SINTEF A231 — Unrestricted

REPORT

Metamodels for Model-
Driven Development -
Requirement and Usage

Ida Solheim, Svein G. Johnsen, Tor Neple

SINTEF Information and
Communication Systems

August 2006

SINTEF [™

SINTEF REPORT

INTEF ICT
S Metamodels for Model-Driven Development -
Address: NO-7465 Trondheim, i
ress NORWAY rondheim Requirement and Usage
Location: Forskningsveien 1
Telephone: +47 22 06 73 00
Fax: +47 22 06 73 50
Enterprise No.: NO 948 007 029 MVA AUTHOR(S)
Ida Solheim, Svein G. Johnsen, Tor Neple
CLIENT(S)
The Modelware project (FP6-2003-IST-2-511731)
REPORT NO. CLASSIFICATION CLIENTS REF.
SINTEF A231 [Open Wp2 — Process and Methodologies
CLASS. THIS PAGE ISBN PROJECT NO. NO. OF PAGES/APPENDICES
Open 82-14-04035-3 [90B20920 17/0

ELECTRONIC FILE CODE

PROJECT MANAGER (NAME, SIGN.)

CHECKED BY (NAME, SIGN.)

Metamodels for MDD (SINTEF report).doc Jan @yVIHd Aagedal Jan @}’Vlnd Aaggd_@l J‘@I}L /«fé’(

FILE CODE DATE APPROVED BY (NAME, POSITION, SIGN.) - !
2006-08-11 Bjern Skjellaug, Research dire

ABSTRACT

éXJ

Within software engineering, there are several standardisation activities aiming at developing the
best general process metamodel. Two candidate standards are SPEM (of OMG) and SMSDM (of
ISO/IEC). This paper studies each of these metamodels with respect to model-driven development
(MDD), evaluating their domain appropriateness and comprehensibility appropriateness. The
conclusion is that both metamodels are appropriate for the MDD domain, but SPEM is less
comprehensible than SMSDM. A third criterion, technical actor appropriateness, should be evaluated
for these metamodels when used in automated process modeling tools. Such tools should enable the
combination of different process frameworks, by instantiating reusable process elements and tying
them together to form tailored process models. Metamodel interoperability is required for this

purpose.
KEYWORDS ENGLISH NORWEGIAN

GROUP 1 ICT IKT

GROUP 2 Information Systems Informasjonssystemer

SELECTED BY AUTHOR

Model-Driven Development

Modelldrevet utvikling

SINTEF

TABLE OF CONTENTS

1 INEFOAUCION «.ouerereeenereirreesisecnenieesescsesessssnnsessesescsssossenssnsessasonssssssssssssssssssssesssssssesssssssssssassaseses 1
1.1 BacKErOUNdccoooiiiiiiiii ettt r e ettt enes 1
1.2 QUESTIONS ...ttt ettt ettt ettt er e ete e e e reete e e e anbeeneeteeabenasenreeneas 1
1.3 ADOUL thiS PAPET ..ottt 2

2 Requirements and APProach....ieicicnicininnsnisiencinnsesinsisesisesssssissssisesssessssossessassns 3

3 A EXamPple ProcCess ...iiiiiiiiiiinniinicnionmiimoeseimssisiomsesassesmsasnsssssssssons 5

4 Evaluating SPEM......iviiniiiiininiicnmeiinnicoenienmiisssossssesssssssssnessssssessnsssssssssssssnessnes 6

5 Evaluating SMSD Mcciiiiiininiiinienniioimmmiienmsisssiiosssetessssssssssesssssnssesssssasesssssssasssssase 8

6 Usage of a Process Metamodel in Model-Driven Development.........c.cocuecriincrcsencreseransas 10
6.1 A Metamodel’s Role in a Process FramewoOrK........ococcocvioiieioeeeeeeeeeeeieeeeeeseesesesnnesenes 10
6.2 A Process Framework fOor MDDoooo oo s 10
6.3 REIAtEd WOTK ..ottt e e e e s eraeateeeeessesesseearsrrreeasssesessraaearasaans 11

