 
confined to  local component level rather than overall system level. 
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This paper summarizes a compact process of power system dynamic analysis 
that – indifferent of the level of detail observed in the electrical modeling 
of any given component – allows for appropriate power network modeling 
and analysis in a way that appears conceptually straight forward as well as 
practicable.

Based on describing all power system components in terms of discrete 
elements, the power network related modeling is conducted within the d–q 
axis frame of reference. Central to the methodology is the definition of a 
standard electrical circuit model to act as common network building block for 
all power network components. 

Part 1 gives an overview of component- and system modeling as well as 
model  application. A small example illustrates the methodology.

Part 2 treats component modeling in depth. Some overview observations on 
the detailed analysis of unbalanced conditions are also made.

Abstract





1.	Introduction

The paper summarizes a methodology that – 
independent of the complexity level observed 
for describing any given component – allows 
for befitting power system dynamic modeling 
and analysis in a way that appears conceptually 
straight forward as well as practicable.

Central to the methodology is the development 
of a stock of compact sub models for modeling 
of power system components. See Table I for 
illustrations.

Formulation- and solution-wise, problem com
plexity becomes thereby largely confined to 
component level rather than overall system level.

Transparency is retained throughout studies, 
via running access to prevailing algorithmic as 
well as numeric content of what is termed the 
primitive system. See coming Section 2. 

Publications [1]–[5] serve very well among the 
up-to-date references that both in depth and width, 
deal with Power System Dynamic Analysis. It 
emanates that component- and system modeling 
normally is being dealt with in such a way that 
the complete system model consists of a large set 
of ordinary differential equations plus a large set 
of sparse algebraic equations. In the integrated 

solution process which may be based on different 
schemes, the processing part relating to solving 
the algebraic equations, is similar to the iterative 
process met with in power flow analysis.

In the present paper a loop current approach 
is applied to describe how power system 
components interact in operation. The complete 
system model may then getting close to being a 
large set of ordinary differential equations, the 
solution of which may take place without, or with 
only marginal inclusion of, the element of iterative 
processing. The solution process implies frequent 
generation and inversion of system loop matrices, 
the computational burden of which may increase 
rapidly with increasing size of the power system. 
It is envisaged that the use of parallel processing 
together with tailored mathematical processes 
exploiting e.g. matrix sparsity and diagonality, 
would contribute to retaining practicability of the 
proposed scheme of analysis. 

2.	Conceptual overview

A.		Approach to network analysis
In basic circuit analysis electrical circuit models 
accounting for components like resistors, 

Part 1
System Modeling
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inductors, capacitors and sources, are inter
connected into a model network to afford study of 
the performance of some given physical process. 

In such analyses a well known and intelligible 
three-stage task sequence affords building the 
desired network model [6]:

–– Arrange the set of electrical circuit models 
associated with the network into (what Gabriel 
Kron denoted) «the primitive network». The 
latter network comprises 3 main parts; 1) a set 
of oriented graph elements defining the graph 
structure of the primitive network, 2) a set of 
square and for the most part diagonal matrices 
containing component parameter figures, and 
3) a vector matrix comprising figures that 
describe the sources associated with resp. 
electrical circuit models. 

–– Describe how the electrical circuit models 
of the network are to be tied together, e.g. 
by a loop incidence matrix, or a node-related 
incidence matrix. 

–– Produce the desired network model via standard 
matrix operations related to the primitive 
network and the incidence matrix.

With the electrical circuit model formally defined 
as common building block to all power system 
components, the above three-stage process is 
being retained in the outlined methodology. 

B.	The electrical circuit model
The power network related modeling is conducted 
within the d-q axis frame of reference. 

Network-wise, any power system component is 
then represented in terms of one or more electrical 
circuit model(s), each comprising a 2x2 resistance 
matrix R, a 2x2 inductive reactance matrix XL, 
and an 2x1 electromotive force ( emf.) matrix DE. 
All component-specific complexity is «hidden» 
within the confines of the circuit terms (R, XL, 
DE). Depending on which system component 
a given circuit term contributes to describing, 
it may be a zero matrix, a constant matrix, or a 
matrix containing elements that are functions 
of one or more of the variables that relate to the 
system component at hand. 

To illustrate: As a network component, a lossy 
capacitor bank will appear as an emf. represented 
by an electrical circuit model of generic terms 
(RC, XL=0, DEC). DEC being in this case a set of 2 
(d-q axis) state variables governed by a separate 
capacitor voltage model. The main content of 
the latter model being a 2x2 capacitive reactance 
matrix XC defining the size of the capacitor bank. 

See Section 1 of Part 2 for further details.
From the preceding illustration it is incidentally 
observed that a capacitor bank is to be modeled 
by a set of two sub models, - namely the stated 
electrical circuit model which accounts for the 
lossy capacitor emf. in the network equations, and 
the capacitor voltage model describing the «inner 
life» of the ideal capacitor emf. Collate Table I. 

C.	 State variables 
They comprise the power network state variables 
and the remaining or «local» state variables:

–– The power network state variables are the 
defined network loop currents together with 
the capacitor voltages of the network. All 
state variables being implied by the usual 
single line diagram of the power network.  
Given a) the arrangement of involved electrical 
circuit models into what previously was 
termed «the primitive network», b) topo
logical information describing how the primi
tive network’s graph elements are to be tied 
together, and c) 2x2 capacitive reactance 
matrices XC characterizing respective ideal 
capacitors of the network diagram, power 
network modeling is readily afforded by 
generating an appropriate set of network 
equations. In the present scheme of analysis a 
system loop matrix B is defined and applied to 
the «machinery» of generating the differential 
equations that describe the performance of the 
power network state variables. 

–– The remaining or «local» state variables 
may illustration-wise be fluxes and angular 
speed of rotating machines, electrical angle 
of synchronous machines, and variables 
associated with involved control systems. 
A state variable is here termed «local» when 
no foreign, but only one or more of the power 
system component’s own variables appear 
explicit in the differential equation that 
describes the state variable. 
Differential equations that model «local» state 
variables can thus be formulated independent 
of the network related task at hand. See Table I 
plus footnote. 

D.		System model and model application
The system model is here the aggregate of 
simultaneous first order, ordinary differential 
equations describing the behaviour of the set of 
all system state variables. 

Model application normally implies initial 
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condition analysis followed by eigenvalue- and/or 
 time response analysis:

–– Initial condition analysis means setting d/dt = 0 
in all of the differential equations of the system 
model, and solving for the particular steady 
state solution that fulfils the initial power flow 
requirements. An efficient gradient technique 
is used iteratively to converge sufficiently 
close to the desired initial solution. See Section 
5 below.

–– Eigenvalue analyses are conducted to learn 
about the power system’s inherent dynamic 
characteristics when incrementally disturbed 
from its initial state. A linearized formulation 
dDz/dt=A·Dz is established. Self and mutual 
elements of matrix A are developed on general 
algorithmic form for main types of power 
system components. For further on such 
analyses, see [9].

–– Time response analyses implies solving the 
model numerically over some given time 
horizon. To account for the fact that electrical 
circuit models themselves may be functions of 
state variables, the stated 3-stage task of power 
network modeling must be repeated sufficiently 
often during processes of numerical integration. 

To illustrate, a tiny power system is modeled and 
exposed to a temporary three phase short circuit. 
See Section 6.

Unbalanced conditions can be studied as well. 
Section 2 of Part 2 exemplifies dealing with 2 
cases; forced opening of one of three phases of a 
power transmission, and line-to-line short circuit.

For further on e.g. start/loading up/ discon
nection of rotating machines, and islanding, see 
[9].

3.	Component modeling

A stock of component sub models have been 
established for modeling of the common power 
network components like overhead lines, 
cables, «the (remote) infinite bus», capacitor 
banks, transformers, synchronous machines and 
asynchronous machines. Table I illustrates how 
component sub models may add up to model main 
power system components. 

The component sub model that is a common 
network building block, is the electrical circuit 
model, the formal description of which is given 
in Fig. 1. The electrical circuit model comprises 
three main parts: 

–– An oriented terminal graph, showing circuit 
model structure and positive direction of 
the circuit model variables (i,e) that connect 
electrically with the external network [7]. For a 
2-terminal circuit model the oriented terminal 
graph becomes an oriented line segment. See 
Fig. 1a.

–– Impedance terms R and XL, describing the 
power network related «passive» electrical 
properties of the circuit model. Subscript ’L’ 
denotes inductive character of the reactance. v 
is the voltage across the serial interconnection 
of R and XL. Fig. 1b.

–– A voltage source e, giving the power network 
related source impact of the electrical circuit 
model. In the context of Table I, a few 
introductory comments on the interpretations 
of e are given next: In applying the electrical 
circuit model for network-wise representing;
yy an inductive series impedance or an 

inductive impedance load, e is zero.
yy an infinite voltage «behind» some series 

impedance, e is a fixed phasor. 

TABLE I
Overview Of How Component Sub models May Add Up To 
Model Main Power System Components

Main power system 
components

Component sub models

Inductive series 
impedance 

Electrical circuit model

Inductive impedance 
load

Electrical circuit model

The infinite bus Electrical circuit model

Capacitor bank Electrical circuit model 
Capacitor voltage model 

Overhead line / Cable Electrical circuit model 
Capacitor voltage models

Transformer Electrical circuit model(s) 
(Capacitor voltage models)

Synchronous machine

–– «Ordinary» version
–– Adjustable speed 
version

Electrical circuit model 
Machine flux model*) 

Electromechanical model*) 
Control system models *)

Asynchronous machine

–– Singly-fed  
(ie. «ordinary») 	
version

–– Doubly-fed version

Electrical circuit model 
Machine flux model *) 
Electromechanical model*)

*) Component submodels associated with «local» state variables
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yy a lossy capacitor bank, e is the voltage 
across the ideal capacitor. The active losses 
are accounted for by R, while the model 
term XL per definition is zero.

yy a synchronous machine, e is a formal 
electromotive force (emf.) contributing to 
modeling of the machine. 

yy an asynchronous machine, e is a formal emf. 
contributing to modeling of the machine.

yy u is the voltage across the terminals of the 
electrical circuit model, see Fig. 1b.

Example electrical circuit models for network-
wise description of various power system 
components, are given in Section 1 of Part 2. 
The main steps of model development are also 
covered. 

In addition other component sub models may 
be required for the full description of a given 
power system component. See Table I. Section 1 
of Part 2 also deals with such sub models to the 
extent they are implicated. 

 
                                 ← i                                      
•               •             •                                           e           • 
                                         R           XL   
                                                             v 
                                                                                   u  
 
                                                 
                                 v = R⋅i + (1/ωo)⋅XL⋅di/dt   &   v - e = u 
 
        a)                                              b) 
   Oriented                         Serial circuit elements   
terminal graph                    fronted by graph  a).  
 

Fig. 1 The electrical circuit model; formal structure of sub model 
that is made common to all power network components.

4.	Network Modeling 

The system model can be viewed as the aggregate 
of two system sub models, namely 1) the set 
of differential equations describing the power 
network state variables, and 2) the set of such 
equations describing the remaining state variables.

The ensuing outline focuses on the development 
of the first system sub model. The second such 
model comprises differential equations that 
algorithmically are based on component-specific 
information only. Comments on the second 
system sub model is left to Section 1 of Part 2, 
where component modeling is further dealt with.

The algorithmic basis for modeling of the 
behaviour of the power network state variables – 
which are the chosen loop currents (iloop) and the 
capacitor voltages (etc), – is next summarized via 
entries under four headings:

A.		«Line-up» and «fill-in» of the «primitive 
network»

From the stock of component sub models – see 
Section 1 of Part 2 for illustrations – the proper 
electrical circuit models each comprising terms 
(R, XL, DE) plus an oriented graph element, are 
fetched and «lined up» to form the primitive 
network: 

–– The collection of graph elements describes the 
topology of the primitive network.

–– For description of terms (R, XL) the aggregate of 
terms R are organized into a diagonal resistance 
matrix termed Rprimitive. Similarly, the aggregate 
of inductive reactances XL are arranged into 
a reactance matrix XLprimitive that often also is 
diagonal. Off-diagonal elements may occur 
here when there is significant electromagnetic 
coupling between power system components 
of adjacent circuits. 

–– For description of the effect of sources, the 
aggregate of voltage source terms DE are 
arranged into a voltage source vector eprimitive. 
Based on estimated/current value of all state 

variables, the content of all the model terms 
are computed and «filled in» to produce current 
description of the primitive network. 

Thus the primitive network is the place for 
updating of model terms due to e.g. saturation 
effects, or model terms’ derived functional 
dependencies of component variables. 

B.	Description of model network loop cur-
rents

The oriented graph of the model network is 
established by connecting together the oriented 
graph elements of the primitive system, as implied 
by the single line diagram of the power network.

The formal description of the interconnection 
of oriented graph elements is now afforded by 
the network loop matrix B, which here is defined 
on the basis of a chosen tree and co-tree of the 
network graph. Thus B describes the incidence of 
independent graph loops – as defined by the set 
of co-tree elements (or chords) – and the set of all 
graph elements of the connected graph. The labels 
attached consecutively to the co-tree elements can 
conveniently identify also the set of independent 



13

Part 1: System Modeling

network loop currents iloop. Furthermore, the 
orientation of the co-tree elements can suitably 
define positive direction of the loop currents. 
B can be partitioned into a sub matrix Bcotree 
that describes the incidence of loops and co-
tree elements, and submatrix Btree that gives the 
incidence of loops and tree elements. Given the 
conventions above, Bcotree will always be a unit 
matrix. For illustration, see Fig. 4 and associated 
text.

