

SINTEF ICT
Applied Mathematics
2012-07-27

 A21884- Unrestricted

Report

A Lower Bound for the Node, Edge, and Arc
Routing Problem

Author(s)
Lukas Bach, CORAL, Aarhus University
Geir Hasle, SINTEF ICT
Sanne Wøhlk, CORAL, Aarhus University

SINTEF IKT
SINTEF ICT

Address:
Postboks 124 Blindern
NO-0314 Oslo
NORWAY

Telephone:+47 73593000
Telefax:+47 22067350

postmottak.IKT@sintef.no
www.sintef.no
Enterprise /VAT No:
NO 948 007 029 MVA

Report

A Lower Bound for the Node, Edge, and Arc
Routing Problem

KEYWORDS:
Vehicle Routing; Node
Routing; Arc Routing;
General Routing; VRP;
CARP; NEARP; MCGRP;
Bound; Benchmark;
Experiment

VERSION

2.0
DATE

2012-07-27

AUTHOR(S)

Lukas Bach, CORAL, Aarhus University
Geir Hasle, SINTEF ICT
Sanne Wøhlk, CORAL, Aarhus University

CLIENT(S)

The Research Council of Norway
CLIENT’S REF.

205298/V30

PROJECT NO.

90A40402
NUMBER OF PAGES/APPENDICES:

32

ABSTRACT

The Node, Edge, and Arc Routing Problem (NEARP) was defined by Prins and Bouchenoua in
2004. This problem generalizes the classical Capacitated Vehicle Routing Problem (CVRP), the
Capacitated Arc Routing Problem (CARP), and the General Routing Problem. It captures
important aspects of real-life routing problems that were not adequately modeled in previous
Vehicle Routing Problem (VRP) variants. The authors also proposed a memetic algorithm
procedure and defined a set of test instances called the CBMix benchmark. The NEARP
definition and investigation contribute to the development of rich VRPs. In this paper we present
the first lower bound procedure for the NEARP. It is a further development of lower bounds for
the CARP. We also define two novel sets of test instances to complement the CBMix benchmark.
The first is based on well-known CARP instances; the second consists of real life cases of
newspaper delivery routing. We provide numerical results in the form of lower and best known
upper bounds for all instances of all three benchmarks. For three of the instances, the gap
between the upper and lower bound is closed. The average gap is 25.1%. As the lower bound
procedure is based on a high quality lower bound procedure for the CARP, and there has been
limited work on approximate solution methods for the NEARP, we suspect that the main reason
for the rather large gaps is the quality of the upper bound. This fact, and the high industrial
relevance of the NEARP, should motivate more research on approximate and exact methods for
this important problem.

PREPARED BY

Geir Hasle
SIGNATURE

CHECKED BY

Atle Riise
SIGNATURE

APPROVED BY

Roger Bjørgan
SIGNATURE

REPORT NO.

A21884
ISBN

978-82-14-05277-0
CLASSIFICATION

Unrestricted
CLASSIFICATION THIS PAGE

Unrestricted

PROJECT NO.
90A40402

REPORT NO.
A21884

VERSION
2.0

Document history
VERSION DATE VERSION DESCRIPTION

2.0 2012-07-27 First revision, experiments rerun and several corrections

A Lower Bound for the Node, Edge, and Arc

Routing Problem

Lukas Bach
Centre for OR Applications in Logistics

Dept. of Economics and Business
Aarhus University
Fuglesangs Allé 4

DK-8210 Aarhus V, Denmark
luba@asb.dk

Geir Hasle
Dept. of Applied Mathematics

SINTEF ICT
P.O. Box 124 Blindern
NO-0314, Oslo, Norway
Phone: +47-93058703
Geir.Hasle@sintef.no

Sanne Wøhlk
Centre for OR Applications in Logistics

Dept. of Economics and Business
Aarhus University
Fuglesangs Allé 4

DK-8210 Aarhus V, Denmark
sanw@asb.dk

August 9, 2012

Abstract

The Node, Edge, and Arc Routing Problem (NEARP) was defined
by Prins and Bouchenoua in 2004. This problem generalizes the clas-
sical Capacitated Vehicle Routing Problem (CVRP), the Capacitated
Arc Routing Problem (CARP), and the General Routing Problem.
It captures important aspects of real-life routing problems that were
not adequately modeled in previous Vehicle Routing Problem (VRP)
variants. The authors also proposed a memetic algorithm procedure
and defined a set of test instances called the CBMix benchmark. The
NEARP definition and investigation contribute to the development of
rich VRPs. In this paper we present the first lower bound procedure
for the NEARP. It is a further development of lower bounds for the
CARP. We also define two novel sets of test instances to complement
the CBMix benchmark. The first is based on well-known CARP in-

1

stances; the second consists of real life cases of newspaper delivery
routing. We provide numerical results in the form of lower and best
known upper bounds for all instances of all three benchmarks. For
three of the instances, the gap between the upper and lower bound
is closed. The average gap is 25.1%. As the lower bound procedure
is based on a high quality lower bound procedure for the CARP, and
there has been limited work on approximate solution methods for the
NEARP, we suspect that the main reason for the rather large gaps is
the quality of the upper bound. This fact, and the high industrial rel-
evance of the NEARP, should motivate more research on approximate
and exact methods for this important problem.

