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ABSTRACT

In the present report an improved solution algorithm is described for the SIMRA program. The algorithm
is a segregated, implicit projection method, which improves the stability property substantially. Although
the computer demands increase per time step due to the new implicit formulation, the total gain is
considerably because of a much better stability. An additional gain is the improved robustness, meaning
that there are no needs for strong “safety” restrictions on the Courant number.

The algorithm is described and analysed formally for properties like consistency, stability and accuracy.
In addition the method is demonstrated on some test cases, including two- and three-dimensional cases,
neutral and stratified flows.
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1 Introduction

Efficient numerical algorithms for high-Reynolds number flows still represent a major chal-
lenge, although several successful methods have been developed. Some of the more efficient
methods may be classified as segregated or de-coupled, iterative procedures. Well-known
examples are the SIMPLE or SIMPLER-like class of algorithms, which are now in use for
both finite difference, finite volume and finite element methods [1, 2, 3]. These algorithimns
can be used both for steady state and time-dependent problems. In the latter case pro-
jection methods and/or fractional step methods are also extensively used. Examples of
such methods are the classical Chorin-Temam projection method [4, 5], and similar more
advanced algorithms [6, 7, 8]. Another related method is the PISO algorithm, which may
as well be classified as a predictor-corrector method, although pressure projection is an
important part of the algorithm [9, 10]. In addition to the algorithmic concept, the choice
of discretization method is also a discussed theme, typically arguments between FD, FVM,
FEM or other approaches (see e.g. [11]).

Important goals for any numerical algorithm is to obtain a procedure that is stable,
efficient and sufficient accurate. In practical use good stability is always regarded as im-
portant. On the other hand, a very stable method may give a feeling of reliability that
may be an illusion if the method is inaccurate. Still, the opposite situation, i.e. an accu-
rate explicit algorithm which may easily crash at difficult, advection dominated flows, will
often be regarded as unreliable by the user. The computer/cost efficiency of the method is
another important quality. Although parallelization techniques have improving the com-
putational speed substantially, the core algorithm of the method is still very important.
This is especially the case in forecast situations, where a short time window is given in
advance for the computation to be completed [12].

These considerations seem to indicate that some sort of segregated, implicit (or semi-
implicit) projection method may be a good choice. The present paper presents an algorithm
of this kind, including analysis of consistency, accuracy and stability, and then shows some
computational results which are compared with experimental data. The organization of
the paper is as follows: Section 2 presents the actual governing equations to be solved, in
our case the so-called anelastic formulation of the equations of motion. In order to solve the
high-Reynolds number turbulent flow we use an unsteady Reynolds-averaging procedure
together with a standard high-Reynolds (k,e) turbulence model. These equations are
then discretized (Section 3) using a mixed finite element formulation, and the segregated,
implicit solution algorithm is presented in Section 4. Key properties of the algorithm are
analysed in Section 5. Finally, in Section 6 the method is tested on some high-Reynolds
number flows and compared with experimental data.

2 Governing equations

The equations of motion for incompressible flow may be generalized to atmospheric flows by
use of the so-called anelastic approximation. This formulation is often applied in meteoro-




logical models, and may be written in the following energy conservative form ([13, 14, 15]):

@=—V(@)+g9f£+lv-f+f; V- (psu) =0,

Dt Ps s ps (1)
DY v (ve)+
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Here (u,p,#, p) represent velocity, pressure, potential temperature, and density, respec-
tively. Furthermore, 7 is the stress tensor, f is a source term that may include rotational
effects, g is the gravitational acceleration (with positive direction upwards), v is the ther-
mal diffusivity, and g is a temperature source term. Subscript ’s’ indicates hydrostatic
values, and subscript 'd’ the deviation between the actual value and its hydrostatic part,
i.e.
P=ps+pa; 0="0;+0s; p=ps+ pa,
where the hydrostatic relation is given by

Ops/0z = —gps.

In addition, the following expression for hydrostatic density may be derived from the state
equation and the definition of potential temperature:

B (B R/C,
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where R is the gas constant and C, is the specific heat at constant pressure. Hence,
once the hydrostatic (potential) temperature profile is given, the hydrostatic pressure and
density may be calculated, and then substituted into equation system (1).

It may be noted that the Boussinesq approximation is obtained from the system (1)
by assuming constant reference values (p,, f,) instead of the hydrostatic values, and that
formulation may as well be used for incompressible flow and ordinary temperature.