In present compact notation where unit entities 
are the terms (R, XL, DE) of the electrical circuit 
model, entries in B are (1,-1,0). 1 is a 2x2 unit 
matrix and 0 is a 2x2 zero matrix.

The network loop currents must fulfil the 
following set of equations [7], [9]:

Eloop =	 Rloop·iloop + (1/wo)·XLloop·diloop/dt             (1)
where;
Eloop = 	-B·eprimitive = driving voltage of resp. loops 
Rloop=	 B·Rprimitive·B

t = loop resistance matrix.
		  Bt is the transpose of B = [Bcotree, Btree]   (2)
XLloop=	B·XLprimitive·B

t = loop inductance matrix 

C.	Description of model network capacitor 
voltages

As summarized in Table I, a capacitor bank of the 
power network is to be modeled by a set of two 
component sub models:

–– Circuit-wise, the lossy capacitor is accounted 
for in equations (1) by its electrical circuit 
model with generic terms (RC, XL=0, DEC). 
See Section 1 of Part 2, where sub model 
development is dealt with. The state variables 
DEC = [DECd, DECq]

t account for the voltage 
across the ideal capacitor involved. The set 
of all such capacitor voltages is denoted etc. 
To bring forth etc in (1), the driving voltage 
vector Eloop should be further developed. To 
this end it is here presumed that all graph 
elements that represent capacitors, are 
contained in the chosen tree of the network 
graph. Sub matrix Btree is then expressed in 
terms of 2 sub matrices: Btree = [Btc, Bt-rest], 
where Btc describe the incidence of loops and 
tree elements that symbolize capacitors, and  
Bt-rest the incidence of loops and the «rest» of the 
tree elements. The voltage source vector eprimitive 
is correspondingly partitioned as follows: 
eprimitive = [ecotree , etc , et-rest].

 

Introducing the above definitions into Eloop , (1) 
takes on the form given in (3).

diloop/dt =  	wo·XLloop
–1·[ -Rloop·iloop - Btc·etc -		

	 ecotree - Bt-rest·et-rest ]        	          (3)

–– The second component submodel is the capa
citor voltage model. See Figure 3 of Part 2. 
Equation (16) there, should be extended to deal 
with all the capacitor voltages etc. To this end 
the corresponding set of capacitive reactances 
XC is organized into a diagonal reactance 
matrix XCprimitive. In the same way the matrix 1C 
of Fig. 3 of Part 2, is repeated into a diagonal 
matrix 1tc of the same dimension as XCprimitive. 
It is also relevant to observe that the subset of 
(tree-element related) capacitor currents itc can 
be expressed by the loop currents: itc = Btc

t·iloop.  
Based on the preceding outline the following 
extension of the just stated eq. (16) provides 
the basis for modeling of the set of network 
capacitor voltages: 

      detc/dt = wo·( XCprimitive·B
t
tc·iloop + 1tc·etc)         (4)

D.	The system sub model describing the 
power network state variables

The sought system sub model is found by 
formulating (3) and (4) as one simultaneous set 
of equations:

(5) 

 

 
   diloop/dt             - XLloop

–1⋅R loop      - XLloop
–1⋅Btc           iloop  

                 = ωo⋅                                                   ⋅ 
    detc/dt               X Cprimitive⋅B

t
tc             1tc                            etc 

 ………….    ……………………………………………….. .    
                                   
                           XLloop

-1                                    XLloop
-1⋅Bt-rest    

                 -  ωo⋅               ⋅ecotree - ωo ⋅                       ⋅ et-rest           
                               0                                  0        
                    …………………………………………………  

In re-computing the right hand side of (5) during 
initial condition analysis or integration, two 
main numerical processes are involved; fill-in of 
network model terms into the primitive network, 
based on current value of the state variables, and 
matrix operations as formally directed by (2) and 
(5). For efficient computation the prospects of 
smart matrix generation and parallel processing 
should be thoroughly exploited. 
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5.	Initial Condition Analysis

Whether eigenvalue- or time dynamical analysis 
is to be conducted next, an appropriate initial 
state has to be defined for the system. The initial 
value of machine variables then has to be set 
or computed in accordance with the specified 
situation at hand. Illustrations:

–– If a synchronous machine (SM) is to be started, 
its initial per unit (pu.) speed WSM(o), currents 
and fluxes are set to zero – and conveniently 
also the electrical machine angle bSM(o). The 
SM’s excitation system will have a pré-set 
«agenda», and initially the excitation voltage 
Ef(o) may also be zero, if the field circuit is kept 
short-circuited during the first phase of start-
up.

–– If a synchronous machine initially is running 
at synchronous speed WSM(o) =1, it is in present 
detailed electrical modeling context, natural to 
specify initial conditions in terms of absorbed 
power PSM(o) (assuming motor operation as the 
default mode of operation) and voltage USM(o) 
at the machine terminals. The initial values 
(PSM(o), USM(o)) are in principle to be decided 
on a preceding economy level analysis. Then 
bSM(o) and Ef(o) should be determined so as to 
contribute to fulfilling the specified values PSM(o) 
and USM(o). Computationally, this is afforded by 
an iterative solution process in which bSM(o) 
and Ef(o) are simultaneously corrected (together 
with other such «control variables») until 
stated initial conditions are reached to required 
accuracy. Absorbed (or produced) reactive 
power is then in principle a by-product from 
this solution process.

–– If an asynchronous machine (AM) is to be 
started, its pu speed WAM(o) = 0, and so also all 
machine currents and flux variables. 

–– If an asynchronous machine is initially in 
a steady state mode of operation, it may be 
appropriate to specify initial conditions in 
terms of absorbed motor power PAM(o). Thus 
WAM(o) should be specified so as to fulfil this 
requirement. Computationally, this is afforded 
by including WAM(o) as one of the simultaneously 
corrected «control variables» of the above 
sketched iterative solution process. Absorbed 
reactive motor power will again flow as a by-
product.

With final or tentative setting of resp. «control 
variables» (βSM(o), Ef(o), ΩSM(o), ΩAM(o)), the 
premises are given for computing initial value of 

the remaining pertinent power system variables 
z(o). Vector z(o) comprises in present context the 
network loop currents iloop(o), the capacitor voltages 
etc(o), the synchronous machine fluxes fSM(o), and 
the asynchronous machine fluxes fAM(o). 

z(o) is found by simultaneously solving the 
network model (5) and the involved sets of 
synchronous- and asynchronous machine flux 
models. The latter models are exemplified in Fig. 
6, resp. Fig. 11 of Part 2. After placing the models 
together and setting the derivative terms to zero, 
the set of equations to describe initial steady state 
conditions, may in compact notation appear as 
follows:

	 Hsyst(o)·z(o) = Gsyst(o)	 (6)

In essence, the load flow computation task can be 
exemplified as follows: With a set of target values 
	
	 (PSMtarget(o), USMtarget(o) , PAMtarget(o))                    	(7)

and a corresponding set of «control variables» 
	 (βSM(o), Ef(o) , ΩAM(o)),                                      (8)

determine a configuration of the latter variables 
that – when applied to the above process equations 
(6) – produces an electrically valid solution that 
observes the specified load flow premises. 

The iterative solution process comprises 3 main 
steps:

1)	 Set/stipulate the «control variables» (8).
2)	 Solve (6) with respect to z(o), compute the 

consequences in terms of variables (7), and 
register current deviations D from target 
values. If the deviations are acceptable, the 
initial balance has been established. If not 
acceptable, go to step 3).

3)	 Adjust the «control variables» (8) incremen
tally, so that an improved initial power flow 
balance is attained. Then return to step 2). 

4)	 To evaluate proper simultaneous corrections 
to the «control variables» a sensitivity 
analysis is conducted to find current value 
of the elements of the sensitivity matrix S 
of the defined relationship (9):

     

 
 ∆PSM    ∆βSM 

 ∆USM = S ⋅ ∆Ef 
 ∆PAM    ∆ΩAM 
 

 
 
 

(9) 
 
 

If S is of dimension (mxm), then m 
intermediate sensitivity analyses are required 

 
 ∆PSM    ∆βSM 

 ∆USM = S ⋅ ∆Ef 
 ∆PAM    ∆ΩAM 
 

 
 
 

(9) 
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to define the content of S: By increasing the 
ith «control variable» marginally while the 
rest are kept unaltered at current «base» 
value, and solving (6), the numerical value 
associated with the elements of column ’i’ of 
S can readily be determined. 
With established sensitivity matrix S and 
prevailing deviations DD relative to target 
values, (9) is next applied to estimate the 
set of increments that will contribute to 
eliminating the unwanted deviations: Using 
-DD as «excitation» on the left side in (9), 
and solving wrt. the desired simultaneous 
increments, the corrections for updating 
the prevailing set of «control variables» are 
made available. Following the update of 
these variables, return is made to step 2). 

6.	 Illustration Of Methodology
 
The methodology applied to system modeling 
is summarized by way of a small illustration: 
Given the task of modeling the detailed electrical 
performance of the tiny power system of Fig. 2.

 
                                                          rt+jxt 
  Infinite bus                                                                   AM 
  Erms(ref)                              xCy                              
                                                                                SM 
        rref+jxref                                          Zdummy             
                                                                         

                      Inductive load:                                    QCl 
                Inductive load: 

                       (PL1 +jQL1)                                   (PL2+jQL2)                    
 

Figure 2 Tiny example power system

A.	Component data
The system comprises nine power system 
components, the power network related descrip
tion of which are exemplified on a common MVA 
base. Figures and equations referred to next as 
part of component description, relate to Part 2 of 
the paper:

– Asynchronous motor (’1’): 
Data:	 Xas	=	 0.08 Xrs = 0.08 Xm = 2.5 
	 ra	 =	 0.03 rr = 0.03 k = 2.0 Ta = 4s   
		  (For definitions, see Fig.10,12)
Electrical circuit model: (RAM, XAM, DEAM) 
			   See Fig. 10 

– Synchronous motor (’2’): 
Data:	 Xas	 =	 0.12 X’d = 0.34   ra = 0.005 
	 Xd 	 =	 1.20 X’’d = 0.20 T’do = 6.0s 
	 Xq 	 =	 0.75 X’’q = 0.30 T’’d = 0.04s 	
	 T’’q	=	 0.16s Ta = 5.0s  cosjN = 0.9
		  (For definitions, see equations (39))
Electrical circuit model: (RSM, XSM, DESM)	 Fig. 8
 
– Impedance type inductive load (PL1+ jQL1) 
(’3’): 
Data:	 PL1	 =	 0.60 QL1 = 0.20 at 1.0 voltage 
			   ⊃: rL1 = 1.5 xL1 = 0.5 (ind.) 
Electrical circuit model: (RL1, XL1, 0)	 Fig. 1

– Impedance type inductive load (PL2+ jQL2) 
(’4’): 
Data:	 PL2	 =	 0.25 QL2 = 0.80 at 1.0 voltage 
			   ⊃: rL2 = 0.3559 xL2 = 1.1388 (ind.) 
Electrical circuit model: (RL2, XL2, 0) 	 Fig. 1 

– Dummy connection – to enhance definition of 
loops (’5’): 
Data:	 rdummy = 0.01 xdummy = 0.005 	
		  (See last few sentences of Part 1) 
Electrical circuit model: (Rdummy, Xdummy, 0) Fig. 1
 

– Shunt capacitor bank (PCl - jQCl ) (’6’): 
Data:	 PCl	 =	 0.0 QCl = 0.70 at 1.0 voltage 
			   ⊃: rCl = 0.0 xCl = 1.4286 (cap.) 
Electrical circuit model: (RCl, 0, DECl) 	 Fig. 2 
Capacitor voltage model: ( XCl )       	 Fig. 3
 
– Series capacitor bank (rCy - jxCy ) (’7’): 
Data:	 rCy	 =	 0.0 xCy = 0.025 (cap.) 
Electrical circuit model: (RCy, 0, DECy)	 Fig. 2 
Capacitor voltage model: ( XCy )   	 Fig. 3 

– Transformer (’8’): 
Data:	 rt	 =	 0.01 xt = 0.07 
Electrical circuit model: (Rt, Xt, 0)  	 Fig. 1 

– Series impedance (rref + jxref) & infinite bus 
Erms(ref) (’9’): 
Data:	 rref	 =	 0.03 xref = 0.125 Erms(ref) = 1.05 gref = 0 
El.circuit model:(Rref, Xref, eDQ(ref)).  
                                                   Fig.1, (20 ), (21) 

B.	The primitive network
The primitive network for any considered point in 
time, is the chosen suitable line-up of the electrical 
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circuit models of the network components, valid at 
that point in time. With the chosen model sequence 
above as the key for line-up, the primitive network 
for the model system of the power network of 
Fig. 2, can take on the form shown in Fig. 3. 

C.	Model network topology
The oriented network graph of the example 
power system is shown in Fig. 4a. It is formed by 
connecting the primitive network graph elements 
of Fig. 3 as advised by the single line diagram of 
Fig. 2. Which direction is chosen as positive for 
the variables (i,e) of respective electrical circuit 
models, is in principle arbitrary. 

The topological info of Fig. 4a is formally 
described by the network loop matrix  
B = [Bcotree,Btc,Bt-rest], which is suitably partitioned 
into the sub matrices Bcotree, Btc, Bt-rest. 

D.	The model network sub model
The model network sub model (5) includes 
two interlinked sets of differential equations 
describing the behaviour of the power network 
state variables; the defined loop currents iloop and 
the capacitor voltages etc. 

The equations for iloop are established by 
applying the loop matrix B to the primitive 
system, as advised by equations (1) to (3). 