7 Conclusion and FUFTREE WOTKKuueiieeiieeiiiciicsnsirereisesssssieressessesssssssasassssssesssssesssasssssessoss 12

REMEIEICES coeeeeeeeeirerecciescesetererecsssssssssssssesesssssesssnsssssssssssssanssssesesssssnossenssennanssessossessnsnsassss 13

ii

SINTEF

SINTEF I

1 Introduction

1.1 Background

Process modelling has been around for some years, helping organizations and employees to
identify, analyze and improve their processes. A model is based on a (more or less explicit)
metamodel, which prescribes constructs and rules for creating a model. This paper focuses on
metamodels for process modelling. It is not concerned about the modelling of general processes,
but of processes required to perform model-driven software development (MDD). In MDD,
models are the prime artefacts. That means, models are in use throughout the whole production
chain — from the early capture of user requirements to the production of executable code. Model
reuse is essential, and also model transformations, which preferably should be automated. Indeed,
tool support is by many considered a prerequisite for successful MDD (e.g. [2], [3D-

Although MDD has been practiced for years (e.g. [4]), it did not gain ground until the Object
Management Group (OMG) launched its Model-Driven Architecture ® (MDA ®) initiative [5].
Being “an approach to using models in software development” [5], MDA has boosted the
development of tools and thereby (semi)automation of program development and maintenance.
MDA motivates MDD processes with the following characteristics:

® Many activities have models as input, or output, or both.

» Several of these activities are model transformations (while others are model analysis,
model verification etc.).

¢ A transformation takes a model as input and produces a model, or text, as output. During
the transformation, the output model is supplied with domain-related information not
present in the input model. An example of such a domain is the platform concept, often
used for “implementation platform”.

Appropriate process models may be useful for software developers aiming at adopting MDD.
General process metamodels exist; for the time being at least two metamodels for software
engineering are being standardized by their respective standardization bodies:

* Software Process Engineering Metamodel (SPEM) [6], an industry standard being
developed by the Object Management Group (OMG). The scope of SPEM is to define a
“minimal set of process modelling elements necessary to describe any software
development process”.

* Standard metamodel for software development methodologies (SMSDM) [7]. This
Australian standard has been accepted as a work item of ISO/IEC JTC1 [8], in which it, at
the time of writing, has the status of a working draft [9]. The scope of SMSDM is to
establish a “formal framework for the definition and extension of software development
methodologies”.

Both SPEM and SMSDM claim to be appropriate for all kinds of software engineering processes.
SPEM is even supported by some off-the-shelf tools; among which are IRIS Process Author [10],
Rational Rose XDE Developer Plus [11], and Objecteering/UML Enterprise Edition [12].

1.2 Questions

An MDD process is assumed to be a special case of a general software development process.
Therefore, a metamodel for MDD processes would definitely resemble a metamodel for any other
software development process. However, there may exist specific requirements to MDD process

2 SINTEF

modelling, which are not catered for by general-purpose process metamodels. Hence, the authors
pose the following questions concerning a metamodel for MDD processes:

1. Which requirements must a metamodel fulfil in order to support the modelling of MDD
processes?

2. Which metamodel is more appropriate for modelling MDD processes, SPEM or SMSDM?

3. Which role does an MDD metamodel play with respect to a process framework?

1.3 About this Paper

This work is part of the EU-funded R&D project MODELWARE [13], in which it represents a
starting point for the elaboration of an MDD process framework. This paper identifies a few
important (but not exhaustive) requirements to an MDD process metamodel (chapter 2). Then,
referring to an example process (chapter 3), SPEM and SMSDM are investigated with respect to
the selected requirements (chapters 4 and 5). Further, the usage of an MDD process metamodel is
discussed, relating the metamodel to a process framework (chapter 6). The paper concludes with
the results of the evaluation (chapter 7) and suggests further work with respect to metamodel
investigation, and to development of an MDD process framework.

SINTEF 3

2 Requirements and Approach

A metamodel suitable for modelling MDD processes need to fulfil the following requirements:

a.

d.