Keywords: Vehicle Routing; Node Routing; Arc Routing; General Rout-
ing; VRP; CARP; NEARP; MCGRP; Bound; Benchmark; Experiment

1 Introduction

The Vehicle Routing Problem (VRP) captures the essence of allocation and
routing of vehicles at minimal cost, given transportation demand. Hence,
it is central to effective and efficient transportation management. VRP re-
search is regarded as one of the great successes of Operations Research,
partly due to the emergence of a tool industry. Results have been dissem-
inated and exploited in industry. The VRP, construed in a wide sense, is
a family of problems. Since the first definition of the classical, Capacitated
VRP (CVRP) in 1959 [16], many generalizations have been studied in a sys-
tematic fashion. Typically, exact and approximate solution methods have
been proposed and investigated for each new VRP variant that has been
defined. For an introduction and a survey of the VRP literature, we refer
to [32, 23].

The VRP is a computationally very hard discrete optimization problem. For
industrial cases of reasonable size, one normally has to resort to approximate
methods. Efficient procedures for generating proven lower bounds for the
optimal value are important both to practice and theory. First, they may
speed up exact methods. Second, they provide a benchmark for approximate
methods that provide feasible solutions and hence upper bounds on the
optimal value. Obviously, a zero gap between an upper and a lower bound
for a given instance proves that the value is optimal. A large gap may be due
to a poor quality lower bound, a feasible solution of bad quality, or both.

2

There has been a tremendous increase in the ability to find exact and ap-
proximate solutions to VRP variants over the past 50 years. A few years
ago, the best exact methods could consistently solve instances of the CVRP
with up to some 70 customers to optimality in reasonable time. Today, the
number is above 100, see for instance [7]. Approximate methods such as
metaheuristics, matheuristics, and heuristic column generation seem to pro-
vide high quality solutions in realistic times even for large-size instances of
complex VRP variants. For a categorized bibliography of metaheuristics for
the VRP, we refer to [22]. Doerner and Schmid give a survey of matheuris-
tics for VRPs in [17]. In [20], Feillet gives a tutorial on column generation
for the VRP.

As problems are regarded as being solved for practical purposes, researchers
turn to new extensions and larger-size instances. This trend is enhanced
by market pull from the tool industry and their end users. The somewhat
imprecise term ”rich VRP” has recently been introduced to denote variants
that are close to capturing all the essential aspects of some subset of real-life
routing problems. Generalizations of models in the literature are defined,
exact and approximate methods are proposed and investigated, and lower
bounds are developed.

In contrast to the CVRP where demand for service is located in the nodes of
the network, arc routing problems have been proposed to model the situation
where demand is located on edges or arcs in a transportation network [18].
Of particular industrial relevance is the Capacitated Arc Routing Problem
(CARP) defined by Golden and Wong in 1981 [24] and its generalizations,
as the CARP model contains multiple vehicles with capacity.

Until 2004, the VRP literature was dichotomized between arc routing prob-
lems and node routing problems. Some cases are naturally modeled as arc
routing problems because the demand is fundamentally defined on arcs or
edges in a transportation network. Prime examples are street sweeping, grit-
ting, and snow clearing. However, the arc routing model has been advocated
in the literature for problems where the demand is located in nodes, for in-
stance distribution of subscription newspapers to households and municipal
pickup of waste, particularly in urban areas. In real-life cases, there are
often thousands or tens of thousands of points to be serviced along a subset
of all road links in the area. Such cases are often formulated as CARPs,
typically with a drastic reduction of problem size.

In their 2004 paper [31], Prins and Bouchenoua motivate and define the

3

Node, Edge, and Arc Routing Problem (NEARP)1. They state that:

Despite the success of metaheuristics for the VRP and the CARP,
it is clear that these two problems cannot formalize the require-
ments of many real-world scenarios.

Their example is urban waste collection, where most demand may ade-
quately be modeled on street segments, but there may also be demand
located in points, for instance at supermarkets. Hence, they motivate a
generalization of both the classical CVRP and the CARP. To this end, they
define the NEARP as a combination of the CVRP and the CARP, which can
also be viewed as a capacitated extension of the General Routing Problem
[30]. They propose a memetic algorithm for the NEARP and investigate
it empirically on standard CVRP and CARP instances from the literature.
The authors also create a NEARP benchmark consisting of 23 grid-based
test cases, the so-called CBMix-instances, and provide experimental results
for their proposed algorithm.