The aim of the present study is to solve these equations for high Reynolds-number
flows. For this purpose we apply an unsteady Reynolds-averaged modelling of the equa-
tion system, together with a turbulence model. Presently a standard high-Reynolds (k, €)
turbulence model is used for this purpose. With these assumptions the model equations
take the following form:
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Here the variables are to be interpreted as Reynolds-averaged quantities. The stress tensor
in the momentum equation has been replaced by the Reynolds stress tensor

Bui 6Uj 2
353_7' + 6:1;1) B gktsu, (3)

and the potential temperature equation now contains an eddy diffusivity

Rij=VT(

Vr = vr/or, (4)

where gy is the turbulent Prandtl number. The production and stratification terms in the
turbulence model are given by

szyT(Bu,» %) Ou; gvr 88
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and conventional constants for the high-Reynolds (k, €) model are [16]
(C,y C1, Cs, 00) = (0.09,1.44,1.92, 1.3).

The value for C3 is more uncertain, and different practices have been used depending on
the flow characteristics. In the present case we assume C3Gy = max(Gy,0), i.e. C3 =01in
stably stratified flows, else Cs =1 (cf. Rodi [17]).

3 Algebraic formulation

The governing equations (2) are discretized in space by use of a finite element method,
and the time integration is performed using a semi-implicit two-niveau formulation. In
compressed form the discretized equation system may be written in the following form:

- - n-1

% +adl| Au™t! = —At+5" - C {pg} ; (6)
CTpu™t! = 1, (7)

-M *- Tl * In ()

Here M represents the mass matrix, A is the sum of diffusion and advection matrices
(subscripts indicating the actual variable), C is the gradient matrix, and s (with subscripts)
represents source terms. The implicit parameter o may be chosen in the interval (1/2,
1), and A* indicates the advection velocity taken at u"*®. The variables (u,p) are re-
defined here as nodal vectors for velocity and pressure, and ¢ represents nodal vectors for
each of the scalar variables (#, k,€). The increments are defined by Au™t! = y™+! — 47,
Ag™tl = ¢"! — 9" where superscripts indicate time levels.




4 Segregated implicit projection algorithm

In practical applications a numerical method should have good numerical stability and
cost/computer efficiency, in addition to an acceptable accuracy. There is no easy way
to obtain an ‘optimal’ method, and compromises usually have to be made. However,
some types of algorithms have proved to be fairly efficient, such as implicit or semi-
implicit, segregated formulations. Examples of such algorithms are the well-known class of
SIMPLE/SIMPLER-like iterative methods [3, 2], non-iterative pressure-correction proce-
dures like the PISO method [9, 10], and other segregated projection formulations like the
‘Projection 1’ and ‘Projection 2’ formulations [6, 18].

In this study we propose a segregated, implicit projection (SIP) method that is non-
iterative, with corrections within each time-step. This algorithm has several features in
common with the SIMPLER-like pressure projection method described in [3], but instead
of iterations it applies corrections similar to the PISO method.

4.1 SIP algorithm

From the considerations above the proposed algorithm is given by the follows steps:
Predict the pressure field via a pseudo-velocity prediction from the system

MA% = —Auu™+ s,; where Al = 4 — u™, (9)
Lp* = C7p,a, (10)

where L represents a discretized Lpalacian operator, see Remarks below.
Compute the velocity field from the (semi)implicit momentum equation

[M + aA;] Av*=-Au"+35,—-C {ii} ; where Au* = u" — u". (11)
8

Compute (semi)implicit equations for other scalar quantities (k, ¢, 8):

[M & aA,;] AG™! = —A38" + 543 where Agnt! = g+ gn. (12)
Correct the velocity and pressure fields by use of the projection step

LAp™ = CTp,u’; where p™t! = p* + Ap™t! (13)
M (psun+1 - Psﬂ*) = _CAPH+1- (14)
The advection matrices A* indicate use of a time-centered advection velocity, which may be
calculated as u"*® = (1+a)u” —ou™"!, but see Remarks below. Further, M = M/A¢, and

the mass matrix may be lumped (see Remarks). The present algorithm is comparable to
that of Nonino and Comino [19], and it resembles several other projection methods as well.
Apart from the pressure prediction, the method is similar to other incremental projection
methods. However, like pressure-free projection methods, the pressure is predicted anew at
each time-step via the prediction step, and therefore has no memory that could accumulate
errors. This may be concidered appealing provided the accuracy is comparable to standard
second-order projection methods.