The equations for etc are produced by applying 
the capacitive reactance matrix XCprimitiv and the 
sub matrices Btc and etc, as specified by equations 
(4). As outlined in Section 4 under sub heading 
C, XCprimitiv is the line-up on diagonal form of the 
capacitive 2x2 diagonal reactances XC. In the 
present example as described by (10).

 
                                                    1       2      3      4      5      6     7     8      9

                        
•        •1                              1   RAM 
•        •2                              2        RSM 
•        •3                              3             RL1 
•        •4                              4                  RL2 
•        •5                  Rprimitiv = 5                      RD  
•        •6                              6                            RCl =0 
•        •7                              7                                 RCy =0 
•        •8                              8                                      Rt 
•        •9                              9                                           Rref 
 
  Oriented terminal graph                                        Impedance terms of primitive network                  

   
of  primitive network

                                           1     2      3      4      5       6      7       8      9
                        

              DEAM                      1   XAM 
                      DESM                                 2        XSM 
              0                         3            XL1 
              0                         4                 XL2 
eprimitiv=  0            Xprimitiv = 5                     XD  
                       DECl                                  6                          XLcl =0 
              DECy                      7                               XLcy =0 
                      0                                        8                                       Xt 
                      eDQref                                9                                            Xref 
    Source vector of                                  
    primitive network    
 
Figure 3 The primitive network of the system of Figure 2

 
                                                          Graph  element  no  → 

       • 7            •      8                 Loop ↓     1   2   3  4   5     6   7     8    9
     

                                                  no:    1  1 0 0 0 0  0 1  1 -1 
                        5                 •             2   0 1 0 0 0  0 1  1 -1  
          3          •                              B = 3  0 0 1 0 0  0 1  0 -1 
                   6            4                        4  0 0 0 1 0  0 1  1 -1 
  9                              1                       5  0 0 0 0 1  1 1  1 -1  
                                           2 

                   •                                          Bcotree      Btc    Bt-rest 
                 :  Tree elements  
                 :  Cotree elements  (or  chords)    
    a) Oriented network graph       b) Network loop matrix B       
 

Figure 4 Network loop matrix B for topological description (See 
Section 4/B for further details on B) 

XCprimitiv = 

XCl

(10)
XCy

E.	 The system model
The size and substance of respective sub models 
that together constitute the system model of the 
study case, are summarised as follows:

–– The (5x2+2x2=14) differential equations (5) 
describe the performance of the model network 
state variables iloop and etc. The remaining 
primitive system element currents itree are given 
as linear combinations of the state variables iloop ; 
 itree=Bt

tree·iloop. See (2) for fitting partitioning of 
B.  

–– The (2+1=3) differential equations (11) and 
(12) describe «local» asynchronous motor state 
variables; namely the motor’s flux linkages 
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ɸAM, and the pu. speed ΩAM of its rotating part. 

dɸAM/dt = wo·(FAMi·iAM + FAMϕ·ɸAM) 	  (11)

dΩAM/dt = JAM·(TAMel -TAMmec)                      (12) 

Equations (11) are copied from (68) of Fig.11 of 
Part 2. Fig.11 summarizes the flux model of the 
AM. (12) is similarly a copy of (71) from the 
electromechanical model of the AM. See Fig. 12 
of Part 2. 

–– The (3+1+1=5) differential equations (13), 
(14), (15) describe «local» synchronous motor 
state variables; i.e. the motor’s flux linkages 
ɸSM, the pu speed WSM of its rotating part, and 
the electrical angle bSM associated with the SM. 
See (33) together with its related text in Part 2, 
for closer comments on bSM.

dɸSM/dt = wo·(eSM + FSMi·iSM + FSMϕ·ɸSM)	 (13)
dWSM/dt= JSM·(TSMel -TSMmec)  	                   (14)

dbSM/dt = wo·( 1 - WSM)  	                     (15)

Equations (13) are copied from (35) of Fig. 6 
of Part 2, which describes the flux model of the 
SM. (14) and (15) are copies of respectively 
(56) and (57), from the electromechanical 
model of the SM. See Fig. 9 of Part 2. 

–– The nAVR differential equations (16) describe 
the SM voltage control state variables 
DESM(AVR), which belong to the group of local 
state variables. For details, see [9]. 

dDESM(AVR)/dt = f(DESM(AVR),DUSM(ref),DUSM,DWSM )	
					            (16)

The incremental field voltage response DEf 
found in (36) as well as (50), see Part 2,– go 
into  vector DESM(AVR). DUSM(ref) is the change 
(if any) of the voltage reference, and DUSM 
resp. DWSM, is deviation from target value of 
the controlled voltage, resp. angular speed. In 
the study nAVR = 4. Since it is here considered 
outside the scope of presentation to delve into 
sub models that yield control responses, it is 
referred to [9] for further details on (16) and 
(17). 

–– The nLFC =3 differential equations (17) model 
the local SM power control state variables 
DWSM(LFC), presuming a hydro generator unit at 
hand.. DSACE is the applied area control error 
signal. 

dDWSM(LFC)/dt = g(DWSM(LFC), DSACE)          (17)

All together, the system model applies 
(14+3+5+4+3)=29 state variables to describe the 
dynamical performance of the system of Fig. 2. 

F.	 Initial state analysis
The following operational status is specified for 
the two rotating machines of Fig. 2:

–– Power supplied to the asynchronous motor:	
PAMt(o) = 0.5

–– Power supplied to the synchronous motor:	
PSMt(o) = -0.8

–– Voltage at the synchronous motor bus:	
USM(o) = 1.0

With the initial load flow specified in operational 
terms, the iterative solution process outlined in 
Section 5 is called upon for targeting the implied 
electrical state to required accuracy: 

The «load flow control variables» are (bSM(o), 
Ef(o), WAM(o)) in the present case. Starting values 
are arbitrarily set to (0,1.5, 1). End values 
(-0.38016rad, 1.79243pu, 0.98387pu) that ob
serve the accuracy constraint, are reached after 6 
iterations. 

Main characteristics of the established initial 
load flow:

Load bus I:	
Voltage	 : 1.005pu 
Active load ’1’	 : 0.606pu 	 (impedance type)

Reactive load ’1’	 : 0.202pu	 (inductive character) 

SM/AM bus:
Voltage	 : 1.000pu	  (specified)

Active SM power	 : -0.800pu 	 (specified)

Re- ”  “    “   	 : -0.441pu 	 (SM acts as capacitor) 

Active AM power	: 0.499pu 	 (specified value: 0.5pu)

Re- ”   “    “   	 : 0.417pu 	 (AM acts as inductor) 

AM slip         	 : 1.613% 
Capacitor bank   	 : -0.700pu 	 (impedance type) 

Active load ’2’	 : 0.250pu	 (impedance type)

Reactive load ’2’	 : 0.800pu	 (inductive character) 

G.	On presentation of main variables in 
power system dynamic analyses

During computation processes all currents and 
voltages are by default instantaneous variables. 
They comprise d–q axis variables and to the 
extent involved – zero sequence variables.

For suitable presentation of results relating 
to 3-phase circuits, currents and voltages are 
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transformed back into their 3-phase (RST) 
variables via (3) of Part 2: 

–– In case of analysis of unbalanced network 
conditions, instantaneous traces of current and 
voltage of individual phases may be of prime 
interest. Corresponding r.m.s. traces are readily 
generated from the instantaneous records. See 
Section 2 of Part 2.

–– In case of analysis of balanced conditions, 
it may be considered appropriate to compute 
current and voltage associated with only one 
of the phases. Moreover, instead of registering 
instantaneous traces, it may then be more 
relevant to keep track of the r.m.s. records of 
per phase current and voltage. Such records are 
readily computed from (18). 

  Irms = [ ½·( id
2 + iq

2 )]0.5                              (18)
  Urms = [ ½·( ud

2 + uq
2 )]0.5 

Power network currents and voltages presented 
below in the case of a three phase short circuit, 
are rms. values from (18). 

Other diagram variables such as e.g. absorbed 
motor power, motor speed, electrical torque, 
field- and damper currents, and synchronous 
motor angle, are instantaneous variables that may 
attain positive as well as negative values. 

In the included diagrams a variable is 
described in terms of its time response curve, 
plus three numbers; its initial value, its maximum 
value within the time range analyzed, and its 
correspondingly defined minimum value. 

H.	Three phase short circuit
Referring to Fig. 2 a three phase short circuit of 
duration 0.25s, is implemented by temporarily 
replacing impedance load ’L2’ by a short circuit 
impedance (0.001+j0). The short circuit is applied 
at t=0.05s and removed at t = 0.30s. Integration 
time step: 0.0005s. 

The study is repeated for two analysis duration 
times tmax to illustrate how results may appear 
different due to a given logic of result presentation: 
Figures 5–13 give sample results for tmax = 0.5s, 
while Figures 14–19 are repeat presentations of 
Figures 5–10 for tmax =3s. (Within the time interval 
(up to 0.5s) that is common to Figures 5–13 and 
14–19, characteristic values (like max. and min.) 
of any variable may or may not be registered the 
same for both durations of analysis: Regardless 
of tmax, 1000 discrete values of each variable are 
retained for drawing etc., causing an increasing 

no of «intermediate» variables to be omitted with 
increasing tmax.) 

As the fault here is implemented via setting of 
new parameters for load ’L2’, the short circuit 
current appears as the current supplied to load 
’L2’, see Fig. 12. 

 The asynchronous motor contributes to the 
fault current with some «peak supply» capability. 
See Fig. 10. Short-circuiting the shunt battery 
connected to the motor bus, implies a current 
pulse that will also contribute to increase the peak 
of the short circuit current. This is evidenced from 
Fig. 13. To limit this current pulse, the dummy 
series impedance has been set to (0.01+j0.005). 

7.	Conclusions

Based on describing all power system components 
in terms of discrete elements, the paper outlines a 
compact  methodology for Power System Dynamic 
Analysis. The merit of a suitable scheme for  
such analyses, depends strongly on two inherent 
features of the scheme; its intelligibility, resp. its  
practicability. 

A.	Intelligibility
Main focus of the paper has been on the 
intelligibility aspect. The paper’s chief features in 
this respect is next summarized under two sub-
headings:

1.	 Power system component modeling
Central to the methodology/intelligibility is 
the development of a stock of sub models for 
modeling of power system components. Table I 
gives an overview of how such sub models may 
add up to model main power system components:

The sub model  termed  electrical circuit model  
is formally a two-terminal serial impedance, 
comprising component -specific terms R,XL,E. 
This impedance acts as the common network 
building block for all power network components. 
Formulation- and solution-wise, problem com
plexity becomes thereby largely confined to 
component level rather than overall system level. 

An illustration on how sub models may interplay 
to model a power system component: A capacitor 
bank will require a set of two sub models;  the 
stated electrical circuit model  which accounts 
for the lossy capacitor bank in the power network 
equations, and the capacitor voltage model 
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describing the «inner life» of the ideal capacitor 
emf. E=Ec of the first stated sub model. 

In addition to furnishing the above sub models 
for modeling of the interconnected electrical 
power network, another stock of sub models 
are required for modeling of associated «local» 
variables such as eg. fluxes and angular speed of 
rotating machines, electrical angle of synchronous 
machines, and variables associated with involved 
control systems. Collate Table I. 

2.	 Power system modeling 
The system model can suitably be viewed as the 
aggregate of two system sub models, namely a) the 
set of equations describing the power network state 
variables, and b) the set of equations describing 
the remaining or «local» state variables:

a)  Modeling of  the power network state variables    
Capacitor voltages together with the (here) 
defined power network loop currents form the 
power network state variables.  
The modeling of these variables can fittingly be 
organized into three main steps; 

–– Based on estimated/current value of all state 
variables at  considered point in time; fetch 
from stock the proper  set of electrical circuit 
models associated with the power network at 
hand, update and  line up their elements  R,XL,E  
into (what Gabriel Kron denoted)  the primitive 
network [6]. Repeated updating of elements 
of the primitive system is required to handle 
saturation effects, and model element’s derived 
functional dependencies of own component 
state variables.

–– Describe how the electrical circuit models of 
the power network are to be tied together, eg. 
by a loop incidence matrix, or a node related 
incidence matrix. The present report  applies  a  
loop incidence  approach. 

–– Produce the current network model (5) via 
smart matrix operations related to the primitive 
network and the incidence matrix. 

b) Modeling of the remaining or «local» state 
variables

In modeling of a «local» state variable no foreign, 
but only one or more of the power system 
component’s own variables appear explicit in 
the equation(s) that describe the considered state 
variable.   

Equations that model «local»state variables can 
thus be formulated independent of the network 

related task at hand. See Table I plus touching 
foot note. 

B.	Practicability
The practicability aspect  is here commented 
on chiefly from an overview systems analysis 
point of view, – for the most part due to limited 
access to proper facilities allowing for large scale 
parallel processing. 

1. On main status of the day
In the up to date literature on practical schemes 
for power system dynamic analysis, it seems 
that most often a nodal admittance formulation 
strategy is applied to describe how power network 
components interact in operation. Inherently, for 
any given point in time – this modeling approach 
seems to imply simultaneous solution of a large set 
of ordinary differential equations plus a large set 
of sparse algebraic («load flow type») equations. 
The following overview characterization would 
seem apt to make regarding this power network 
modeling approach:

It applies a «loose-grip» (ie.nodal admittance 
based) strategy to iteratively converge upon 
the proper network flow situation at the given 
point in time. A such strategy brings inherently 
in an additional «cost» in terms of eg. increased 
number of iterations. In this case however, the 
ease and speed with which the network equations 
can be generated, modified and applied, seem to 
far outweigh any detrimental consideration. 