It must be possible to specify a transformation as an artefact, and a model as an artefact,
and relate those by input or output relations (or both). Model transformations are central in
MDD, and ongoing work tries to cope with their various complexities (e.g. Bezivin et al.
[3D.

It must be possible to include traceability information as output from a transformation.
Such information will ensure that model elements are traceable through all
transformations, backwards and forwards.

It must be possible to distinguish between manual and automatic (e.g. tool-supported)
activities.

The metamodel must have a graphical part that eases its understandability by humans.

Based on an example, the following chapters evaluate the two standard process metamodels
against the above requirements. The evaluation is based on the framework of Krogstie and
Selvberg [14]. This framework aims at evaluating the qualities of models and modelling
languages, e.g. the UML. According to this framework, a modelling language may be evaluated
according to several types of appropriateness, e.g. domain appropriateness, organizational
appropriateness, comprehensibility appropriateness, etc. (Fig. 1). The UML has already been
evaluated according to this framework [1].

Modeller Social
explicit actor
knowledge interpretation
Ky I

Participant language
knowledge appropriateness

Comprehensibility
appropriateness

Modeling Model Language
domain externalization extension
D M L

I |

Domain appropriateness

Technical actor

Technical interpretation
actor appropriateness
interpretation
T

Fig. 1 Kinds of language appropriateness. Rendered from [1] by courtesy of the author.

The appropriateness of SPEM and SMSDM to support general software processes will not be
discussed here, but are left for their respective standardization environments. What to be
investigated in the following are their abilities to support MDD. Therefore, only these kinds of
appropriateness will be investigated:

Domain appropriateness with respect to the MDD domain (requirements a—c)
Comprehensibility appropriateness with respect to modelling MDD-specific processes
(requirement e). This appropriateness is relevant to vendors of process modelling tools. In
cases where no such tool is available, the process/method engineer [15] will have to use
the metamodel directly and hence need to understand it.

4 SINTEF

Technical actor appropriateness is relevant to evaluation after the metamodel has been realized in
a process modelling tool. Such evaluation is left for further work.

SINTEF 5

3 An Example Process

This chapter presents a selected example of an MDD process that will be used to discuss the
appropriateness of SPEM and SMSDM metamodels.

In model-driven development, one characteristic process is the transformation from a platform-
independent model (PIM) to a platform-specific model (PSM). (What distinguishes a PIM from a
PSM is described inter alia in [S].) Hence, one needs a kind of activity or work definition that
takes a model as input and produces another model as output. The selected transformation is
assumed to know the PIM’s metamodel and the PSM’s metamodel. A transformation record is
supposed to be tied to each iteration of this process and stored in some repository for later
reference. It is assumed that traceability information exists as part of this record, or in addition to
it. Such traces provide links from input model elements to output model elements and thus help
verify that the transformation has performed as expected.

Language engineer

PSM
PIM-PSM
PIM Transformation
Transformation
record

Fig. 2 An informal sketch of a PIM-to-PSM transformation.

Fig. 2 depicts an informal sketch of the example. In the next chapters, this example process will be
modelled by means of SPEM and SMSDM.

6 SINTEF

4 Evaluating SPEM

This work uses SPEM 1.1, which has undergone several improvements compared to its
predecessor. SPEM is defined as an extended subset of UML’s metamodel, and is also defined as
a UML profile. The fact that SPEM is part of UML, prescribes the usage of UML’s metamodel
wherever appropriate. Therefore, some of the model elements constituting SPEM inherit from
model elements already defined in UML s metamodel. References are made to the UML packages
“Data Types”, “Core”, “Actions”, “State Machines”, “Activity Graphs” and
“Model Management”.

Parameter Classifier ModelElement
(from Core) (from Core) (from Core)
Operation l WorkProductKind '
(from Core) ActivityParameter +kind | 1
0.
+subwork +work +performer
9.~ ProcessPerformerl | WorkProduct
{ordered} ActionState A 0..* | *workProduct
(from Core)
ZI& I 0..1
Step | I ProcessRole +responsibleRo‘e

+activity] 0.* +assistant '0“*

Fig. 3 A relevant part of SPEM’s class diagram.