We would like to enhance the motivation for the NEARP and further empha-
size its high importance to practice. The arc routing model for node-based
demand cases such as subscription newspaper delivery is based on an un-
derlying idea of abstraction. Some form of abstraction may be necessary
to contain the computational complexity resulting from a large number of
demand points in industrial routing. The assumption that all point-based
demands can be aggregated into edges or arcs may be crude in practice. It
may lead to solutions that are unnecessarily costly, as partial traversal of
edges is not possible. In industry, a route planning task may cover areas
that have a mixture of urban, suburban, and rural parts where many de-
mand points will be far apart and aggregation would impose unnecessary
constraints on visit sequences. A more sophisticated type of abstraction
is aggregation of demand based on the underlying transportation network
topology. Such aggregation procedures must also take capacity, time, and
travel restrictions into consideration to avoid aggregation that would lead to
impractical or low quality plans. In general, such procedures will produce a
NEARP instance with a combination of demands on arcs, edges, and nodes.

It is therefore imperative to eliminate the arc/node routing dichotomy and
thus enable the modeling of the continuum of node and arc routing problems
needed for representational adequacy in real-life situations. The introduc-
tion of the NEARP was a significant step towards the goal of rich VRP. De-

1The NEARP may also be denoted the Mixed Capacitated General Routing Problem.

4

spite its importance, further studies of the NEARP are almost non-existent
in the literature. Kokubugata and Kawashima [27] study problems from city
logistics, including the VRP with Time Windows and the NEARP. They
propose a Simulated Annealing metaheuristic for solving these problems.
Computational results for the CBMix instances of Prins and Bouchenoua
are presented, with several improvements. In [26], Hasle et al. describe re-
sults from experiments on NEARP test instances using their industrial VRP
solver Spider [25, 3], and report new best-known results.

Lower bounds have been developed for many VRP variants. Many of these
are based on cutting planes. See [21] and [28] for state-of-the-art lower
bounds for the CVRP. Also for the General Routing Problem, there is a
tradition of obtaining lower bounds through algorithms involving cutting
planes. See [13], [14], and [15] for some of the best lower bound algorithms
for this problem.

For the CARP, the academic tradition has been to develop combinatorial
lower bounds. Such lower bounds are based on the theory from combinato-
rial optimization rather than on linear programming. The majority of these
bounds are based on the construction of one or several matchings. The
best such lower bound is the Multiple Cuts Node Duplication Lower Bound
(MCNDLB), [33], with the extensions added in [4]. Good lower bounds
based on other strategies are the Hierarchical Relaxations Lower Bound, [5],
and LP-based bounds, [9, 29]. Recent exact algorithms using strong lower
bounding procedures are found in [8, 12]. See [4] for an overview of CARP
lower bounds and [34] for a recent survey on CARP in general.

The main contribution of this paper is to provide the first (to the best of our
knowledge) lower bound procedure for the NEARP. This bound is inspired
by the MCNDLB for CARP and its extensions. We also define two new sets
of test instances that complement the grid-based CBMix instances of Prins
and Bouchenoua. The first set is called the BHW benchmark. It is based on
20 well-known CARP instances from the literature. The second is called the
DI-NEARP benchmark, and consist of 24 instances defined from real cases
of newspaper delivery routing. For all test instances, we provide numerical
results in the form of lower and best known upper bound.

The remainder of this paper is organized as follows. In Section 2, we for-
mally state the Node, Edge, and Arc Routing Problem and in Section 3, we
describe our lower bound algorithm for the problem and argue its correct-
ness. In Section 4, we present two new benchmarks for the NEARP, and
in Section 5 we give computational results. Finally, in Section 6, we offer a

5

summary, our concluding remarks, and future lines of work.

2 The Node, Edge, and Arc Routing Problem

The Node, Edge, and Arc Routing Problem (NEARP) is defined on a con-
nected multi-graph G = (N,E,A), where N is the set of nodes, E is the
set of undirected edges, and A is the set of directed arcs. Let ce denote the
non-negative traversal cost for e ∈ E ∪A, also known as deadheading cost,
i.e., the cost for traversing the edge/arc without servicing it. The traversal
cost is zero for nodes. Let NR ⊆ N be the set of required nodes, and let
qi denote the demand and pi the servicing cost of node i ∈ NR. Similarly,
let ER and AR be the set of required edges and arcs, respectively, and let
qe and pe denote the demand and processing cost of e ∈ ER ∪ AR. The
processing cost is the total cost that accrues when the required edge or arc
is serviced. It is the sum of the traversal and servicing costs. To follow the
convention of [31], we include in the reported results the traversal cost, but
not the servicing cost for required arcs and edges.

A fleet of identical vehicles each with capacity Q is initially located in a
special depot node, denoted node 1. It is assumed that the size of the fleet
is unbounded.