2. On the presented methodology
In the present paper a loop current approach is 
applied to describe how power system components 
interact in operation. The complete system model 
may then getting close to being alone a large set 
of ordinary differential equations. A compact 
overview characterization of this modeling 
approach, could likely take on this form:

It applies a «firm grip» ( ie. loop current based) 
strategy to directly – or with limited inclusion of 
the element of iterative processing – evaluate the 
proper network flow situation. A such strategy 
incurs inherently an additional «cost» in terms 
of a more cumbersome network modeling task, 
– as evidenced by equations (2) and (5): The 
solution process will imply frequent build-up 
and inversion of system loop sub matrices, the 
computational burden of which may increase 
rapidly with increasing size of the power system. 

The just stated equations may point to a prospect 
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of sizable time saving, in accessing computer 
facilities of capability to simultaneously generate / 
update the individual contents pertaining to the 
proper set(s) of sub matrices. 

It is envisaged that the use of parallel processing 
together with tailored mathematical processes 
exploiting eg. matrix sparsity and diagonality, 

would contribute to retaining practicability of the 
proposed scheme of analysis. 

To further investigate the latter presumption, 
the aspect of smart matrix generation together 
with matching use of parallel processing should 
be developed and tried out on a large-scale 
technical level. 



Part 2
Component Modeling

1.	Modeling of power system 
components

This Section focuses on the component sub models 
required for modeling of the main power system 
components of Table I of Part 1 of the paper. 

Network-wise, any such power system compo
nent is to be represented by one (or more) sub 
model(s) termed  the electrical circuit model(s), 
the structure of which is given in Fig. 1 of Part 
1. The task then being to develop relevant power 
component-specific content of terms (R, XL, e) of 
the electrical circuit model(s) to apply. 

To the extent other component sub models are 
required for modeling of a given power system 
component, this Section will deal also with such 
sub models.

A.	The «Symmetrical Lossy Inductor»
For brevity of presentation the «Symmetrical 
Lossy Inductor» is introduced to cover both the 
Inductive series impedance and the Inductive 
impedance load. 

Transformers, overhead lines and cables are 
modeled by suitably arranging together electrical 
circuit models of the symmetrical lossy inductor 

and the corresponding lossy capacitor bank. See 
text following heading ‘B’ next.
Currents (idqo), voltages (vdqo) and fluxes (ydqo) 
within the d–q axis frame of reference, may 
definition-wise be related to their corresponding 
3-phase (RST) variables in the following way:

idqo = P·iRST    vdqo = P·vRST    Ψdqo = P·ΨRST   	 (1)

P is the Park transformation which here is defined 
as follows [8], [9]: 

R S T

(2)
P = 2/3 ·

cosq cos(q-2p/3) cos(q-4p/3) d

-sinq -sin(q-2p/3) -sin(q-4p/3) q

½ ½ ½ o

q is the angular displacement of the axes of the 
3-phase reference frame relative to the axes of the 
(dq) variable’s reference frame. 

Presuming the existence of the inverse of  P, it 
is observed from the foregoing that; 

iRST = P-1·idqo vRST = P-1·vdqo ΨRST = P-1·Ψdqo   	 (3)

where;
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d q 0

(4)
cosq -sinq 1 R

P-1 = cos(q-2p/3)        -sin(q-2p/3) 1 S

cos(q-4p/3) -sin(q-4p/3) 1 T

In the physical three phase (RST) reference frame, 
one can for (say) phase ’R’, express pu voltage vR 
across the considered lossy inductive impedance 
(r+j·x)  as;

vR = iR·r + dyR/dt                                           (5)

where iR and yR is – respectively – current and 
flux linkages of phase ’R’. 

By applying (4) into (3), the per phase variables 
(vR,iR,yR) are replaced by their axis variables, zero 
sequence variables and q. Using these replace-
ments in (5) one gets the following version of (5) 
in terms of (d,q,o) variables plus q:

0 = [ -vd + r·id + dyd/dt -w·yq ]·cosq
		  + [ vq - r·iq - dyq/dt -w·yd ]·sinq                   (6)
		  + [ -vo + r·io + dyo/dt ]

For general validity of (6), the following 
conditions must hold true;

vd = r·id + dyd/dt - w·yq 
vq = r·iq + dyq/dt + w·yd                                      (7)
vo = r·io + dyo/dt 

In the present context it is assumed that zero 
sequence circuitry is absent. Then the last equation 
of (7) can be omitted in the current overview 
presentation. Presumed component symmetry 
allows furthermore for definition of the following 
pu relationships: ψd = Ld·id = L·id and yq = Lq·iq 
= L·iq . With x = wo·L, where wo =2pfo = nominal 
angular speed, and with the synchronous phasor 
as reference, the two equations (7) may take on 
this form:

vd = r·id - x·iq + (1/wo)·x·did/dt 
vq = x·id + r·iq + (1/wo)·x·diq/dt                           (8)

(8) implies the following electrical circuit model 
of the defined lossy inductor, hereby indexed ’L’.   
See Figure 1.

From (8) it is definition-wise under-
stood that vectors vL and iL are as follows, 
where superscript ’t’ stands for «transpose»;  
vL = [vLd, vLq]

 t & iL = [iLd, iLq]
 t .

B.	The «Symmetrical Lossy Capacitor 
Bank»

The Symmetrical Lossy Capacitor Bank models 
directly the three phase, lossy series capacitor and 
the ditto lossy shunt capacitor. It also contributes to 
the modeling of other power network components 
as pointed to above.

A brief 2-step development is next given of the 
two component sub models required for modeling 
of the capacitor bank; the electrical circuit model 
and the capacitor voltage model:

1) The electrical circuit model
Observing the conventions of Fig.1 of Part 1, one 
can – in the 3-phase (RST) reference frame – for 
(say) phase ’R’, express the voltage uR across the 
considered lossy capacitor as;

uR	 =	 iR·r - DER                                                                                           (9)

where
DER	=	 (1/C)·∫iR·dt                                             (10)

iR and DER is – respectively – current of phase ’R’, 
and voltage across the ideal capacitor element C 
of phase ’R’. r and C are the per phase parameters 
that describe the capacitor bank electrically. 

                                 ← iL                                    
 •               •      •                                               eL =0       • 
                                 RL               XL   
                                                              vL  
                                                                                 uL  
                                                   ↓                                                       
                         vL = RL⋅iL + (1/wo)⋅XL⋅diL/dt   &    vL = uL 
                                                 rL     - xL        
                                   RL =  
                                                xL      rL 
                                                                                                     
                                                xL                             wo⋅L 
                                   XL =                       =   
                                                         xL                  wo⋅L                 
 
                                  (rL,xL) = given per phase description 
                                               of lossy inductor 
 
a) Oriented b) Serial circuit elements fronted 

terminal graph  by graph a) 

Fig. 1  The electrical circuit model of the Symmetrical Lossy In
ductor. d–q axis frame of reference. 
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The per phase variables uR, iR ,and DER are 
related to their respective d-q axis components in 
the following way, see (3) – (4):

uR	 =	ud·cosq - uq·sinq + uo
iR	 =	 id·cosq - iq·sinq + io                	  (11)
DER	=	DEd·cosq - DEq·sinq + DEo

Inserting from (11) into (9), one gets the following 
version of the latter equation; 

0	 =	[ -ud + r·id - DEd ]·cosq
		  + [ uq - r·iq +DEq ]·sinq          	  (12)
		  + [ -uo + r·io - DEo ]

For general validity of (12), the following 
conditions must be observed:

ud	=	r·id - DEd 
uq	=	r·iq - DEq                                                (13)
uo	=	r·io - DEo 

Presuming as above that zero sequence circuitry 
is absent, the remaining two equations of (13) 
implies the following electrical circuit model of 
the defined lossy capacitor bank, hereby indexed 
’C’, see Fig. 2.

From (13) it is definition-wise understood that 
vectors vC and iC are as follows ; vC = [vCd, vCq]

t & 
iC = [iCd, iCq]

t . 

2) The Capacitor Voltage Model
Returning to (10) it is observed that dDER/dt = 
iR/C. Inserting into this equation the expression for 
iR from (11), and the expression for dDER/dt also 

                                 ← iC                                     
  •               •    •                         XL =0              DEC         • 
                                RC                 
                                                              vC  
                                                                                   uC  
                                                   ↓                                                       
                               vC = RC⋅iC    &    vC - DEC = uC 
 
                                                 rC              
                                     RC =  
                                                          rC                                               
                                                     
                                               DECd                            
                                   DEC =             =  Capacitor voltage. 
                                               DECq        See model, Fig.3              
 
                                 (rc,C) = given per phase description 
                                               of lossy capacitor bank. 

Fig. 2  The electrical circuit model of the Symmetrical Lossy 
Capacitor Bank. d–q axis reference.

derived from (11), one arrives at the following  
«d–q–o version» of (10):

0	=	[ id/C - dDEd/dt + w·DEq ]·cosq
		  + [ -iq/C + dDEq/dt + w·DEd]·sinq 	 (14)
		  + [ io/C - dDEo/dt ]

For general validity of (14), the following con-
ditions must be fulfilled:

dDEd/dt	=	 id/C + w·DEq 
dDEq/dt	=	 iq/C - w·DEd 	 (15)
dDEo/dt	=	 io/C 

Again it is presumed that zero sequence currents 
and voltages are inconsequential. With the 
synchronous phasor as reference, the two first 
equations of (15) then implies the capacitor 
voltage model of the symmetrical, lossy capacitor 
bank, – here indexed ’C’ –, as shown in Fig. 3. 

                    dDEC/dt = wo⋅( XC⋅iC + 1C⋅DEC)               
 
           with initial condition:   DEC(o) =  (1C⋅XC)⋅iC(o)           
 
                                 1/(wo⋅C)             
                        XC =  
                                                1/(wo⋅C)                                             (16) 
                                                    
                                           1                            
                        1C =              
                                  -1                        
 
                         C = given per phase description of ideal 
                                capacitor of lossy capacitor bank.                       

Fig. 3  Capacitor voltage model of the Symmetrical Lossy 
Capacitor Bank. d–q axis reference. 

From (15) it is definition-wise understood 
that vectors DEC and iC are as follows; DEC =  
[DECd, DECq]

t & iC = [iCd, iCq]
t.

Initial value of DEC in (16) flows from that 
same equation for t= -0. Then one has dDEC/dt =0, 
and the equation yields DEC(o) = - (1C)-1·XC·iC(o) = 
(1C·XC)·iC(o).

                    dDEC/dt = wo⋅( XC⋅iC + 1C⋅DEC)               
 
           with initial condition:   DEC(o) =  (1C⋅XC)⋅iC(o)           
 
                                 1/(wo⋅C)             
                        XC =  
                                                1/(wo⋅C)                                             (16) 
                                                    
                                           1                            
                        1C =              
                                  -1                        
 
                         C = given per phase description of ideal 
                                capacitor of lossy capacitor bank.                       
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C.	The Synchronous Voltage Reference in 
power network modeling

At some chosen network bus the following 
symmetrical, synchronous three phase voltage 
ERST(ref)  may be specified;

ERST(ref) = √2·Erms ·
cosa R

cos(a - 2p/3) S (17)
cos(a - 4p/3) T

			                         	
Erms is the root mean square (r.m.s.) value of the 
three phase voltage. a = (wo·t+g), where g accounts 
for an arbitrary phase shift of the voltages relative 
to zero time. For convenient final expressions – 
see (19) – g is chosen equal to ( gref +p/2). 

The transformation of ERST(ref) of (17) into global 
eDQ0(ref) of the D-Q axis frame of reference, is af-
forded by the Park transformation  (2). See also 
(33)  and associated text:

eDQ0(ref) = P·ERST(ref) 	 (18)

In present synchronous phasor context the angle 
q of P is defined equal to (wo·t). Evaluating the 
right hand side of (18), the sought infinite bus 
voltage in the D-Q-0 frame of reference is found;

eDQ0(ref) =
eD(ref) 
eQ(ref) 
e0(ref)

= √2·Erms ·
-singref
cosgref 
0

(19)

	     	  		
In many practical studies the remote part of the 
power system is represented in terms of an infinite 
bus voltage fronted by a given series impedance 
(rref ,xref) – The latter often estimated from the 
short circuit capacity of the adjoining «foreign» 
part of the system. 

With appropriate interpretation of terms, Fig. 1 
may serve as  the electrical circuit model of the in-
finite bus located «behind» some specified series 
impedance: The emf. sub vector eDQ(ref)  of  eDQ0(ref) 
of  (19), is shown in (20) and should be inserted 
for eL in Figure 1. Likewise, the impedance terms 
(RL,XL)  there, should be replaced by (Rref,Xref)  of  
(21).

eDQ(ref)=

eD(ref)	

= √2·Erms·
-singref

(20)
eQ(ref)

cosgref

        

Rref  =
rref - xref 

(21)
xref rref

Xref =	
xref 

xref 
			    			                                           	
	
D.	The Synchronous Motor (SM)
Formal basis for model development is the d–q 
diagram of a generalised linear machine as e.g. 
presented by B. Adkins [8]. As a compromise in 
view of desired precision of analysis, computa
tional burden and availability of data, a 5-coil, 
salient pole generalised machine is applied as 
basis for the ensuing «default» development. 

For special or more detailed analyses modeling 
based on e.g. the corresponding 6-coil generalised 
machine may be appropriate. See e.g. [9], where 
this extended modeling basis is being used to also 
describe the performance of the adjustable speed 
synchronous machine as well as the doubly fed in-
duction machine. 

The well-known diagram of the 5-coil gener-
alised model machine, is shown in Fig. 4. Model 
development in the following presumes motor  
operation as the default mode of operation.