The SPEM metamodel is expressed in a class diagram spanning several figures in the
specification. The part rendered in Fig. 3 is relevant to this study. Inheritances to UML’s
metamodel are also shown.

Fig. 3 shows some important relationships between ProcessPerformers, Activites and
WorkProducts, but does not show all of them. For example, based on Fig. 3 alone, one cannot
deduce a direct connection between an activity and the work products resulting from that activity.
Further, Fig. 3 does not show which artefacts may be input to, or output from, an activity. Nor is
there an explicit sequence between activities (or steps). However, by carefully reading the text
accompanying Fig. 3, one may start nesting inheritance relationships from SPEM to UML’s
metamodel. This way, we may verify that SPEM 1.1:

a. Allows the use of models as artefacts and as activity input/output. This is done by means
of the WorkProduct class. The Activity class is associated with WorkProducts via the
ActivityParameter class. This class tells which WorkProducts are inputs to, and which are
outputs from, the Activity. Model transformations are defined by means of the Activity
class.

b. Enables specifications of a transformation record. This is done by using the WorkProduct
class.

c. Allows distinction between manual and automatic activities. This may be obtained by
using the class Guidance, which is associated with the Activity class.

Hence, the requirements a—c are satisfied, and we may conclude that SPEM 1.1 has sufficient
domain appropriateness for the MDD domain. The example process may be modelled as follows
using SPEM’s UML profile:

SINTEF ;

Application Designer

PIM-PSM
Platform-Independent Transformation
Model

Transformation Record

Fig. 4 PIM-to-PSM transformation expressed in a swim line diagram using SPEM’s UML profile.

When it comes to requirement d, comprehensibility appropriateness, our impressions are varied.
On the one hand, SPEM’s strong tie to UML’s metamodel may be regarded as a strength. Since
SPEM is an extended subset of UML’s metamodel, it reuses model constructs already present in
the UML. This way, existing model constructs — which presumably have undergone thorough
consideration — need not be reinvented or redefined.

On the other hand, the extensive dependence on UML’s metamodel makes SPEM particularly
complex and consequently difficult to comprehend. For this reason, we may conclude that the
SPEM 1.1 is weak with regard to comprehensibility appropriateness.

5 Evaluating SMSDM
Already a de jure Australian standard, SMSDM has been adopted as a working draft for
standardization by ISO/IEC JTC1 [9]. A main difference from SPEM is that SMSDM does not
include parts of UML’s metamodel. However, SMSDM uses the UML to express the process
metamodel. Similarly to SPEM, this is done in the form of a UML class diagram, which is too

large to fit into one figure. The most relevant part is rendered in Fig. 5 1

Producer

0.*

assighed to
0.*

Task

1 1.*

performs

Action

1.

SINTEF

* 1

acts upon

WorkProduct

T

Document

Model

Fig. 5 A relevant part of SMSDM’s class diagram

After studying the SMSDM class models and the accompanying text, we are able to verify that

SMSDM:

a. Allows the use of models as artefacts and as activity input/output. This is done by using
the Model class, which is a subclass of the more general WorkProduct class. The Model
transformations are defined by means of the Task class. The Action class holds
information about how the WorkProducts are handled in Model transformations.

b. Enables the specification of transformation record. This is done by using the Document
class (alternatively, the Model class), which is a subclass of the WorkProduct class.

c. Allows distinction between manual and automatic activities. This may be obtained by
using the class Technique, which is associated with the Task class.

Hence, the requirements a—c are satisfied, and we may conclude that SMSDM 1.1 has sufficient
domain appropriateness for MDD domain. The example process may be modelled in SMSDM as

follows:

" The figure does not contain the “clabject” (class + object) concept, even though the authors appreciate it as a very
convenient metamodel construct. It is omitted in order to concentrate our discussion on SMSDM's appropriateness
applied to the modeling of MDD processes.