The goal is to identify a number of tours for the vehicles such that 1) every
node i ∈ NR, every edge e ∈ ER, and every arc e ∈ AR is serviced by exactly
one vehicle, 2) the sum of demands serviced by each vehicle does not exceed
Q, and 3) the total cost of the tours is minimized.

As mentioned above, the total servicing cost for all feasible solutions to a
given NEARP is constant. Hence, we do not need to consider servicing costs
in our lower bound procedure. Also, the convention for reporting results on
the CBMix benchmark is such that the constant sum of processing costs
has been subtracted. We introduce it here to be compatible with Prins and
Bouchenoua, and to prepare for extensions to the NEARP with temporal
constraints. Moreover, heuristics2, may use processing costs.

2Greedy heuristics for construction is one example.

6

3 Lower Bound for NEARP

The algorithm is a further development of the Multiple Cuts Node Duplica-
tion Lower Bound (MCNDLB) for the CARP, [33]. We start by giving an
intuitive description of the structure of the algorithm followed by a small
example, and then provide a formal description.

For notational reasons, in the description of the algorithm we will assume
that the graph is simple, i.e., that there is at most one required link between
any pair of nodes. For e = (i, j) ∈ E ∪ A, we use the notation cij , qij, and
pij to denote traversal cost, demand and processing cost, respectively. The
algorithm can, however, easily be extended to the non-simple case.

In the following we use SPL(i, j) to denote the cost of a shortest path in
G from i to j. Let N ′ ⊂ N be a subset of the nodes. We define δ−(N ′) =
{e = (i, j) ∈ E ∪ A|i ∈ N \ N ′ and j ∈ N ′} to be the set of links entering
N ′ and δ+(N ′) = {e = (i, j) ∈ E ∪ A|i ∈ N ′ and j ∈ N \ N ′} to be
the set of links leaving N ′. Note that due to the existence of undirected
edges, δ−(N ′) and δ+(N ′) are not necessarily disjoint. Finally, we define
δ(N ′) = δ−(N ′)∪δ+(N ′) to be the set of links connectingN ′ to the remaining
graph. Finally, for any set of nodes, U , we use G(U) to denote the graph
induced by U .

Starting with U1 = {1}, we consider mutually disjoint cuts (Uk , N \ Uk)
such that U1 ⊂ U2 ⊂ . . . ⊂ Uk ⊂ Uk+1. For each such cut, Uk, the graph
induced by N \Uk will consist of one or more connected components, G′

s =
(N ′

s, E
′
s, A

′
s), s = 1, . . . , t, as illustrated in Figure 1(b). The number of vehi-

cles needed to service the demand in G′
s, and the demand of links connecting

G′
s to Uk can be estimated by ps = �(∑i∈N ′

s
qi +

∑
(i,j)∈E′

s∪A′
s∪δ(N ′

s)
qij)/Q�,

which is a simple lower bound for the bin-packing problem.

Ideally, each vehicle would service the demand of an edge or arc when en-
tering G′

s and when leaving G′
s. When this is not the case, we say that

the vehicle is using a deadheading link. Such links can be either links with-
out demand or links with demand not currently being serviced. We estimate
the number of deadheading links (entering arcs, leaving arcs, and undirected
edges) needed for all vehicles to both enter and leave G′

s. With this, we can
estimate the cost of servicing demand in G′

s and demand of links connecting
G′

s to Uk by constructing a node duplicated network and letting ms be the
value of a minimum cost perfect matching in this network. We do this for
all the connected components and hence, L =

∑t
s=1ms estimates the cost

7

Figure 1: NEARP example

65 (3,0)

[3]

4 3

(6,0) (4,2)

2

(5,0)
(3,2)(3,0)

1

(3,0)

(4,0)

(3,1)

(a) G(N,E,A), capacity = 3

12

4 3

5 6

U1

U2

U3

(b) G(N,E,A) - with cuts

Node 1 is the depot node, a circle represents a node without demand and a square is a

node with demand, the quantity of the demand is given in brackets. The lines are dashed

for non-demand edges/arcs and solid for those with demand. The direction of the

demand arcs are given by the arrows. The deadheading cost and demand quantity is

given in parenthesis for all edges/arcs

of servicing everything outside G(Uk).

To estimate the cost of servicing demand in G(Uk), we use the minimum
cost c us of a link between U and each component, G′

s and multiply this by
the number of deadheading links needed to connect the two: rus . Iterating
over all the mutually disjoint cuts and all the connected components of
these, we can estimate the cost of servicing the demand in G(Uk) as L1 =∑k−1

j=1

∑t
s=1 c

u
s r

u
s .

For each of these cuts, L+L1 is a lower bound on the cost, and the algorithm
selects the cut with the highest value.

Note that in the algorithm, the calculations become more complex than
outlined above due to the existence of both directed and undirected links.

3.1 Lower bound - Example

In this section we provide an example of the algorithm applied to a simple
NEARP instance, presented in Figure 1. The algorithm performs a main
iteration for each cut, see Figure 1(b). Thus we start with U1 in the first

8

iteration, then U2. We do not consider U3 because it is the full graph, which
is also the stopping criterion.