The three phase main (stator) winding is as-
sumed to be the rotating part, while the d-q axes 
with associated windings are considered fixed. The 
«pseudo-stationary» d-and q coils equivalence the 
electromagnetic effects of the main 3-phase wind-
ing. The currents, voltages and fluxes associated 
with the stated two coils, are definition-wise re-
lated to their corresponding physical phase vari-
ables via the Park transformation. See (1) – (2). 
The fixed coil ’f’ of the diagram represents the 
field circuit of the synchronous motor. The fixed 
coils denoted ’kd’ and ’kq’, aim at equivalencing 
the effects of all damper circuits in the motor.

The five-coil representation implies 5 state vari-
ables to describe the electrical performance of the 
synchronous motor. As such variables are chosen 
the coil currents (id,iq) and the flux linkages associ-
ated with respectively the ’f’-, ’kd’- and ’kq’-coil. 
The modeling takes place in a suitable per unit 
(pu) setting. 
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                      q 
                          •    ekq=o      
                          •   
                          
                          •  eq 
                          •      ed                    ef                        ekd=o  
    w↑                    •     •       •      •       •       •               d  
   
 

Fig. 4  Diagram of 5-coil salient pole generalised linear machine.

The elaboration of the set of component sub 
models required for modeling of the synchronous 
motor, – see Table I of Part 1 – is presented in 
four steps: Step 1 develops the basic synchronous 
motor equations that establishes the platform 
for the ensuing (SM) algorithmic development. 
Step 2 generates the sub model denoted the flux 
model, Step 3 produces the component sub model 
labelled the electrical circuit model, and Step 
4 the sub model termed the electromechanical 
model.

1.	 The basic synchronous motor equations
A summary outline of these equations for the 
above 5-coil machine in motor mode of operation, 
follows. For more on premises and conventions, 
reference is made to [8].   

In the three phase (RST) reference frame one 
can for (say) phase ’R’ of the motor, express the 
voltage balance as; 

eR = iR·ra + dyR/dt   	 (22)

where eR, iR, yR and ra is – respectively – impressed 
voltage, current, flux linkages and resistance of 
motor phase ’R’.

The per phase variables eR, iR, and yR are 
determined from their corresponding (d,q,o) com-
ponents via transformation P-1, see (4) and (3). 

From a formal viewpoint equation (22) is iden-
tical to (5). Expressing (22) in terms of (d,q,o) var-
iables, the transformation process becomes identi-
cal to that shown from (5) to (7): In the d-q axis 
frame of reference, (22) then becomes; 

ed = ra·id + dyd/dt - w·yq 
eq = ra·iq + dyq/dt + w·yd   	 (23)
eo = ra·io + dyo/dt 

w is the electrical angular speed of the motor’s 
rotating main winding. For each of the three fixed 
coils ’f’, ’kd’ and ’kq’ of the model machine, 
the voltage balance can readily be formulated as 
follows:

ef = rf·if + dyf/dt 
ekd = 0 = rkd·ikd + dykd/dt 	 (24)
ekq = 0 = rkq·ikq + dykq/dt 

Equations (23) and (24) form together the voltage 
equations of the 5-coil model machine in motor 
mode of operation. As it is presumed that zero 
sequence circuitry is absent in the present context, 
the last equation of (23) is being disregarded in 
the ensuing developments.

On the adopted modeling premises the following 
defining pu relationships are set up between flux 
linkages and currents within respective axes:

yd = Ld·id + Lad·if + Lad·ikd
yq = Lq·iq + Laq·ikq 
yf = Lf·if + Lad·id + Lad·ikd   	 (25)
ykd = Lkd·ikd + Lad·if + Lad·id
ykq = Lkq·ikq + Laq·iq 

Equations (23) – (25) comprise per se the sought 
basic motor equations. To ease the further 
processing of expressions, the equations are 
rewritten in matrix notation, see Fig. 5. 

              d     q      f      kd    kq                                                   d    q   f    kd    kq  

   ed        ra                       id      dyd/dt            -1                  yd    
   eq            ra                        iq      dyq/dt          1                     yq    
   ef    =           rf               ⋅  if   + dyf/dt   + w⋅                      ⋅  yf       (26) 
   ekd                     rkd         ikd     dykd/dt                               yfd    
   ekq                            rkd    ikq     dykq/dt                                yfq    
                                    ↓ 
edq         ra            idq       dydq/dt          Hdq           ydq (27) 
       =               ⋅         +              + w⋅                ⋅                  
efk                  rfk     ifk        dyfk/dt                          yfk 
 
 
                                    d       q       f          kd       kq 

            yd        Ld         Lad   Lad                   id 
            yq             Lq                 Laq       iq 
            yf     =   Lad        Lf    Lad             ⋅    if                           (28) 
            ykd       Lad        Lad  Lkd                   ikd 
            ykq             Laq                Lkq      ikq 
                                    ↓ 
            ydq         Ldq       L(dq)(fk)          idq  (29) 
                     =                            ·                                  
            yfk          L(fk)(dq)      Lfk              ifk  
 

Fig.5  Basic synchronous motor equations: The platform for 
further algorithmic development.

The defined sub matrices of (26) and (28), 
directly show the content of the corresponding 
sub matrices of (27), respectively (29). 

2.	 The flux model of the synchronous motor
The synchronous motor flux model comprises 
the differential equations that describe the flux 
linkages Ψfk = [yf,ykd, ykq]

t, and – if required – 

              d     q      f      kd    kq                                                   d    q   f    kd    kq  

   ed        ra                       id      dyd/dt            -1                  yd    
   eq            ra                        iq      dyq/dt          1                     yq    
   ef    =           rf               ⋅  if   + dyf/dt   + w⋅                      ⋅  yf       (26) 
   ekd                     rkd         ikd     dykd/dt                               yfd    
   ekq                            rkd    ikq     dykq/dt                                yfq    
                                    ↓ 
edq         ra            idq       dydq/dt          Hdq           ydq (27) 
       =               ⋅         +              + w⋅                ⋅                  
efk                  rfk     ifk        dyfk/dt                          yfk 
 
 
                                    d       q       f          kd       kq 

            yd        Ld         Lad   Lad                   id 
            yq             Lq                 Laq       iq 
            yf     =   Lad        Lf    Lad             ⋅    if                           (28) 
            ykd       Lad        Lad  Lkd                   ikd 
            ykq             Laq                Lkq      ikq 
                                    ↓ 
            ydq         Ldq       L(dq)(fk)          idq  (29) 
                     =                            ·                                  
            yfk          L(fk)(dq)      Lfk              ifk  
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also the equations that uncover «hidden» coil 
currents. See next. 

Two sets of equations from Fig. 5 provide the 
basis for the analysis that follows; the lower set of 
equations from respectively (27) and (29):

efk = rfk·ifk + dΨfk/dt                                     (30)

Ψfk = L(fk)(dq)·idq + Lfk·ifk                                (31)

It is chosen to retain the flux variables Ψfk as 
state variables, while eliminating the currents ifk 
from the «surface» of analysis: Solving ifk from 
(31) and inserting the expression for it into (30), 
yields; 

dΨfk/dt = efk+ (- rfk·Lfk
-1)·Ψfk+ (rfk·Lfk

-1·L(fk)(dq))·idq

		        (32)

Flux linkages and currents are referred to the 
model machine’s local d-q axes. The flux linkages 
will conveniently be kept locally referenced, 
while the main motor current should be described 
relative to the chosen synchronous global 
reference phasor.

The shift from global to local description is giv-
en by the following transformation:

idq = T·iDQ where ; T =
cosbSM -sinbSM

sinbSM cosbSM
			 

		  (33)

Here small letters (dq) signal locally referenced 
currents, and capital letters (DQ) globally 
referenced. bSM is the angular displacement of the 
local motor axes relative to the stated synchronous 
global ones. 

The expression for idq from (33) is inserted 
into (32). At the same time new flux variables  
ɸfk = wo·Ψfk are introduced. The form of (32) then 
becomes;

dɸfk/dt = wo·efk - (rfk·Lfk
-1)·ɸfk + (wo·rfk·Lfk

-1·L(fk)(dq)·T)·iDQ

               		  (34)

Inserting into (34) the appropriate sub matrices 
from Fig.  5, doing some further reductions, 
and introducing specific synchronous machine 
parameter terms where-ever appropriate, the Flux 
model of the Synchronous Motor appears as shown 
in Fig. 6. The pu scaling factor Kf follows from 

the defining equation ef = Kf·Ef  of  (36), where 
Ef(o) is pu field voltage read from the machine’s 
phasor diagram for the initial operating state.
For completeness, a summary set up is included of 
the interrelationships between «external» machine 
parameters (Xd,X’d,X’’d,Xq,X’’q,T’do,T’’do,T’’qo) 
and «internal» (model) parameters  
(Xas,Xad,Xaq,Xfs,Xkds,Xkqs,ra,rf,rkd,rkq). See (39).

As termination of present step 2 on the mod-
eling of the SM flux linkages, the equations that 
uncover the field- and damper currents are given:

             dfSM/dt = wo⋅(eSM + FSMi⋅iSM + FSMf⋅fSM)                     (35) 
 
  iSM  = [iD, iQ]t            ;  SM current, global reference.   
  fSM = [ff , fkd, fkq]t    ;  SM flux linkages, local reference  
 
                   Kf⋅Ef       f     Ef = (Efo +DEf) = field voltage     
  eSM =           0         kd    Kf = (√2/(wo⋅T’do))⋅Xad/(Xd -X’d)   (36) 
                      0         kq   DEf = voltage control response 
                           D                             Q 
                   FSMi (f,D)      FSMi (f,Q)     f             
  FSMi = wo⋅  FSMi (kd,D)   FSMi (kd,Q)  kd                           (37) 
                   FSMi (kq,D)   FSMi (kq,Q)  kq        
 
      FSMi (f,D)  = (1/(wo⋅T’do))⋅(Xad/X’ad)⋅X’’ad⋅cosbSM    
      FSMi (f,Q)  = - (1/(wo⋅T’do))⋅(Xad/X’ad)⋅X’’ad⋅sinbSM 
      FSMi (kd,D)  =  (1/(wo⋅T’’do))⋅X’ad⋅cosbSM    
      FSMi (kd,Q)  =  - (1/(wo⋅T’’do))⋅X’ad⋅sinbSM    
      FSMi (kq,D)   =  (1/(wo⋅T’’qo)⋅Xaq⋅sinbSM 
      FSMi (kq,Q)  =  (1/(wo⋅T’’qo)⋅Xaq⋅cosbSM            
                        f                             kd                           kq 

                   FSMf(f,f)     FSMf(f,kd)           0          f                       
  FSMf = wo⋅ FSMf(kd,f)  FSMf(kd,kd)         0         kd        (38) 
                         0                0           FSMf(kq,kq) kq               
          
      FSMf(f,f)     = - (1/(wo⋅T’do⋅X’ad))⋅[(Xad/X’ad)⋅(X’d -X’’d)+X’’ad]   
      FSMf(f,kd)   = (1/(wo⋅T’do⋅X’ad))⋅(Xad/X’ad)⋅(X’d -X’’d)        
      FSMf(kd,f)   = (1/(wo⋅T’’do⋅Xad))⋅(Xd -X’d) 
      FSMf(kd,kd) = - 1/(wo⋅T’’do) 
      FSMf(kq,kq) = - 1/(wo⋅T’’qo)                                     

Fig. 6  Flux model of the Synchronous Motor (SM). (Subscript 
’SM’ applied to identify component).

 
  Xd = Xas + Xad     Xf = Xfs + Xad         Xkd = Xkds + Xad               
  Xq = Xas + Xaq      Xkq= Xkqs + Xaq                                      
  X’d = Xas +X’ad    where  1/X’ad   = (1/Xad) + (1/Xfs) 
  X’’d= Xas +X’’ad   where  1/X’’ad = (1/Xad) + (1/Xfs) + (1/ Xkds) 
                                                  = (1/X’ad) + (1/ Xkds)     
  X’’q= Xas +X’’aq   where  1/X’’aq = (1/Xaq) + (1/Xkqs)                      (39) 
  T’do = Lf/rf = Xf/(wo⋅rf)   (Open stator: Seen  from field side) 
  T’’do= L/rkd= X/(wo⋅rkd)  (Open stator: Seen  from ’kd’ side) 
                     X = Xkds + X’ad  
  T’’qo=Lkq/rkq=Xkq/(wo⋅rkq)  (Open stator: Seen from ’kq’ side) 

At any time during integration the field- and 
damper currents ifk (= iSMr of Figure 7) may be 
derived from equation (31), after introducing  
idq = T·iSM and ɸfk = wo·Ψfk (=ɸSM ): 

             dfSM/dt = wo⋅(eSM + FSMi⋅iSM + FSMf⋅fSM)                     (35) 
 
  iSM  = [iD, iQ]t            ;  SM current, global reference.   
  fSM = [ff , fkd, fkq]t    ;  SM flux linkages, local reference  
 
                   Kf⋅Ef       f     Ef = (Efo +DEf) = field voltage     
  eSM =           0         kd    Kf = (√2/(wo⋅T’do))⋅Xad/(Xd -X’d)   (36) 
                      0         kq   DEf = voltage control response 
                           D                             Q 
                   FSMi (f,D)      FSMi (f,Q)     f             
  FSMi = wo⋅  FSMi (kd,D)   FSMi (kd,Q)  kd                           (37) 
                   FSMi (kq,D)   FSMi (kq,Q)  kq        
 