Remarks:

1. Regarding the implicit parameter (o) two cases are of interest: The fully implicit
case, @ = 1, especially suited for steady state computations, and the time-centered
case, & = 1/2, for time-accurate computations. In the first case the advection matrix
may be taken as A" to simplify calculations.

2. The advection velocity ©®"* in the algorithm above is calculated via extrapolation.
Alternatively we may use the correction step in a complete projection 1: u™** =
u™ + aM1CP,.

3. This algorithm may be applied to both algebraic and continuous formulations. In the
algebraic case the space discretization is performed first, with boundary conditions
included. In that case the Laplace matrix is calculated as L = CT M} 1C, where M is
the lumped mass matrix (for computational reasons). It may be noted that boundary
conditions are included in this matrix, hence explicit pressure boundary conditions
are not needed in the algebraic formulation. The continuous formulation is derived
from the continuous form of the equations, and the Laplacian is then calculated from a
standard element assembling procedure. The continuous formulation therefore needs
explicitly stated pressure boundary conditions.

4. In the continuous formulation a consistent mass matrix can be used throughout, while
in the algebraic formulation the mass lumping in the pressure equation implies the
use of My, also in the final projection step. In our implementation of the algebraic
formulation we use My, throughout, although it is possible to use consistent mass in
the momentum equation (but this may require a factor M MEI in the pressure term,
see Gresho and Chan [6]).

4.2 Implementation

The implementation used is based on 1Qp mixed elements, and is an algebraic formulation
(necessarily, due to the @y pressure interpolation). As is well known, the Q;Qg element
does not satisfy the inf-sup stability condition. However, a consistent stabilization can be
included to avoid possible problems, c¢f. Christon [20]. This is especially advisable when
solving the pressure equation iteratively, which is the present case due to three-dimensional
applications.

5 Analysis

In the following section an analysis is given of the consistency, time accuracy, and stability
of the proposed algorithm. Steady state convergence is also investigated and exemplified.
For simplicity only the the incompressible form of the Navier-Stokes equations are regarded,
and Backward Euler time integration is assumed in the momentum equation. Also, the



mass matrix is assumed to be lumped, although it is possible to modify this, cf. Remark
4 above.

5.1 Consistency analysis

It is a fundamental requirement that the proposed algorithm represents an approxima-
tion to the actual differential algebraic equations, i.e. the semi-discretized Navier-Stokes
equations. For convenience these equations are re-written here in the form

Mi+ A(w)u+CP = f; CTu=g, (15)

where the the vectors f and g now explicitly include boundary conditions (f also includes
source terms). Boundary conditions imply additional time discretization errors, and this
explicit way of representing them is therefore advantageously for this kind of analysis. This
notation is similar to that employed by Gresho and Chan [6].

Before analysing the solution algorithm, we may write the solution of (15) in a ’con-
tinuous projection’ form as follows: From the momentum equation (15a) the pressure may
be expressed as

LP =CTM™[f — A(u)u] — C"u,

where L = CTM~1C, and by using the continuity constraint from (15b), we have
P=LCTM™(f — A(w)u) — 4.

When this expression is substituted into the momentum equation, the following formulation
is obtained:
w= QM f — A(u)u] + M~ICL™ g, (16)

where we have introduced a projection matrix defined as
Qi=TI—-M2CLC". (17)

In order to assure consistency with (15), we therefore need to show that the SIP algorithm
is a consistent approximation to (16), as At — 0.

The SIP algorithm (with e = 1) applied to (15) is given by:

Prediction:
Mu, = Mu, — At(Agun + f); LP, = CTuy — goys. (18)
Momentum:
(M + AtAn)ﬁ'n-H = Muy, + At(fn+l - CPx) (19)
Projection:
Mupyy = Miingy — ACSP; CTtngt = gnt. (20)




The projection step (20) is performed by first solving
LOP = CTiint1 = gny1s

and then updating
Uny1 = ?171+1 -~ .ﬂ/f—lc oP.