With U1 = {1} there is only one connected component. The node duplicated
network is shown in Figure 2. It is constructed by making a copy of a node
every time it is incident to a demand edge/arc. If the demand is outgoing,
it gets a positive polarity; if it is incoming it gets a negative polarity; and if
it is an edge it gets a neutral charge. The demand 2 → 4 results in a copy of
node 2 with a positive charge and a copy of node 4 with a negative charge.
If a node has a demand but is not incident to any nodes, e.g., node 5, two
copies of that node are made, i.e., one positive and one negative.

Figure 2: NEARP - Node duplicated network (U1)

u6− +5

−4 −u3

+2
+−

+

+

−

T

(a) Node duplication at U1

u− +

− −u

+

+−

+

+

−

9

4

7

3 3

3

(b) Perfect matching, m1 = 29

The set T in the node duplicated network represents copies of the set U , the
number of nodes herein is determined by ps. For each vehicle we must enter
and leave the area T once, thus we add a negative and a positive charged
node. For each demand entering T from the outside we remove a positive
node and vice versa if we leave T . If this is an edge we turn a positive node
into a neutral node and delete a negative node.

Based on the node duplicated network illustrated in Figure 2(a), we make a
complete graph and add cost to each edge. In short, the cost is the shortest
path given by Figure 1, with some exceptions, among others that a negative
node cannot be matched to another negative node, the same applies to
the positive nodes, where neutral nodes can be matched to other neutrals,
positives, or negatives. A node cannot be matched to the node opposite
the demand that created the node. Nodes in T cannot be matched to each

9

Figure 3: NEARP - Node duplicated network from U2

u6− +5

+−

u

T

(a) Node duplication for G(N ′
1)

u− +

+−

u

6

6 4

(b) Perfect matching, m1 = 16

−4

+T

(c) Node duplication for G(N ′
2)

+

−

3

(d) Perfect matching, m2 = 3

other.

We now perform a minimum cost perfect matching. The result is illustrated
in Figure 2(b). The cost of the matching is L = m1 = 29. From Figure 1
we know that servicing the required arcs/edges will cost us 10. We can then
calculate the first iteration in the lower bound; L2 = 29 + 10 = 39. Finally,
we update L1 for the use in the next iteration as L1 = c−1 ·r−1 +c+1 ·r+1 +cu1 ·ru1 =
3 · 2 + 3 · 3 + 3 · 0 = 15.

In the next iteration, we apply the second cut of Figure 1 (b) and we now use
U2 represented by the set T . G(N\U2) consists of two components withN ′

1 =
{5, 6} and N ′

2 = {4}. The node duplicated network for G(N1) and for G(N2)
is shown in Figures 3(a) and 3(c), respectively. The corresponding minimum
cost perfect matchings are shown in Figures 3(b) and 3(d), respectively. The
cost of the matchings is L = m1 +m2 = 16+ 3 = 19. Thus the lower bound
of the second iteration is L2 = max{39, 19 + 15 + 10} = 44.

As U3 = N we terminate the algorithm and return the result from the second
iteration (44) as the best lower bound. The optimal solution to the NEARP
instance in Figure 1 is 46 which gives a gap of 46−44

0.5·(44+46) = 4.44%.

10

3.2 Lower bound - Algorithm

A detailed pseudo-code for the Multiple Cuts Node Duplicated Lower Bound
for NEARP is given in Algorithm 1. The main part of the algorithm lies in
the construction of the matching network GM

s (NM
s , EM

s) in line 22. Algo-
rithm 2 performs this task.

We let the node set NM
s consist of three disjoint sets, S, T , and X, where

S consists of copies of nodes from N ′
s, T consists of copies of nodes in U ,

and X can be considered to be extra copies of nodes in U and will be added
later.

In line 2 of the algorithm, we first consider the degree information of nodes
i ∈ N : LetD−(R, i) be the number of required arcs entering node i, D+(R, i)
the number of required arcs leaving node i, let Du(R, i) be the number of
required edges incident to node i, and let D(R, i) be the total number of
required edges and arcs incident to node i.

In line 8, for each node i in N ′
s, we add D(R, i) nodes to S and call these

nodes the family of i, denoted by χ(i). We say that the nodes in χ(i) are
copies of i. Given a node j in χ(i), we refer to i as the origin of j, denoted by
ω(j). In line 15, we call Algorithm 3, which partitions S into three disjoint
subsets γ−, γ+ and γu. For each node i in N ′

s, we consider the family χ(i)
consisting of D(R, i) = D−(R, i) +D+(R, i) +Du(R, i) nodes. Of these, we
associate D−(R, i) nodes with γ−, D+(R, i) with γ+, and Du(R, i) with γu.