SINTEF

<<Model>>
PIM

<<Producer>>
Language engineer

actsfupon

<<Action>>
Read

assigned to

<<Task>>

PIM-PSM

causes

transformation

causes

<<Action>> <<Model>>
Write acts upon PSM
<<Document>>
<<Action>> Transformation
; acts upon
Write P Record

Fig. 6 PIM-to-PSM transformation expressed in a class diagram based on SMSDM.

SMSDM appears understandable and straightforward. Unlike SPEM, it is self-contained in that it
does not reuse definitions from UML’s metamodel. This is an important reason for its
comprehensibility. We conclude that SMSDM fulfils requirement d, comprehensibility

appropriateness.

10 SINTEF

6 Usage of a Process Metamodel in Model-Driven Development

6.1 A Metamodel’s Role in a Process Framework

A process framework (PF) is a repository of reusable process model elements (process patterns,
templates, etc...) to be used for building process models. Given that the elements in a PF are
expressed in a well-defined formal language, the PF must be based on a metamodel defining this
language. Several PFs might be in use in concert, each offering process model elements
representing specific aspects or domains, e.g. organization-specific aspects, product-specific
aspects etc.

6.2 A Process Framework for MDD

One domain of specific interest to be covered by a PF is the MDD domain. An MDD PF will
contain only MDD-specific elements, which are process model elements to be used to build
software engineering process models in compliance with MDD principles.

Software engineering companies may have their own standard development processes. When
starting to use MDD, a company may not want to redefine its PF, but rather plug into it
appropriate MDD-specific processes from an MDD PF. This means to select the appropriate
elements from the two frameworks, prepare these elements (e.g. instantiate a process pattern) and
compose them to form a process model by the means of a modelling tool. This model will then
reflect the various aspects of the different PFs in use.

imports | COMPOSITION | imports
T Metamodel |7
i ! i
MDD PF ' OSPM PF

¥ ¥
basedion basedion basedion

Metamodel Metamodel ~

using elements from | using elements from
'

A MODELLING
ToOL

Fig. 7 A process model may be composed of elements from two different PFs — if their respective metamodels are interoperable

Fig. 7 sketches the use of an MDD PF together with an OSPM (Organisational Standard Process
Model). Both PFs are supposed to be based on metamodels. Elements of the PFs are composed
into a complete software engineering process model by means of an appropriate modelling tool.
The resulting process model should reflect both the MDD aspects and the aspects of the OSPM.

For PFs to be combined in this way, the elements from the one PF must be “plug-compatible”
with elements from the other PF. To achieve such compatibility, harmonization is required on two
levels:

SINTEF 11

e Metamodel level: The metamodels used by the PFs must share a sufficient set of
constructs and rules.

e Model level: The elements of the different PFs must have a common ontology and
common semantic rules.

The harmonization on the metamodel level may be achieved by creating a metamodel (called the
composition metamodel in Fig. 7) with the purpose of bridging the MDD PF metamodel with the
OSPM metamodel. On the model level, the modelling tool has to base its language on the
“composition metamodel”. This way, the tool may enable composition of a new process model
based on model elements from both PFs.

6.3 Related Work

There is an abundance of work on software process modelling. However, only a few selected
papers are referenced here, in order to put the work of this paper into context. The traditional gap
between structural/object-oriented metamodeling and process metamodeling has been addressed
by several authors. Dori and Rheinhartz-Berger suggest to bridge this gap by introducing the
Object-Process Methodology containing an OPM-based metamodel. Henderson-Sellers et al. give
a similar contribution in their introduction to SMSDM [7]. Gnatz et al. [16] suggest a metamodel
by which to describe both work artefacts, process artefacts, and relations between them. This
metamodel is supposed to be the basis for software development processes in which initial artefact
descriptions are tailored and reused during iterative and evolutionary process improvement.
Caivano and Visaggio [17] emphasize reusable process descriptions, suggesting a framework
based on process patterns, but no explicit metamodel. Breton and Bezivin [18] address coupling
between metamodels.