By substituting for 4 P, this may be expressed as

Upp1 = Uny1— M—ICL_ICT?E”+1 + Mﬁch_lgn+l
= (I — M_]'CL_IOT)ﬁn+1 + M_ICL~IQH+1
= Qlpsr + M 'CL gpya, (21)

where we have applied the projection operator (17).
From the momentum equation (19) the velocity field can be expressed as

1 = (I + AtM ™ Ap) un + AtM ™Y (fryy — CP)).
For small values of At this may be approximated as
Tns1 = Un + AL, — APM T ALG, + O(A),
where we have in addition introduced the acceleration
= M (fap1 — Anttn — CP,)

By substitution of the above expression for @,.,; back into the projection expression (21),
the following is obtained:

Ung1 = Qlins1 + M TCL gy
= Uy AtQ&n + M_ch_l(gn+] — gn) -+ O(A”ﬁ),

where we have made use of the relation
Qup = u, — M~'CL™'g,.

It can be shown that
oM~Cc =0,

and hence the above expression may be written
Unt1 = Un + ALQM ™ (frsy — Apn) + MT'CL™ (gny1 — ga) + O(AL).

By letting At — 0, it is seen that this expression is consistent with (16), and the algorithm
is therefore consistent with the desired system (15).




5.2 Time accuracy

It is well known that a Backward Euler (BE) time discretization gives a global error of order
O(At), while e.g. a Crank-Nicholsen (CN) scheme gives O(At?). This also holds for direct
solution of the coupled Navier-Stokes equations, and applies to both velocity and pressure
(see Gresho and Sani [18]). Similar results are obtained using incremental projection
methods, while most non-incremental projection methods are restricted to O(At) due to a
splitting error (cf. [7, 22, 23]).

The time-centered SIP formulation (o = 1/2) yields the following for the momentum
equation (neglecting source terms):

At At
(.ﬂff + ?An+1/2) ﬁﬂ-i—l = (M h 7Aﬂ+1/2) Unp — AtOP*,
M’Mn+1 = Mﬂn-{-l = AtC(SP,
or, by substituting for %, from the latter expression:

A
( R /2) S = ( oo At An+1/2) tn — AtC(P, + 6P)

2 2
t2
——A:? Aps12M™ICEP

This is to be compared with the corresponding second-order CN formulation

At At
(M + ?An+1/2) Untl = (M = TAn+1/2) Up — AtC Py,

implying an additional term in the SIP formulation given by

2
ATtAnH/gM‘ICJP.

It is noted that this term is O(A¢%), i.e. the same order of magnitude as the truncation
error in the CN formulation. Hence the present time-centered SIP formulation should give
second-order accuracy.

In order to test the actual numerical performance, the standard driven cavity flow is
used as an example. At time t = 0 the tangential velocity is set to u = 1 along the upper
wall, all other velocity components are zero along the walls. A Reynolds number of Re =
400 is used, and the time evolution is studied for an initial period of 2 s, using a mesh
of 40 x 40 uniform elements. The computed result is illustrated in Fig.1, showing stream
lines of the velocity field after a time of 2 s. The L, error estimates are shown in Fig.2
for velocity and pressure. As can be seen, second-order accuracy is indeed obtained for
the velocity, while the pressure is first-order accurate. This is in accordance with other
standard second-order projection methods (e.g. [23] with references therein). Possible
additional corrections/modifications may improve the pressure accuracy somewhat in these
methods, but generally less than an order of magnitude ([24], [25]).




Figure 1: Computed streamlines for driven cavity flow at time t = 2 s, Re = 400.
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Figure 2: L, error estimates for velocity and pressure, time-centered SIP formulation.
Steepness lines for At and A¢? are added as stipled lines.
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5.3 Steady state

Although the present formulation is a time stepping method, it is still important that
the solution converges to a correct steady state solution independent of the chosen time
step. In real simulations time variations may change in a large range. An example may
be meteorological predictions, where quasi-steady flows may occur during larger parts of
a simulation. By analysing the present formulation as given by egs. (18 - 20), it may
be shown that the steady state solution is indeed independent of the time step, and is
consistent with the steady state formulation.
From equation (20a) we have

Ung1 = Giny1 — AtM'CSP,
or equivalently

(M + AtAD U = (M + AtA )ity — A (M + AtA)YMIC 6P
= Mu, + Atfp — AtCP, — AHM + AtA,)MIC 6P,

where (19) has been substituted. Division by A¢, and assuming steady state (upy; —
Un)/ At — 0, this implies

Antng1 = fay1 — CPoy1 — AtAnM_lc5PA

But steady state also implies P — 0. This can be seen by comparing the prediction and
projection steps (18, 20). When % = 0, time indices are irrelevant, and it can be seen that
the correction step using P, satisfies the continuity condition. It follows that 6P = 0, and
the final result becomes

Au=f-CP,

which is the correct form of the steady state momentum equation.