In line 17, we consider the nodes in N ′
s ∩ NR for which D(R, i) = 0, i.e.,

required nodes without incident required arcs or edges. Note that these
nodes were not considered above. For each such node, i, we add two nodes
to S and call these the family of i, denoted by χ(i). We add one of the nodes
to γ− and the other to γ+. As above, we call these nodes copies of i and for
a node j in χ(i), we say that i is the origin of j, denoted by ω(j).

The set T consists of 2ps−|δ(N ′
s)∩{ER∪AR}| nodes, which can be considered

copies of nodes in U . Because we know the minimum number of deadheading
edges needed in U , we can partition T into three disjoint subsets τ−, τ+ and
τu, where the values of r−s , r+s , and rus determine the number of nodes in
each of the three subsets, respectively. This is handled in lines 24 through
27.

To finalize the construction of GM
s , let the number of nodes in X be deter-

mined by Algorithm 6, which is called from Algorithm 2 in line 29. X can be

11

Algorithm 1 MCNDLB algorithm

1: initialize U = {1}, L = 0, L1 = 0, L2 = 0
2: while U
= N do
3: N ′ = N \ U
4: G′(N ′) //G′ is the graph induced by N ′

5: t = number of connected components of G′

6: G′
s = (N ′

s, E
′
s, A

′
s), 1 ≤ s ≤ t //Each component is denoted by G′

s

7: for s = 1 to t do
8: //Number of vehicles needed to service the demand of nodes, edges,

and arcs in G′
s and δ(N ′

s)
9: ps = �(∑i∈N ′

s
qi +

∑
(i,j)∈E′

s∪A′
s∪δ(N ′

s)
qij)/Q�

10: //Number of required edges and arcs in cutset
11: ψu

s = |{(i, j) ∈ δ(N ′
s) ∩ ER}|

12: ψ−
s = |{(i, j) ∈ δ−(N ′

s) ∩AR}|
13: ψ+

s = |{(i, j) ∈ δ+(N ′
s) ∩AR}|

14: //Number of deadheading edges and arcs needed in cutset
15: r−s = max{0, ps − (ψ−

s + ψu
s)}

16: r+s = max{0, ps − (ψ+
s + ψu

s)}
17: rus = max{0, 2ps − (ψu

s + ψ−
s + ψ+

s + r−s + r+s)}
18: //Minimum cost of edges and arcs in cutset
19: c−s = min(i,j)∈ δ−(N ′

s)
cij

20: c+s = min(i,j)∈ δ+(N ′
s)
cij

21: c us = min(i,j)∈ δ(N ′
s)
cij

22: GM
s = constructNodeDuplicatedNetwork(G,G′

s) //See Algorithm 2
23: ms = value of minimum cost perfect matching in GM

s

24: end for
25: L =

∑t
s=1ms

26: L2 = max{L2 , L+ L1 +
∑

(i,j)∈ER∪AR
cij}

27: L1 = L1 +
∑t

s=1(r
u
s · c us + r+s · c+s + r−s · c−s)

28: U ′ = {i ∈ N : i is adjacent to a vertex in U}
29: U = U ∪ U ′

30: end while
31: return L2

12

Algorithm 2 constructNodeDuplicatedNetwork(G,G′
s)

1: initialize S = ∅, T = ∅, and X = ∅
2: for all i ∈ N do
3: D−(R, i) = |{(j, i) ∈ AR}| //Required arcs entering node i
4: D+(R, i) = |{(i, j) ∈ AR}| //Required arcs leaving node i
5: Du(R, i) = |{(i, j) ∈ ER}| //Required edges incident to node i
6: D(R, i) = D−(R, i) +D+(R, i) +Du(R, i)
7: end for
8: for all i ∈ N ′

s do //Populate S
9: for n = 1 to D(R, i) do

10: Add new node j to GM
s

11: S = S ∪ j
12: χ(i) = χ(i) ∪ j //These nodes are the family of i
13: ω(j) = i //i is the origin node of j, denoted by ω(j)
14: end for
15: assignDirectionS(γ−, γ+, γu,D−(R, i),D+(R, i),Du(R, i))
16: end for
17: for all i ∈ N ′

s | D(R, i) = 0 do //Required nodes not incident to required
arcs or edges

18: Add new nodes j and k to GM
s

19: S = S ∪ j ∪ k
20: χ(i) = χ(i) ∪ j ∪ k //These nodes are the family of i
21: ω(j) = i, ω(k) = i
22: γ− = γ− ∪ j, γ+ = γ+ ∪ k
23: end for
24: for n = 1 to 2ps − |δ(N ′

s) ∩ {ER ∪AR}| do //Populate T
25: Add new node j to GM

s

26: T = T ∪ j
27: end for
28: assignDirectionT(τ−, τ+, τu, r−s , r+s , rus)
29: for n = 1 to cardinalityX(S, T) do //Populate X
30: Add new node j to GM

s

31: X = X ∪ j
32: end for
33: Make GM

s a complete undirected graph
34: assignDemands(GM

s , G
′
s, G, χ(), q, γ

−, γ+, γu)
35: for all (i, j) ∈ EM

s do //Set cost of edges
36: Set cij //According to equation 1
37: end for
38: return GM

s

13

Algorithm 3 assignDirectionS(γ−, γ+, γu,D−(R, i),D+(R, i),Du(R, i))