      FSMi (f,D)  = (1/(wo⋅T’do))⋅(Xad/X’ad)⋅X’’ad⋅cosbSM    
      FSMi (f,Q)  = - (1/(wo⋅T’do))⋅(Xad/X’ad)⋅X’’ad⋅sinbSM 
      FSMi (kd,D)  =  (1/(wo⋅T’’do))⋅X’ad⋅cosbSM    
      FSMi (kd,Q)  =  - (1/(wo⋅T’’do))⋅X’ad⋅sinbSM    
      FSMi (kq,D)   =  (1/(wo⋅T’’qo)⋅Xaq⋅sinbSM 
      FSMi (kq,Q)  =  (1/(wo⋅T’’qo)⋅Xaq⋅cosbSM            
                        f                             kd                           kq 

                   FSMf(f,f)     FSMf(f,kd)           0          f                       
  FSMf = wo⋅ FSMf(kd,f)  FSMf(kd,kd)         0         kd        (38) 
                         0                0           FSMf(kq,kq) kq               
          
      FSMf(f,f)     = - (1/(wo⋅T’do⋅X’ad))⋅[(Xad/X’ad)⋅(X’d -X’’d)+X’’ad]   
      FSMf(f,kd)   = (1/(wo⋅T’do⋅X’ad))⋅(Xad/X’ad)⋅(X’d -X’’d)        
      FSMf(kd,f)   = (1/(wo⋅T’’do⋅Xad))⋅(Xd -X’d) 
      FSMf(kd,kd) = - 1/(wo⋅T’’do) 
      FSMf(kq,kq) = - 1/(wo⋅T’’qo)                                     

 
  Xd = Xas + Xad     Xf = Xfs + Xad         Xkd = Xkds + Xad               
  Xq = Xas + Xaq      Xkq= Xkqs + Xaq                                      
  X’d = Xas +X’ad    where  1/X’ad   = (1/Xad) + (1/Xfs) 
  X’’d= Xas +X’’ad   where  1/X’’ad = (1/Xad) + (1/Xfs) + (1/ Xkds) 
                                                  = (1/X’ad) + (1/ Xkds)     
  X’’q= Xas +X’’aq   where  1/X’’aq = (1/Xaq) + (1/Xkqs)                      (39) 
  T’do = Lf/rf = Xf/(wo⋅rf)   (Open stator: Seen  from field side) 
  T’’do= L/rkd= X/(wo⋅rkd)  (Open stator: Seen  from ’kd’ side) 
                     X = Xkds + X’ad  
  T’’qo=Lkq/rkq=Xkq/(wo⋅rkq)  (Open stator: Seen from ’kq’ side) 
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                  iSMr = [ if, ikd, ikq]t  =  X-1

fk⋅( fSM - XDQr⋅iSM)      (40) 
  where; 
                    f                                            kd                                               kq    
          X2

ad/(Xd -X’d)                Xad                                                              f  
 Xfk =          Xad         Xad+X’’ad⋅X’ad/(X’d -X’’d)                              kd           
                                                                    X2

aq/(Xq –X’’q) kq                            
                                         D                                     Q             
                               Xad⋅cosbSM        -Xad⋅sinbSM      f     
 XDQr =  X(fk)(dq)⋅T  =  Xad⋅cosbSM        -Xad⋅sinbSM     kd  
                               Xaq⋅sinb SM               Xaq⋅cosbSM    kq   
 

 
                  iSMr = [ if, ikd, ikq]t  =  X-1

fk⋅( fSM - XDQr⋅iSM)      (40) 
  where; 
                    f                                            kd                                               kq    
          X2

ad/(Xd -X’d)                Xad                                                              f  
 Xfk =          Xad         Xad+X’’ad⋅X’ad/(X’d -X’’d)                              kd           
                                                                    X2

aq/(Xq –X’’q) kq                            
                                         D                                     Q             
                               Xad⋅cosbSM        -Xad⋅sinbSM      f     
 XDQr =  X(fk)(dq)⋅T  =  Xad⋅cosbSM        -Xad⋅sinbSM     kd  
                               Xaq⋅sinb SM               Xaq⋅cosbSM    kq   
 

Fig. 7  Locally referenced currents i
fk
 = [ i

f
, i

kd
, i

kq
]t determined 

from (locally referenced) motor flux linkages and (globally 
referenced) motor currents i

DQ 
(= i

SM
).

3.	 The electrical circuit model of the synchronous 
motor

In the context of power network analysis the task 
at hand is that of equivalencing the synchronous 
motor model of Fig. 5, by an oriented, standardized 
d–q axis series circuit comprising an R-term, an 
inductive X-term, and an e.m.f. DE. See Fig.1 
with  associated text in Part 1 of the paper.

Three sets of equations from Fig. 5 form the ba-
sis for the ensuing analysis,– namely the upper set 
from (27), and both sets from (29):

edq	 =	 ra·idq + dΨdq/dt + w·H dq·Ψdq	 (41)

Ψdq	=	 Ldq·idq + L(dq)(fk)·ifk	    (42)

Ψfk	=	 L(fk)(dq)·idq + Lfk·ifk	 (43)

The expression found for ifk from (43) is inserted 
into (42), which then describes Ψdq as a function 
of idq and Ψfk. The expression thus found for Ψdq 
is inserted into (41), yielding finally the applied 
motor voltage as function of the motor’s state 
variables idq and Ψfk. Introducing the new flux 
linkage variables ɸfk = wo·Ψfk, and ɸdq = wo·Ψdq, 
one finds as a result from this process; 

edq = 	 ra·idq + (Ldq - L(dq)(fk)·Lfk
-1·L(fk)(dq) )·didq/dt  	

	
    	 + w·Hdq·(Ldq - L(dq)(fk)·Lfk

-1·L(fk)(dq) )·idq

	 + (1/ωo)·L(dq)(fk)·Lfk
-1·dɸfk/dt 

	 + W·Hdq·L(dq)(fk)·Lfk
-1·ɸfk		          (44)

where W = (w/wo) = pu angular speed of rotating 
part. It remains to replace the locally referenced 
motor voltage edq and motor current idq, by their 
globally referenced counterparts eDQ and iDQ, re-
spectively.

It is next pointed to a few premises and rules that 
are crucial to the process of shifting from local to 
global reference (or vice versa):

For motor voltage and current the following 
holds true:

edq = T·eDQ                 idq = T·iDQ	  (45)

Definition-wise, for angle & speed of rotating 
part ;
b = (wo·t - q) → db/dt = (wo - w) = wo·(1 - W) 	

(46)

From mathematics;
didq/dt = d(T·iDQ)/dt = (dT/dt) ·iDQ + T·diDQ/dt 

(47)

From mathematics and (46);
dT/dt = (db/dt)·(dT/db) = wo·(1 - W)·dT/db  		

	   (48)

Applying (35) and (45) to (44), observing the 
stated premises and rules from above, while 
abiding with the adopted definitions associated 
with the electrical circuit model of Fig. 1, – one 
arrives after some straightforward but tedious 
elaborations at the sought electrical circuit model 
of Fig. 8. 

4.	 The electromechanical model of the synchron
ous motor

The task at hand is to describe the performance 
of the remaining two synchronous motor state 
variables, – namely pu angular speed W of its ro-
tating part, and the electrical angle b associated 
with the rotating field set up by the motor’s main 
3-phase winding. For oversight reasons the set of 
algorithms to apply in this context is denoted «the 
electromechanical model». See model description 
of Fig. 9.
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Setting in for edq and idq from (26)–(27), replacing 
the currents idq by their globally referenced 
counterparts in accordance with (33), and 
observing that ɸdq = wo·Ψdq, one gets

P(el) = ½·ra·(iD
2+iQ

2) + ½·W·iDQ
t·T1·ɸdq + k·iDQ

t·Tt·dɸdq/dt                                   
                   Losses in main                   Airgap power                    Oscillating power
                        winding                                                              (zero power over time)

 (55)

where k=0.5/wo, and T and T1 are as given in 
Fig. 9. The electrical torque is found by dividing 
the expression for airgap power by W. The flux 
linkage vector ɸdq is given as a function of iDQ  
(denoted iSM in Fig. 9) and ɸfk (denoted ɸSM ) from 
equations (42), (43), (33).

Torque equation: 
                    dWSM/dt=  JSM⋅(TSMel -TSMmec)                      (56) 
                                 
WSM       = pu angular speed of rotating part 
JSM         = inertia constant given by  e.g.  H-constant or 
               acceleration time constant Ta.  
TSMel     = ½⋅iSM

t⋅TSM1⋅fdq = pu electrical motor torque, where 
                        fdq = X’’SM⋅TSM⋅iSM + fSM⋅fSM  
             iSM  = SM current, see Fig. 8    
             fSM = SM flux linkages, see Fig. 6 
 
                                         sinbSM   -cosbSM                      
                             TSM1 =                                  
                                         cosbSM    sinbSM                      
                                         cosbSM   -sinbSM                      
                             TSM   =                                 (from (33))                  
                                         sinbSM     cosbSM                      
                                         X’’d                      
                             X’’SM =                                         
                                                  X’’q                      
                                          f1         f3                    
                               fSM =                              (for (f1,f3,f5), see Fig. 8)              
                                                           -f5                
 
Motor mode of operation: 
TSMmec = TSMmec(o)⋅WSM

k= mechanical load torque. (k=1.5-3.5)   
- If the SM  is running at t=-0: TSMmec(o) =TSMel(o) = 

   electrical motor torque from initial load flow. 
- If the SM is to be started as an asynchronous    

   motor : TSMmec(o) = (variable) coefficient to model 
   mechanical friction, air resistance, etc., during 
   startup.  ( Likely coefficient range; 0.01 - 0.06)  
Generator mode of operation: 
TSMmec = (TSMel(o)

 +DTmec) = mechanical torque (negative).   
               DTmec    is  the  response  of   the   power control                  
               system.  It is considered outside the scope of this   
               paper to delve into sub models yielding the incre-    
               mental control response DTmec , or DEf  of Fig. 6.     
 
Electrical angle equation: 
                        dbSM/dt = wo⋅(1 - WSM)                            (57)       
 
wo     = 2⋅p⋅fo, where  fo  is nominal frequency. 
bSM  = electrical angle of axes of field set up by 3-phase 
            winding, relative to  synchronous reference phasor. 

Fig. 9  The electromechanical model of the Synchronous Motor 
(SM).

 
                                 ← iSM                                     
•               •      •                                               DESM         • 
                                RSM              XSM   
                                                              vSM  
                                                                                   uSM  
                                  ↓                                                       
     vSM = RSM⋅iSM + (1/wo)⋅XSM⋅diSM/dt  &  vSM -DESM = uSM 
             
  iSM   = [iSM(D) , iSM(Q)]t   = SM current, global reference  
  uSM = [uSM(D) , uSM(Q)]t = SM bus voltage, global reference  
     
 DESM = (VSM + HSM⋅fSM) = synchronous motor  e.m.f.  (49) 
                                          Ef = (Efo + DEf) = field voltage.                      
               Cf⋅Ef⋅cosbSM       D               Efo is initial value. DEf   is   
  VSM  =                                      AVC response.            (50) 
              - Cf⋅Ef⋅sinbSM       Q  Cf = (√2/(wo⋅T’do))⋅(X’’ad/X’ad)                                                
                          D                    Q  

              RSM(D,D)   RSM(D,Q)     D        DWSM = (WSM -1) = deviation  
  RSM =                                                    from synchr. speed 
              RSM(Q,D)   RSM(Q,Q)     Q     (51)        of rotating part (pu)      
                               ∧                                      _                    _   
      RSM(D,D) = (ra +X’’r)+(1+2DWSM)⋅X’’⋅sin2bSM +X’’r⋅cos2bSM 
                         ∧                       _                    _         
      RSM(D,Q) = - X’’+ (1+2DWSM)⋅X’’⋅cos2bSM - X’’r⋅sin2bSM 
                         ∧                                    _                            _   
      RSM(Q,D) =   X’’+ (1+2DWSM)⋅X’’⋅cos2bSM - X’’r⋅sin2bSM 
                             ∧                         _                  _     
      RSM(Q,Q) = (ra +X’’r)-(1+2DWSM)⋅X’’⋅sin2bSM -X’’r⋅cos2bSM 
               ∧                                      _                                  
              X’’ = ½⋅(X’’d+X’’q)    &     X’’ =  ½⋅(X’’d -X’’q)           
                ∧                                       _ 
              X’’r = ½⋅(X’’rd+X’’rq)  &     X’’r =  ½⋅(X’’rd -X’’rq)           
               
        X’’d = d-axis subtransient reactance  
        X’’q = q-axis subtransient reactance 
        X’’rd = Xad⋅[(f1/(woT’do))⋅(X’’ad/X’ad)+(f3/(wo⋅T’’do))⋅(X’ad/Xad)]       
        X’’rq = -Xaq⋅(f5/(wo⋅T’’qo)) 
               ∧      _   D                    _     Q    
              X’’+X’’⋅cos2bSM      -X’’⋅sin2bSM            D  
  XSM =      _                          ∧    _                                    (52) 
               -X’’⋅sin2bSM          X’’-X’’⋅cos2bSM     Q 
   
                  f                        kd                            kq       
               HSM(D,f)      HSM(D,kd)        HSM(D,kq)        D 
  HSM =                                                                           (53) 
               HSM(Q,f)      HSM(Q,kd)        HSM(Q,kq)        Q                 
 
             HSM(D,f)   = WSM⋅f1⋅sinbSM + f2⋅cosbSM 
             HSM(D,kd) = WSM⋅f3⋅sinbSM + f4⋅cosbSM 
             HSM(D,kq)  = WSM⋅f5⋅cosbSM + f6⋅sinbSM 
             HSM(Q,f)     = WSM⋅f1⋅cosbSM - f2⋅sinbSM 
             HSM(Q,kd) = WSM⋅f3⋅cosbSM - f4⋅sinbSM 
             HSM(Q,kq) = -WSM⋅f5⋅sinbSM + f6⋅cosbSM 

 
    f1 = (Xd -X’d)⋅X’’ad/(Xad⋅X’ad)          f3 = (X’d –X’’d)/X’ad 
    f5 = - (Xq -X’’q)/Xaq                                     f6 = f5/(wo⋅T’’qo)        
    f2 = f1⋅[(X’’rd/X’’ad) – (Xad/X’ad)⋅(1/(wo⋅T’do))] 
    f4 = f3⋅[(Xad/X’ad)⋅(f1/(wo⋅T’do)) - 1/(wo⋅T’’do)] 
 

Fig. 8  The electrical circuit model of the Synchronous Motor 
(SM). d-q axis frame of reference. 