In order to test this result, the following simple simulation has been performed: Flow
over a step in a channel with fixed upper and lower walls. The step height is 0.5 m, the
total channel height is 1 m, and the length is set to 8 m. The Reynolds number is R, = 100
based on the step height, and the inflow profile is specified as parabolic:

u(y) = 16(y — 0.5)(1 — y), for 0.5 <y < 1.0,

where the vertical coordinate (y) is measured from the lower wall, i.e. y = 0.5 at the
step. For the chosen Reynolds number a mesh of 50 x 100 nodes is fine enough to obtain
a fairly accurate space resolution. Fig. 3 shows results from two of these simulations,
both terminated after 100 s, where the solutions were regarded as stationary (due to
residual evaluations). The shown results are obtained with very different time increments,
corresponding to maximum Courant numbers of Cr = 0.12 and Cr = 24.84, respectively.
The interesting point is that virtually no difference is observes between these results, and
we may therefore conclude that the method gives a steady state solution that is indeed
independent of the time-step applied. Actually, a number of simulations performed on
other problems confirm this conclusion.

11
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with C'r = 24.84.
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5.4 Stability analysis

As illustrated in the previous section, and also experienced in more complicated examples,
the numerical stability of the present algorithm is quite good in practice. Hence, the
time increment may be chosen according to accuracy requirements rather than stability
limitations. In the present section we aim to perform a closer analysis of the formal stability.
For this purpose we re-write the governing equations in semi-discretized form (15) as

Mi+ Ku+ Ny(u)u+CP=f, CTu=0, (22)

where advection and diffusion terms are written out separately, and the skew-symmetric
form of the advection matrix is applied. For simplicity we assume homogeneous Dirichlet
boundary conditions,

Unt1 = Upy1 =0 o0n T,

as reflected in the formulation above, and assume f = 0. In addition appropriate initial
conditions are assumed. The SIP algorithm applied to this formulation is as follows:

Prediction:
M(u, — un) = —AH(K + No)ug; LP, = CTu,. (23)
Momentum:
M (fip1 — un) + ALK + Np)iipy, = —AtCP,. (24)
Projection:
M(Uni1 — Tgg1) + AtC 6Ppyy = 0; CTupyy = 0. (25)

Given a pressure prediction (P.) from (23), it can be shown that the algorithm (24 - 25)
is absolutely stable.
To analyse the stability, we start by multiplying (24) by 2aZ_,, which after some ma-
nipulation yields:
g Mgt + (Ungt = Gngr) T M (Unsy — fingy) + 2ALEL Kl =
up Mu,, — 2Atal_ CP,.

Here the condition n- %,41|r = 0 has been imposed to eliminate advection terms, provided
the skew-symmetric form is used.
Secondly, (25a) is multiplied by 2A¢(CP,)T M, resulting in the expression

—2Atar,(CP) + 2A1PTLSP =0,

where the continuity condition CTu,,; = 0 has also been imposed.
By adding together these results, we have:

ﬁ£+1M?1n+1 + (Un+1 - ﬂn+1)TM'(un+1 - ﬁn-}-l) “F 2Atﬂ£+1Kﬂn+1
+2A2PTLSP = ul Mu,,.

13




Finally, (25a) is multiplied by uZ_,, and we obtain
UI+1Mun+1 - uz+1Mﬁn+l = O:

where the pressure term has been eliminated due to the continuity constraint and the
homogeneous condition n- u,4; = 0 on I'. By adding this to the previous result, we obtain
the following estimate:

Up gy Mgy + 20887 Koy + 2082 P LP,yy < ul Mu, + 2A82PTLP,.  (26)
Here the predicted pressure P, is given from (23) as
P, = —AtL'CT MY (K + N,)un,
and hence the last term on the right hand side of (26) is of the form
AL PTLE, o AVl

where f(uy,) is a function of the previous velocity u, and time-independent matrices. The
estimate (26) is therefore restricted by the previous velocity, and the stability is secured
provided appropriate initial values.

6 Computational results

The SIP algorithm has been implemented in a numerical code, presently using a mixed
(1Qo formulation for the velocity-pressure interpolation. In the following we show some
examples of results compared with data; all of these are for high-Reynolds number turbulent
flow, using the standard (k, €) turbulence model.