1: for n = 1 to D−(R, i) do
2: γ− = γ− ∪ j | j ∈ χ(i) \ (γ−)
3: end for
4: for n = 1 to D+(R, i) do
5: γ+ = γ+ ∪ j | j ∈ χ(i) \ (γ− ∪ γ+)
6: end for
7: for n = 1 to Du(R, i) do
8: γu = γu ∪ j | j ∈ χ(i) \ (γ− ∪ γ+ ∪ γu)
9: end for

Algorithm 4 assignDirectionT(τ−, τ+, τu, r−s , r+s , rus)
1: for n = 1 to r−s do
2: τ− = τ− ∪ j | j ∈ T \ (τ−)
3: end for
4: for n = 1 to r+s do
5: τ+ = τ+ ∪ j | j ∈ T \ (τ− ∪ τ+)
6: end for
7: for n = 1 to rus do
8: τu = τu ∪ j | j ∈ T \ (τ− ∪ τ+ ∪ τu)
9: end for

considered to be extra copies of nodes in U . Nodes in X are not connected
to nodes in T . There are now enough nodes in T ∪X for every node in S to
be matched to one of these at cost m−(i) or m+(i). X is necessary because
for any two nodes, i and j in S, it might be cheaper to match both i and
j to something in U instead of matching them to each other, illustrating
the vehicle driving back to subgraph U and then returning to S. Note that
although the triangle inequality may not apply in the original graph, it does
apply in this matching network as long as no edges with cost infinity are
involved.

The demand of required arcs and edges in G′
s is assigned to edges in GM

s as
explained in Algorithm 5 which is called from Algorithm 2 in line 34. These
assignments are done in such a way that no node in NM

s is chosen more than
once and no demand in G′

s is assigned more than once. All other edges in
EM

s have zero demand.

Consider the s’th component, represented by the graph G′
s = (N ′

s, E
′
s, A

′
s).

14

Algorithm 5 assignDemands(GM
s , G

′
s, G, χ(), q, γ

−, γ+, γu)
1: for all (i, j) ∈ E′

s ∩ER | i, j ∈ S do //Assign demand of required edges
2: qkl = qij | k ∈ χ(i) ∩ γu and l ∈ χ(j) ∩ γu //Each k or l can only be

assigned 1 demand
3: end for
4: for all (i→ j) ∈ A′

s ∩AR do //Assign demand of required arcs
5: qkl = qij | k ∈ χ(i) ∩ γ+ and l ∈ χ(j) ∩ γ− //Each k or l can only be

assigned 1 demand
6: end for
7: for all i ∈ N ′

s∩NR | D(R, i) = 0 do //Assign demand of required nodes
8: qkl = qi | k ∈ χ(i) ∩ γ+ and l ∈ χ(i) ∩ γ− //Each k or l can only be

assigned 1 demand
9: end for

Algorithm 6 cardinalityX(S, T)

1: if |S| − |T | > 0 then
2: x = |S| − |T |
3: else if |S| − |T | mod 2 <> 0 then
4: x = 1
5: else
6: x = 0
7: end if
8: return x

For every node i in N ′
s setm

−(i) = minu∈U SPL(u, i) and similarly m+(i) =
minu∈U SPL(i, u), i.e., m−(i) and m+(i) are the lengths of a shortest path
from any node in U to i and from i to any node in U , respectively.

In lines 35 through 37, the costs of edges (i, j) in EM
s are set by cij in

equation 1.

15

cij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞ if qij > 0

0 if i, j ∈ S and ω(i) = ω(j) and i ∈ γ− and j /∈ γ−
0 if i, j ∈ S and ω(i) = ω(j) and i ∈ γ+ and j /∈ γ+

0 if i, j ∈ S and ω(i) = ω(j) and i ∈ γu

∞ if i, j ∈ S and ω(i) �= ω(j) and i ∈ γ− and j ∈ γ−
SPL(i, j) if i, j ∈ S and ω(i) �= ω(j) and i ∈ γ− and j /∈ γ−
∞ if i, j ∈ S and ω(i) �= ω(j) and i ∈ γ+ and j ∈ γ+