The algorithm that governs motor speed variation 
is the torque equation emanating from Newton’s 
second law. The power supplied to the motor is 
definition-wise, see Fig. 5;

P(el) = ½·e
dq

t·i
dq  

                                            (54)

 
                                 ← iSM                                     
•               •      •                                               DESM         • 
                                RSM              XSM   
                                                              vSM  
                                                                                   uSM  
                                  ↓                                                       
     vSM = RSM⋅iSM + (1/wo)⋅XSM⋅diSM/dt  &  vSM -DESM = uSM 
             
  iSM   = [iSM(D) , iSM(Q)]t   = SM current, global reference  
  uSM = [uSM(D) , uSM(Q)]t = SM bus voltage, global reference  
     
 DESM = (VSM + HSM⋅fSM) = synchronous motor  e.m.f.  (49) 
                                          Ef = (Efo + DEf) = field voltage.                      
               Cf⋅Ef⋅cosbSM       D               Efo is initial value. DEf   is   
  VSM  =                                      AVC response.            (50) 
              - Cf⋅Ef⋅sinbSM       Q  Cf = (√2/(wo⋅T’do))⋅(X’’ad/X’ad)                                                
                          D                    Q  

              RSM(D,D)   RSM(D,Q)     D        DWSM = (WSM -1) = deviation  
  RSM =                                                    from synchr. speed 
              RSM(Q,D)   RSM(Q,Q)     Q     (51)        of rotating part (pu)      
                               ∧                                      _                    _   
      RSM(D,D) = (ra +X’’r)+(1+2DWSM)⋅X’’⋅sin2bSM +X’’r⋅cos2bSM 
                         ∧                       _                    _         
      RSM(D,Q) = - X’’+ (1+2DWSM)⋅X’’⋅cos2bSM - X’’r⋅sin2bSM 
                         ∧                                    _                            _   
      RSM(Q,D) =   X’’+ (1+2DWSM)⋅X’’⋅cos2bSM - X’’r⋅sin2bSM 
                             ∧                         _                  _     
      RSM(Q,Q) = (ra +X’’r)-(1+2DWSM)⋅X’’⋅sin2bSM -X’’r⋅cos2bSM 
               ∧                                      _                                  
              X’’ = ½⋅(X’’d+X’’q)    &     X’’ =  ½⋅(X’’d -X’’q)           
                ∧                                       _ 
              X’’r = ½⋅(X’’rd+X’’rq)  &     X’’r =  ½⋅(X’’rd -X’’rq)           
               
        X’’d = d-axis subtransient reactance  
        X’’q = q-axis subtransient reactance 
        X’’rd = Xad⋅[(f1/(woT’do))⋅(X’’ad/X’ad)+(f3/(wo⋅T’’do))⋅(X’ad/Xad)]       
        X’’rq = -Xaq⋅(f5/(wo⋅T’’qo)) 
               ∧      _   D                    _     Q    
              X’’+X’’⋅cos2bSM      -X’’⋅sin2bSM            D  
  XSM =      _                          ∧    _                                    (52) 
               -X’’⋅sin2bSM          X’’-X’’⋅cos2bSM     Q 
   
                  f                        kd                            kq       
               HSM(D,f)      HSM(D,kd)        HSM(D,kq)        D 
  HSM =                                                                           (53) 
               HSM(Q,f)      HSM(Q,kd)        HSM(Q,kq)        Q                 
 
             HSM(D,f)   = WSM⋅f1⋅sinbSM + f2⋅cosbSM 
             HSM(D,kd) = WSM⋅f3⋅sinbSM + f4⋅cosbSM 
             HSM(D,kq)  = WSM⋅f5⋅cosbSM + f6⋅sinbSM 
             HSM(Q,f)     = WSM⋅f1⋅cosbSM - f2⋅sinbSM 
             HSM(Q,kd) = WSM⋅f3⋅cosbSM - f4⋅sinbSM 
             HSM(Q,kq) = -WSM⋅f5⋅sinbSM + f6⋅cosbSM 

 
    f1 = (Xd -X’d)⋅X’’ad/(Xad⋅X’ad)          f3 = (X’d –X’’d)/X’ad 
    f5 = - (Xq -X’’q)/Xaq                                     f6 = f5/(wo⋅T’’qo)        
    f2 = f1⋅[(X’’rd/X’’ad) – (Xad/X’ad)⋅(1/(wo⋅T’do))] 
    f4 = f3⋅[(Xad/X’ad)⋅(f1/(wo⋅T’do)) - 1/(wo⋅T’’do)] 
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Part 2: Component Modeling

After some elaborations the motor’s torque 
balance becomes modeled in terms of (56) and 
adjoining definitions. 

The algorithm that governs motor angle vari-
ation has already been established, see (46). The 
equation is copied into (57) to form the remaining 
part of the electromechanical model of the syn-
chronous motor.

E.	 The Asynchronous Motor (AM)
Compared to the normal synchronous machine 
the traditional asynchronous machine lacks the 
field winding, and symmetry prevails regarding 
the electromagnetic effects of its rotor circuits.

For the synchronous machine it was presumed 
suitable to base «default» mathematical modeling 
on a five-coil, salient pole generalised machine. 
See Fig. 4. 

In view of the availability of machine data and 
the desirability of generally retaining much the 
same level of precision within machine modeling , 
it appears reasonable to specify a four-coil, cylin-
drical pole generalised machine for modeling of 
the asynchronous motor/generator. Thus, the ma-
chine diagram of Fig. 4 and the implied modeling 
of the SM, can serve as proper development basis, 
when observing the following special interpreta-
tions:

–– The «pseudo stationary» d- and q coils equiva
lence in the same way as outlined for the 
synchronous machine, the electromagnetic 
effects of the main three-phase winding of the 
asynchronous machine. 

–– There is one superfluous coil in the d axis. 
For ease of  further adaptations it is chosen to 
eliminate the ’kd’ coil. Thus, the remaining 2 
coils labelled respectively ’f’ and ’kq’, take on 
the function of equivalencing the secondary 
(rotor) winding of the asynchronous machine. 

–– Since magnetic saliency is absent, the former 
’f’- and ’kq’-coil now become identical in 
their new roles. Index ’r’ for ’rotor’ is in the 
following assigned to both coils. Inductances 
and flux linkages may be written as follows, 
see two first lines of (39), and also (28) – for 
comparison with the synchronous machine:

For the d-axis: Ld = Las + Lm    Lrd = Lrs + Lm
For the q-axis: Lq = Las + Lm    Lrq = Lrs + Lm 		

			   (58)

d q rd rq
ψd

=

Ld Lm id

ψq Lq Lm iq (59)
ψrd Lm Lrd ird

ψrq Lm Lrq irq

Parameter-wise, further implications for the 
«simplified SM model» are as follows:

X’’d	 =	X’d (there is no third circuit in the d-axis)
X’’ad	 =	X’ad                       ’’
Xd	 =	Xq = (Xas + Xm)  	 (see (58) above)
Xad	 =	Xaq = Xm                       	 ’’
Xrd	 =	Xrq = Xr = wo·Lr = (Xrs +Xm)	 ’’  		
X’ad	 =	X’m = 1/((1/Xm) +(1/Xrs))   (see (39))
X’’aq	 =	X’ad = X’m                    	        ’’
X’M	 =	X’d = (Xas + X’m)            	     ’’ 
T’do	 =	T’ro = T’’qo = Lr/rr = Xr/(wo·rr)  ’’ 

(60)

The four-coil representation decided on, implies 
4 state variables for describing the electrical 
performance of the asynchronous motor, whether 
singly- or doubly-fed. As state variables are 
chosen the coil currents (id,iq) and the flux linkages 
associated with respectively the ‘rd‘- and ‘rq‘-coil 
defined above.

The further elaboration to produce the set of 
component sub models required for modeling 
of the asynchronous motor, is presented in three 
steps: Step 1 develops the electrical circuit model, 
Step 2 the flux model, and Step 3 the electrome-
chanical model. See Table I of Part 1 for overview.

1.	 The electrical circuit model of the asynchro
nous motor

Applying the above premises to the model of Fig. 
8, the following «asynchronous motor version»  
is found for key parameters of Fig. 8:

    ^
                                                                _ 

  X’’ = X’M = (Xas + X’m)    X’’ = 0 
    ^                                                                    _ 
  X’’r = rr·(Xm/Xr)

2               X’’r = 0 
                          
  f1 = (Xm/Xr)    f2 = - rr·(Xm/Xr

2)        f3 = 0

  f4 = 0               f5 = - f1                                    f6 = f2
  (61)

The defined e.m.f. for the synchronous motor is 
given as DESM = (VSM + HSM·ɸSM), see Fig. 8. 
In modifying this equation to cover the 
asynchronous motor, it is to be observed that:
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–– There is no separate emf. associated with 
the traditional asynchronous machine. Thus 
VSM→VAM = 0. See (49).

–– Because coil ’kd’ is presumed removed, 
column no. 2 of the (2x3) matrix HSM is deleted 
to produce a preliminary version HAMprelim of 
HAM. 

–– The flux linkages ɸSM = [ff, fkd, fkq]
t of the 

SM are referenced the local motor axes (d,q), 
whereas the flux linkages of the AM ɸAM =  
[frd, frq]

t , most conveniently should be globally 
(D,Q) referenced. The shift of description 
from global to local reference is generally 
given by ɸlocal = T·ɸglobal, see (33). Interpreting 
now ɸAM as being the globally referenced 
flux linkages, one arrives at the following 
expression for the asynchronous motor emf.:  
DEAM = (HAMprelim·T)·ɸAM = HAM·ɸAM. 

Applying all the foregoing simplifying / modifying 
observations to the content of Fig. 8, the following 
electrical circuit model is established for the 
traditional asynchronous motor, see Fig. 10.

2.	 The flux model of the asynchronous motor
The source for model reduction is the flux model 
of the synchronous motor given in Fig. 6. 

To have the appropriate algorithmic platform, 
a preliminary «asynchronous motor version» of 
the matrices (eSM, FSMi, FSMf) of Fig. 6 are first 
evaluated. To this end one brings to bear the 
implications that were ascertained via equations 
(61) and their associated text. The following 
follows readily, when noting that row and column 
associated with the ’kd’-coil are to be deleted:

eSM → eAM = 0

FAMi(prelim) = (rr·Xm/Xr)·
cosb -sinb 

(66)
sinb cosb

		
FAMf(prelim) = 	 -(rr/Xr)·1(2x2)   (where 1(2x2) is a 2x2
	 unit matrix)

With the «AM versions» (eAM, FAMi(prelim), 
FAMf(prelim)) to replace (eSM, FSMi, FSMf), one gets the 
following tentative expression for the flux model 
of the asynchronous motor, – when taking into 
account that the flux linkages ɸAM for the AM are 
presumed globally referenced:

d(T·ɸAM)/dt = 	 wo·FAMi(prelim) ·iAM
 
	 + wo ·FAMf(prelim) ·(T·ɸAM)

Processing the matrix product and rearranging the 
equation, the following initial version of the flux 
model is found:

dɸAM/dt =	wo·(T
 -1·FAMi(prelim))·iAM

		     	
	 + wo·[T

 -1·FAMf(prelim)·T - (1/wo)·(db/dt)
 
	 ·T -1·dT/db]·ɸAM	   (67)

Further development of this equation yields the 
sought flux model of the traditional asynchronous 
motor:

                                 ← iAM                                     
•               •      •                                               DEAM        • 
                                RAM              XAM   
                                                              vAM  
                                                                                   uAM  
                                  ↓                                                       
     vAM = RAM⋅iAM + (1/wo)⋅XAM⋅diAM/dt  &  vAM -DEAM = uAM 
             
  iAM   = [iAM(D) , iAM(Q)]t   = AM current, global reference  
  uAM = [uAM(D) , uAM(Q)]t = AM bus voltage, global reference  
     
 DEAM = (HAM⋅fAM) = asynchronous motor  e.m.f.          (62) 
                                       D                                   Q  

              ra + rr⋅(Xm/Xr)2          - X’M               D          
  RAM =                                                                           (63) 
                       X’M                 ra + rr⋅(Xm/Xr)2 

  Q        
 
                              D               Q         
              X’M                              D  
  XAM =                                                                            (64) 
                            X’M     Q 
 
                                                      rd                         rq       

                           - (rr/Xr )                - WAM           D 
  HAM = (Xm/Xr)⋅                                                              (65)  
                                WAM              - (rr/Xr )         Q                 
                                                                            (example data) 

Xas = stator leakage reactance           (0.08pu) 
Xrs  = rotor leakage  reactance           (0.08pu) 
Xm = magnetizing reactance               (2.50pu) 
ra  = stator resistance                        (0.03pu) 
rr   = rotor resistance                       (0.03pu) 