For all of these test examples the implicit parameter is chosen to be o = 1, i.e. fully
implicit. The computations were run with a Courant number in the range 2 - 3.

6.1 Boundary conditions

All of the present examples use Dirichlet inflow conditions and free outflow conditions in
the finite element sense, i.e. a weak form of zero traction for the momentum equations and
zero normal derivative for other scalar quantities.
For boundary layer flows the inflow profiles are specified using a logarithmic velocity
profile and corresponding profiles for turbulent kinetic energy and dissipation:
U= % In (zi) ;. k=maz {C;lfguf(l — 2/8)%, kmin } ,
Q

- (27)

= CAE3/2 10 where £ = — "%
€= C,"k"/t; where { TF42/8

Here § is the boundary layer thickness, km:, is @ minimum turbulence, z, is a roughness
parameter, k£ = 0.4, and other quantities are as defined before.

14




Walls or terrain boundaries are assumed to be rough, and standard wall conditions are

used: . 4
%Ly (_); e =1, (28)

U, K Zo

where (u;,u,) are the tangential and normal velocity components at a small distance d
from the wall. The implementation is performed by applying (28) at the second node from
the wall. In addition it is secured that the velocity gradient at the second element from

the wall satisfies
But Uy

8d ~ kd’
which follows directly from (28). Another way to implement such conditions is by using
special linear-logarithmic elements [26].
Near-wall conditions for the turbulence variables are given by

(29)

2 3

u* Py _ u*
k = W’ €= E. (30)
7

For stratified problems, the temperature wall condition used in the present case is a
free condition in the finite element sense, that is a weak form of zero normal derivative.

6.2 Turbulent flow over a two-dimensional hill

This example is chosen to illustrates the ability of the model to calculate neutral turbulent
flow with separation and recirculation. The geometry of the hill is defined by

h(z) = hocos®0; 6 = x/h,tan50°

, where h, is the maximum height of the hill. Experimental setup and results are given in
[27, 28], and the flow is characterized by a boundary layer height of 6/h, = 5, a roughness
parameter z,/h, = 3 X 107, and a Reynolds number Re = U,h,/v = 5.6 x 10%.

The computational domain is chosen as —8 < z/h, < 25, 0 < z/h, < 10, where the
center of the hill is at the origo of the coordinate system. The computations are performed
with a fairly fine mesh of (210 x 40) elements, with clustering close to the hill and the
bottom boundary. Close to the bottom boundary the minimum mesh spacing is only
Azm,-n/za = 20.

Results from this calculation are shown in figures 2 and 3. Figure 2 illustrates the
overall results of flow field (stream lines) and turbulence (V%). It is well known that the
standard k, ¢ model tends to under-predict re-attachment lengths. The present calculation
gives a recirculation length of zp /h, ~ 6.5, while the experiments show z; /h, € (6.6,6.8).
This is an acceptable result, although the tendency is somewhat under-prediction. The
maximum turbulence behind the hill is about \/E/ U, = 0.25, and this is also fairly close
to the experimental results.

Figures 3 and 4 show comparisons with experimental data for both velocity and turbu-
lence. Figure 3 illustrates comparisons of horizontal velocity profiles at the three sections
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z/h, = 0,5,8. The agreement is fairly good, although one may observe a tendency of too
slow re-adjustment downstream the recirculation zone. This is a well-known effect of the
turbulence model.

Comparisons of turbulence profiles for the same sections are given in figure 4. These
profiles represent the variance o; /U, = Vud /Us,, and the corresponding numerical results
are estimated as 0, /U, =~ v1.2k/U, (cf. Paterson and Holmes [29]). The numerical results
correspond relatively well with the experimental data, especially in the boundary layer
domain, while there is somewhat more discrepancy in the outer domain.
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Figure 4: Turbulent flow over a two-dimensional hill. The figure illustrates streamlines,
indicating a recirculation length of z1/h, = 6.5.
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6.3 Flow around a circular cylinder at high Re number

Flow around a cylinder at high Reynolds number represents unsteady flow, and therefore
requires a real time simulation. The present case is performed both to test the ability of
the algorithm for this kind of flow, and also to investigate the ability of the simplified,
approximate projection discussed in Section 4.2.

Simulations are performed for a Reynolds number Re = 3 x 10°. The domain is chosen
to —10 < z/D < 20, —10 < y/D < 10, and the presented results are obtained on a mesh
with 12000 elements, using a fine grading towards the cylinder surface with a minimum
mesh size of A/D =5 x 107

The inflow boundary conditions are specified as a constant velocity Uy, = 1 m/s,
a minimum turbulence (Kpin, €min), and with all other boundaries treated as open/free
boundaries.