12 SINTEF

7 Conclusion and Further Work

This study has evaluated the two standardized metamodels SPEM and SMSDM with respect to
usage within the domain of model-driven software development. Two evaluation criteria have
been used: domain appropriateness and comprehensibility appropriateness. The following
conclusions were drawn:

Domain appropriateness Comprehensibility appropriateness
SPEM 1.1 | The SPEM metamodel's ability to SPEM has a low score on comprehensibility
express MDD-specifics has been due to the complexity of inheritance
verified through a worked example. relations to UML’s metamodel.
SMSDM SMSDM's ability to express MDD- SMSDM has a high score on
specifics has been verified through a | comprehensibility due to its straightforward
worked example. and easy-to-understand class diagrams and
textual explanations.

A metamodel’s successful usage is to a large degree dependent on automatic tools that support it.
An operational MDD process framework would provide a tool to guide software developers
through MDD processes. The metamodel of this MDD framework may be SPEM 1.1 or SMSDM.
When implemented in a tool, the metamodel should be evaluated with respect to a criterion not
studied here, namely technical actor appropriateness (Fig. 1). This appropriateness is a means to
achieve syntactic, semantic and pragmatic quality of the models created by the tool [1]. Such
evaluation is left for further work.

More important, there is a need to further elaborate the idea of an MDD process framework; its
contents, appropriateness, usage and — not least — tool support. This is another work item of the
MODELWARE project.

SINTEF 13

References

1. Krogstie, J.: Evaluating UML Using a Generic Quality Framework. In: Favre, L. (ed.):
UML and the Unified Process. IRM Press (2003) 1-22.

2. Alanen, M., et al.: Model Driven Engineering: A Position Paper. 1st International
Workshop on Model-Based Methodologies for Pervasive and Embedded Software,
MOMPES'04 (2004)

3. Bézivin, J., et al.: The ATL Tranformation-based Model Management Framework.
Research report. IRIN, Université de Nantes, Nantes, France (2003)

4. Grenmo, R., et al.: DISGIS: An Interoperability Framework for GIS - Using the ISO/TC
211 Model-based Approach. Global Spatial Data Infrastructure (GSDI) 4. Cape Town,
South Africa (2000)

5. Object Management Group: MDA Guide. Ver. 1.0.1. http://www.omg.org/docs/omg/03-
06-01.pdf (2003).

6. Object Management Group: Software Process Engineering Metamodel Specification. Ver.
1.1.(2005).

7. Standards Australia: Standard metamodel for software development methodologies. AS
4651-2004 (2004)

8. ISO/IEC JTC 1: SC 7 Proposed New Work Proposal for Standard Metamodel for
Software Development Methodologies. Ver. N7466. (2004).

9. [SO/IEC: Standard Metamodel for Development Methodologies in Information-Based
Domains. Ver. 1.3. Working draft 24745 (2005).

10. Oscellus, Inc.: IRIS Process Author. http://www.osellus.com/products/irispa.html

11. IBM: Rational Rose XDE Developer Plus. http://www-
306.ibm.com/software/awdtools/developer/plus/

12. SOFTEAM: Objecteering/UML Enterprise Edition.
http://www.objecteering.com/packaging_enterprise_edition.php

13. IST Project 511731: MODELWARE. Modeling solution for software systems.
http://www.modelware-ist.org/ (2004-2006)

14 Krogstie, J. and Selvberg, A.: Information systems engineering - Conceptual modeling in a
quality perspective. Kompendiumforlaget. Trondheim, Norway (2003)

15. Aagedal, J.@. and Solheim, I.: New Roles in Model-Driven Development. Second
European Workshop on Model Driven Architecture (MDA), EWMDA-2. Canterbury, UK
(2004)

16. Gnatz, M., et al.: The Living Software Development Process. In: Software Quality
Professional, Vol. 5, No. 3 (2003) 4-16

17. Caivano, D. and Visaggio, C.A.: Process Diversity and how Practitioners Can Manage It.
In: UPGRADE. The European Journal for the Informatics Professional, Vol. V, No. 5
(2004) 59-66

18. Breton, E. and Bézivin, J.: Model-Driven Process Engineering. Annual International

Computer Software and Applications Conference, COMPSAC. Chicago (2001)