 
Xr  = (Xrs +Xm) 
X’M = (Xas +X’m)  = Xas + (Xm⋅Xrs/Xr) 
T’ro = Lr/rr = Xr/(wo⋅rr) 
WAM = pu speed of rotating part 
sAM = pu motor slip = (1- WAM ) 

                                 ← iAM                                     
•               •      •                                               DEAM        • 
                                RAM              XAM   
                                                              vAM  
                                                                                   uAM  
                                  ↓                                                       
     vAM = RAM⋅iAM + (1/wo)⋅XAM⋅diAM/dt  &  vAM -DEAM = uAM 
             
  iAM   = [iAM(D) , iAM(Q)]t   = AM current, global reference  
  uAM = [uAM(D) , uAM(Q)]t = AM bus voltage, global reference  
     
 DEAM = (HAM⋅fAM) = asynchronous motor  e.m.f.          (62) 
                                       D                                   Q  

              ra + rr⋅(Xm/Xr)2          - X’M               D          
  RAM =                                                                           (63) 
                       X’M                 ra + rr⋅(Xm/Xr)2 

  Q        
 
                              D               Q         
              X’M                              D  
  XAM =                                                                            (64) 
                            X’M     Q 
 
                                                      rd                         rq       

                           - (rr/Xr )                - WAM           D 
  HAM = (Xm/Xr)⋅                                                              (65)  
                                WAM              - (rr/Xr )         Q                 
                                                                            (example data) 

Xas = stator leakage reactance           (0.08pu) 
Xrs  = rotor leakage  reactance           (0.08pu) 
Xm = magnetizing reactance               (2.50pu) 
ra  = stator resistance                        (0.03pu) 
rr   = rotor resistance                       (0.03pu) 

 
Xr  = (Xrs +Xm) 
X’M = (Xas +X’m)  = Xas + (Xm⋅Xrs/Xr) 
T’ro = Lr/rr = Xr/(wo⋅rr) 
WAM = pu speed of rotating part 
sAM = pu motor slip = (1- WAM ) 

Fig. 10  The electrical circuit model of the Asynchronous Motor 
(AM). D–Q axis reference frame.

              dfAM/dt = wo⋅(FAMi⋅iAM + FAMf⋅fAM)                         (68) 
 
iAM  = [iD, iQ]t      ;  AM current, global reference   
fAM = [frD, frQ]t    ;  AM flux linkages, global reference  
                                           D                           Q 

                    (rr⋅Xm/Xr)                       rD             
FAMi =                                                      (69)     
                                        (rr⋅Xm/Xr)   rQ        
                                                                For parameter interpretation, see Fig. 10 
                                           D                           Q           

                      - (rr/Xr)        (1- WAM)    rD  
FAMf =              (70)                   
                   - (1- WAM)      - (rr/Xr)      rQ               
 

              dfAM/dt = wo⋅(FAMi⋅iAM + FAMf⋅fAM)                         (68) 
 
iAM  = [iD, iQ]t      ;  AM current, global reference   
fAM = [frD, frQ]t    ;  AM flux linkages, global reference  
                                           D                           Q 

                    (rr⋅Xm/Xr)                       rD             
FAMi =                                                      (69)     
                                        (rr⋅Xm/Xr)   rQ        
                                                                For parameter interpretation, see Fig. 10 
                                           D                           Q           

                      - (rr/Xr)        (1- WAM)    rD  
FAMf =              (70)                   
                   - (1- WAM)      - (rr/Xr)      rQ               
 

Fig. 11  Flux model of the Asynchronous Motor (AM).

              dfAM/dt = wo⋅(FAMi⋅iAM + FAMf⋅fAM)                         (68) 
 
iAM  = [iD, iQ]t      ;  AM current, global reference   
fAM = [frD, frQ]t    ;  AM flux linkages, global reference  
                                           D                           Q 

                    (rr⋅Xm/Xr)                       rD             
FAMi =                                                      (69)     
                                        (rr⋅Xm/Xr)   rQ        
                                                                For parameter interpretation, see Fig. 10 
                                           D                           Q           

                      - (rr/Xr)        (1- WAM)    rD  
FAMf =              (70)                   
                   - (1- WAM)      - (rr/Xr)      rQ               
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3.	 The electromechanical model of the asynchro
nous motor

The asynchronous motor state variable to be 
described here is pu angular speed WAM of the 
motor’s rotating part. The set of expressions 
developed in this context is denoted «the 
electromechanical model». See Fig. 12.

Suitable basis for development is the upper 
main part of Fig. 9, relating to the SM’s torque 
equation. Applying the stated AM premises, the 
sought sub model becomes:

model description of Fig. 10 and 11 of the singly-
fed AM, becomes identical to the third order 
model presented in [10]. See equations (15) and 
(14) there. Further: If three phase voltage supply 
is introduced also to the AM rotor circuit of the 
model described by Fig. 10 and 11 above, the 
stated model simplification/ modification leads to 
a model for the doubly-fed asynchronous motor 
that is identical to the one presented by equations 
(21) and (20) of [10].

2.	Detailed analysis of  
unbalanced conditions

A.	Overview observations
In the detailed analysis of one or a very few 
synchronous machines, complete solutions for 
the principal unbalanced short-circuit conditions 
can be obtained. Solution may be afforded by the 
use of different formulations, like e.g. Laplace 
transform, equivalent two-phase (a,b) quantities, 
or direct determination of three phase currents 
and voltages. Reason for holding back in applying 
d–q axis formulation relates evidently in part to 
the fact that coefficients of the equations now 
include functions of time, and to problems with 
using ordinary operational solution methods to 
the analysis task. 

In the practical analysis of complex multi- 
machine power systems it is normally deemed 
suitable to use the method of symmetrical com-
ponents,- which involves the assumption that all 
harmonics can be neglected. Thus symmetrical 
components is primarily a tool for analyzing the 
behaviour of fundamental current and voltage 
components. As a consequence of the inherent 
lack of stringency in applying symmetrical com-
ponents to the study of unbalanced conditions, the 
system analyst is faced also with the specific task 
of defining the most appropriate sequence compo-
nent models for the particular type of non-sym-
metric analysis at hand.

 
B.	Analysis of unbalanced conditions in 

the d–q axis frame of reference 
Based on the presented methodology of analysis it 
is illustrated how detailed analysis of unbalanced 
conditions suitably can be performed within the 
d–q axis frame of reference. This is somewhat 
contrary to the above citation, which stems from 
a time of less computing power at the fingertips. 

Torque equation:
	 dΩAM/dt= JAM·(TAMel -TAMmec)	 (71)
	

_______________________

ΩAM	 =	 pu angular speed of rotating part
JAM 	 =	 inertia constant given by e.g.   
		  H-constant or
  		  acceleration time constant Ta. 
TAMel	 =	 ½·(Xm/Xr)·(1c·iAM)t·φAM = pu  
		  electrical motor torque
1c	 =	 2x2 skew integer matrix, see Fig. 3.

Motor mode of operation:
–If the AM is running at t=-0: 
TAMmec 	 =	 TAMmec(o)·(ΩAM/ΩAM(o))

κ =  mechanical    
                  load torque. 
κ	 =	 (say) 1.5-3.5, depending on type of  
		  load.
TAMmec(o)	 =	 TAMel(o) = el. motor torque from initial  
	 	 load flow.

–If the AM is to be started from stillstand:
TAMmec	 =	 TAMmec(o)·ΩAM

κ = mechanical load torque.  
TAMmec(o)	 =	 (variable) coefficient to model mech.  
		  friction, air  resistance, etc., during 
		  start-up. 
	  	Likely coeff. range ; 0.01 – 0.06.
	 	 κ = (say) 1.5-3.5

Generator mode of operation: 
TAMmec	 = 	 (TAMel(o) +DTmec) = mechanical torque  
		  (negative). 
	 	 DTmec is the response of the power  
		  control system. 
	 	 DTmec is not further dealt with here,  
		  see comment to  control responses in  
		  Fig.9.

Fig. 12  Electromechanical model of the Asynchronous Motor 
(AM).

Neglecting stator transients (by presuming  
diAM /dt=0) and replacing the flux linkages fAM of 
(68) by an equivalent motor emf. formulation, the 
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Problem solution is afforded by introducing into 
the network at the location of (sudden) unbalance, 
a special electrical circuit model that accounts for 
the unbalance at hand. 
Bringing forth this special circuit model is 
afforded in two steps; first the power network 
model to equivalence the unbalance is defined in 
the 3-phase frame of reference, next the model is 
transformed into the d–q axis frame of reference 
via the Park transformation. 

The result from the electrical analysis – whether 
balanced or unbalanced – appears in terms of in-
stantaneous traces of currents and voltages. Cor-
responding rms. traces are readily generated from 
the instantaneous records. Occurring harmonics 
may produce some influence on registered rms. 
traces. 

To illustrate somewhat more in depth on pro-
cesses of unbalanced analysis, two different fault 
cases are dealt with next; forced opening of one 
of the three phases of a power transmission, and 
phase-to-phase short circuit at the terminals of a 
synchronous machine.

Forced opening of one of the three phases of a 
power transmission 
It is assumed that phase ’R’ of the three phases 
(’RST’) of the considered power transmission is 
suddenly and temporarily opened between points 
(’p,q’). The points are located infinitely close to 
each other along the said transmission. 

In the three phase frame of reference the fol-
lowing resistive serial component is introduced 
in between ’p’ and ’q’ to account for opening of 
phase ’R’:

R S T

RSTr =
rR R

(72)r S

r T

rR is the series resistance of phase ’R’. At desired 
point in time this resistance should in principle 
increase to infinity, to observe the fact that phase 
’R’ is being opened. The series resistance of phase 
’S’ and ’T’ are here set equal and denoted r.  r is 
to be set  to zero.

The resistance matrix of (72) is next to be trans-
formed into DQ0r which is the model of the resistive 
component in the D–Q axis frame of reference:

DQ0r = P·RSTr ·P -1   	 (73)

where P is the Park transformation, see (2). The 
result:

D Q 0

D Q 0 r 
=

r+(rR-r)(1+cos2q)/3 -(rR-r)·sin(2q)/3 (rR-r)·cosq·(2/3)

(74)-(rR-r)·sin(2q)/3 r+(rR-r)(1-cos2q)/3 - (rR-r)sinq·(2/3)

(rR-r)·cosq·(1/3) -(rR-r)·sinq·(1/3) r+(rR-r)/3

where q = wo·t, see comment to equation (17). As 
no zero sequence variables are involved in this 
example case, 3rd row and column can be deleted 
from (74). Setting furthermore r= 0, one gets the 
following special electrical circuit model to insert 
in between ’p’ and ’q’ of the transmission to be 
faulted: 

D Q

DQr=
(rR/3)·(1+cos2q) -(rR/3)·sin2q D	

(75)
-(rR/3)·sin2q (rR/3)·(1-cos2q) Q

Opening of phase ’R’ is then simulated by quickly 
increasing the «arc-resistance» rR from zero to 
such a large value that phase ’R’ becomes open 
in the course of an appropriately short period of 
time, – say 0.02s which is the duration of one  
50 Hz fundamental cycle.

Line-to-line short circuit of a synchronous ma-
chine 
It is assumed that solid short circuit suddenly is 
applied between phases ’S’ and ’T’ at the teminals 
of a synchronous generator in isolated and idle 
operation.

In the three phase frame of reference the fol-
lowing set of D - connected resistances (rRS,rST,rTR) 
is introduced at the fault site, to account for the 
phase to phase short circuit:

rST	 =	rfault	=	fault resistance located between
 		  phase ’S’ and ’T’ at fault location 	
rRS	=	rTR = rlarge = resistance to attain large value.
					     (76)

 
Transforming the set of delta-connected resistan
ces into its equivalent set of star-connected resi
stances (rR,rS,rT), it is found that; 

rR = (rRS·rTR)/N → ½·rlarge   (since rlarge >> rfault )
rS = (rRS·rST)/N → ½·rfault                  ’’   	
rT = (rTR·rST)/N → ½·rfault                   ’’
	 (77)
where N = (rRS +rST + rTR). 
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From a formal viewpoint (77) is identical to 
(72). Thus the transformed description (74) 
must be valid also for the case of phase-to-
phase short circuit provided rR = ½·rlarge and  
r = ½·rfault.

As no zero sequence variables are present 
in this fault case either, 3rd row and column are 
again deleted from (74). Setting furthermore  
r = ½·rfault = 0, one arrives at the following special 
electrical circuit model to connect as shunt at the 
bus to be faulted:

D Q

DQr=
(rlarge/6)·(1+cos2q) - (rlarge/6)·sin2q D	

                   (78)
- (rlarge/6)·sin2q (rlarge/6)·(1-cos2q) Q

Line-to-line short circuit is then simulated by 
connecting the shunt resistance DQr at the point in 
time when the fault occurs. 
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Electrical power systems all over the world are steadily being tied more closely together 

by strengthening of local national  connections, as well as more ties across borders  to 

neighboring  countries.

It is a challenge both in design and operation of an expanding interconnected power 

system, to ensure that geographically distributed power supply and demand becomes 

matched in such a way that agreed-upon qualities of delivery conditions are met.

Power system dynamic analyses have to be conducted as part of the processes of 

initially defining proper power quality constraints, and next following up by checking 

quality conditions during operation.

This report deals with power system dynamic analysis. Central to the presented 

methodology is the development of a stock of compact sub models for modelling 

of power system components. Formulation and solution-wise, problem complexity 

becomes thereby largely confined to local component level rather than overall system 

level.
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