For this kind of flow the force coefficients on the cylinder are of interest:

F Fy

0= etz L= 1200z

where (F, F3) are the longitudinal and transversal force components, respectively, given
by:

Fy = f(pm + Twna)ds; Fy = f(pn2+Twn1)ds.

Here (p,7,,) are the dynamic pressure and wall shear stress, respectively, (ni,n,) are the
normal components in the two directions, and the integration is around the cylinder.

Table 1: Flow around a circular cylinder at Re = 2 x 10~5

Case Drag coefficient Cp  Lift coefficient Cy,
Experimental 0.55 & 0.15 [31, 32] =£0.08 to 4-0.16 [33]
Computation 0.56 +0.17

Table 1 summarizes the results regarding force coefficients. As can be seen, the present
results compare well with experimental data, although there is a large spread in the data
for this Reynolds number.

Figure 7 shows the computed force coefficients as a function of time (upper), and the
time-averaged pressure coefficient around the cylinder (lower). The latter is compared with
experimental results for a similar Reynolds number, and is defined by

- P~ P
1/2pU2°

P

It is seen that the computed mean drag and lift coefficients (Cp, Cy) lie in the same
range as the experimental data. Furthermore, it is found that the computed separation
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Figure 7: Re = 3 x 108, smooth cylinder. Upper: computed force coefficients.
computed mean pressure coefficient compared with experimental data [34].

point has a mean position close to 115 degrees (measured from the stagnation point), which
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compares well with experimental data [34].

The mean pressure coefficient is compared with experimental data [34] in the lower part
of figure 7. Although there is a certain discrepancy, the computed pressure distribution is
fairly close to the data.

6.4 Turbulent flow around a three-dimensional hill

Hunt and Snyder [30] documented a series of laboratory experiments on flows over a three-
dimensional model hill. The following examples are based on two of these experiments,
using a hill shape

1.04 0.083
L4714 (r—m)%/a?

h(;};’ y) =H —0.03 5

where r = /(22 +y?)/H, r; = 20.3/H, a; = 7.6/H, and the hill height is given by
H =229 cm.

The inflow profiles for velocity, turbulent kinetic energy, turbulent length scale and
dissipation are specified as given in (27). For the inflow conditions the boundary layer
height is 4 = 0.3H. The Reynolds number is Re = 10* based on the hill height, and
the roughness parameter is z,/H = 0.0003. The computational domain is given by —6 <
v/H <8, -5<y/H<5,0<z/H <7, and the present computations are performed on a
structured mesh consisting of (100 x 100 x 50) tri-linear elements, with clustering around
the hill and towards the boundary layer.

6.4.1 Neutral Flow

Results from this simulation are shown in figure 8, which illustrates velocity field at a near-
ground section, and velocity and turbulence intensity along the vertical symmetry plane.
The flow is characterized by two symmetric eddies downstream of the hill, as illustrated
in figure 8a; and along the symmetry plane these eddies combine to a back-flow circula-
tion (figure 8b). A simple way to characterize these eddies is to specify their center at
the downstream hill surface, and to identify the recirculation point downstream along the
symmetry plane. A comparison between experimental results and computations is given
in Table 2 for these quantities, and indicates a reasonable agreement. A main reasons for
deviations in such flows may often be attributed to inaccuracies in the turbulence model.

Table 2: Neutral flow around a three-dimensional hill

Case Vortex center (z,y)/H  Recirculation zp/H
Experimental 1.3=0.7 3.5
Computation 1.2+0.7 3.2
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figure: Vertical symmetry section of velocity and turbulence intensity. (Arrows are selected,
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6.4.2 Stratified Flow

The geometry is the same as in the previous example, but now the inflow is specified with
a temperature stratification given by a Froude number of Fr = Uy, /(Nh) = 1, where Uy,
is the free stream velocity and N is the buoyancy frequency defined by N? = (g/p)68/0z.
The inflow temperature profile corresponding to this is

0 = 6,exp(N%z/g).

Free conditions are assumed for § along other side boundaries and along the ground /bottom
of the topography.

Results from this simulation are shown in figures 9 and 10. The flow is characterized by
an internal wave as illustrated in figure 9. The separation effects from the neutral case has
more or less disappeared, although there are some weak effects left as illustrated in figure 10.
Similar effects are found in the experiments, see [30]. A quantitative comparison between
experimental and computational results is shown in Table 3. Due to the stratification this
case is more sensitive, and only small variations in Froude number may give changes in the
results. Still the comparison in table 3 shows a reasonable agreement. The simulated wave
length is approximately A/h = 5.5, while the experimental data give A\/h = 6.0 £ 1.5.

Table 3: Stratified flow around a three-dimensional hill, Fr = 1

Case Vortex center (z,y)/H Separation z/H Recirculation z/H
Experiment 1.2+04 0.5 1.6
Computation 0.9+0.7 0.7 1.7
S EmEeEm e P ——
etz G VR 400 -
380 -
2 3
360 1

340 |

320 H

Figure 9: Potential temperature along vertical symmetry section at Fr = 1.
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6.4.3 Computational efficiency

In order to evaluate the computational efficiency, the convergence rate to steady state is
calculated for different time increments. The residual is measured as the relative difference
in velocity between each time-step:

€y = ”un+1 = ”n”/”un”r

where the Euclidian norm ||| = (3, u2)'/? is used. Results from these computations are
shown in Fig.11 for three different time steps, corresponding to maximum Courant numbers
of 2.5, 5, and 10, respectively. For a given convergence, the number of steps decrease with
increasing step size. On the other hand, the cpu per time-step increases with increasing
step size due to more iterations. These results are collected in Table 4. The last line in the
table shows the same characteristics for a standard Projection 1 (P1) method with explicit
advection and implicit diffusion. This formulation is therefore restricted by a Courant
number of Cr < 1, in practice Cr < 0.6 used with the turbulence model. As can be
seen, the SIP model can be a factor of 3 more efficient than P1 in this case, although it
needs more cpu per time-step. In addition, it should be noted that a standard Projection
1 formulation of this kind has a steady state solution that is dependent on At (cf. the
analysis in [6]), while the SIP model has no such bias.

0.1

0.01 R\

residual

0.001 |

0.0001 |

1 1 1 1 X 1 1 1
1] 20 40 60 80 100 120 140 160
number of steps

Figure 11: The effect of time increment on the convergence rate to steady state.

7 Concluding remarks

The background for this study has been to investigate numerical algorithms for efficient
solution of turbulent flow problems, i.e. flows that can be solved by an unsteady RANS
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Table 4: Comparison of efficiency using different models and step size.

Model Cr-number CPU/step Total CPU (g, = 5 x 1079)

SIP 2.5 2.68 402
" 2.0 3.06 275
i 10.0 4.06 244
P 0.6 1.57 785

formulation. Robustness, efficiency and acceptable accuracy are regarded as key properties.
As a possible candidate a segregated, implicit projection method has been chosen for
closer investigation. This method has proved to be robust and stable, and it converges to
steady state in a reliable manner. The same order of accuracy is obtained as for standard
second-order projection methods, namely second-order velocity and first-order pressure. In
practical applications all of these properties are regarded as very important.

The method needs more computer time per time-step than a simpler projection method,
but the gain in robustness and stability is substantial. For example, compared to a sim-
ple semi-implicit projection method (Projection 1) using explicit advection, an overall
increased efficiency by a factor of 3 - 4 seems possible. In real case simulations, this factor
may even be larger due to the difference in robustness between these two methods.

Computations for various high-Reynolds flows show that the method is robust, and a
maximum Courant number in the range 2 - 3 is usually acceptable. It should be noted that
these computations also include a two-equation (k,€) turbulence model, which increases
the stability requirements substantially.

The computational results show fairly good agreements compared to available exper-
imental data. Hence, although more testing and investigations are needed, the present
algorithm seems to be an interesting alternative with several promising qualities.
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NOMENCLATURE OF MAIN VARIABLES

Subscripts

gravity

turbulent kinetic energy
turbulent length scale
pressure

time

time-step

velocity vector

velocity components (w in vertical direction)

friction velocity

space variables (z in vertical direction)

roughness parameter

sum of diffusion and advection matrices

gradient matrix
Froude number
diffusion matrix
Laplacian matrix
mass matrix
advection matrix
Reynolds number
Reynolds stress

free stream (hight) velocity
implicit parameter
diffusivity

boundary layer height
turbulent dissipation
viscosity

density

potential temperature
stress tensor

general scalar variable

static variable
dynamic variable
time index
turbulence index
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