SPL(j, i) if i, j ∈ S and ω(i) �= ω(j) and i ∈ γ+ and j /∈ γ+

SPL(j, i) if i, j ∈ S and ω(i) �= ω(j) and i ∈ γu and j ∈ γ−
SPL(i, j) if i, j ∈ S and ω(i) �= ω(j) and i ∈ γu and j ∈ γ+

min{SPL(i, j), SPL(j, i)} if i, j ∈ S and ω(i) �= ω(j) and i ∈ γu and j ∈ γu

∞ if i, j ∈ T
∞ if i ∈ S ∩ γ+ and j ∈ T ∩ τ+

m−(i) if i ∈ S ∩ γ+ and j ∈ T \ τ+

∞ if i ∈ S ∩ γ− and j ∈ T ∩ τ−
m+(i) if i ∈ S ∩ γ− and j ∈ T \ τ−
min{m−(i), m+(i)} if i ∈ S ∩ γu and j ∈ T
∞ if i ∈ T ∩ τ+ and j ∈ S ∩ γ+

m−(j) if i ∈ T \ τ+ and j ∈ S ∩ γ+

∞ if i ∈ T ∩ τ− and j ∈ S ∩ γ−
m+(j) if i ∈ T \ τ− and j ∈ S ∩ γ−
min{m−(j), m+(j)} if i ∈ T and j ∈ S ∩ γu

0 if i, j ∈ X
m−(i) if i ∈ S ∩ γ+ and j ∈ X
m+(i) if i ∈ S ∩ γ− and j ∈ X
min{m−(i), m+(i)} if i ∈ S ∩ γu and j ∈ X
∞ if i ∈ T and j ∈ X
∞ if i ∈ X and j ∈ T

(1)

In order to tighten the bound, consider every pair of demand edges, (i, j) and
(k, l) in EM

s . If qij + qkl > Q, we set the cost of the edges (i, k), (i, l), (j, k),
and (j, l) to ∞, since (i, j) and (k, l) cannot be serviced on the same tour.
For the sake of simplicity, the example given in Section 3.1 does not include
this part.

3.3 Correctness of the Lower Bound

Since the bound is an extension of the MCNDLB for the CARP, which was
proven to be valid in [33], we focus on the changes that are made to the
original algorithm.

The first change occurs in the calculation of ps, i.e., the number of vehicles
needed to service component s and the links connecting it to U in Algorithm

16

1 line 9. In the original algorithm the demand was summed over all demand
edges. Because, in the NEARP, we have both required edges, arcs, and
nodes, clearly the summation should be over all of these.

In Algorithm 1 lines 11 through 13, we calculate the required number of
deadheading links. In the original algorithm, this was calculated as rs =
max{0 , 2ps − qs}. Needing at least ps vehicles, each of which must both
enter and leave the component, and having rs required edges in the cut, this
is clearly correct. For the NEARP, we first consider entering vehicles. Note
that we must have at least ps of these. We have ψ−

s entering arcs and ψu
s

edges in the cut. Hence, up to ψ−
s +ψu

s vehicles can use these existing links
and we need to construct max{0 , ps − (ψ−

s + ψu
s)} deadheading entering

arcs. The argumentation for arcs leaving the component is symmetrical.

Needing at least 2ps links in total, we now add the number of undirected
edges corresponding to the difference between 2ps and the sum of all required
links (arcs and edges) and the number of deadheading arcs added to the
network. Thereby the correctness of lines 11 through 13 has been shown.

With these definitions in place, it follows directly that the estimate for
servicing everything inside U , L1, in Algorithm 1 lines 15 through 17 is
correctly generalized to the NEARP.

It only remains to show that the construction of the matching network in
Algorithm 2 leads to a valid estimate for servicing G′

s and the cutset. The
structure of the matching network is similar to the one in the original bound.
For each original node, we add D(R, i) nodes to S in the matching network.
This is exactly the number of times we must either enter or leave the node
due to arc and edge requirements. Clearly, we may partition these into nodes
that represent entering, leaving, and undirected demand. We use the same
number of nodes in the sets T and X as in the original algorithm, but again,
for the set T , we can partition the nodes into sets based on the knowledge
described above. For required nodes with no adjacent required links, it is
clearly legal to add two nodes to S - one for entering and one for leaving.

The assignment of required edges is done precisely as in the original al-
gorithm, except that now we take the direction of arcs into account when
selecting the nodes in each family to be matched. Furthermore, for required
nodes we legally select the edge between the two copies of the original node
to absorb the demand. As in the original algorithm, the cost of all these
demand-assigned edges is set to infinity to prevent them from being used in
the matching.

17

The remaining cost structure is far more complex in this algorithm than in
the original one. This is due to the partitioning of families into entering,
leaving and undirected sets. When two nodes are in the same family, the
cost of the edge connecting them is zero if it is possible to enter through
one of the copies and leave through the other. Otherwise, the cost is set to
infinity, to prevent this connection from being used in the matching.

For two nodes in different families, the cost is also infinite if either both
nodes are entering nodes or both are leaving nodes, as this combination is
illegal. If the combination is legal, the cost between such nodes corresponds
to the cost of a shortest path between the origins of the nodes, while taking
possibility of directions into account.

When considering a node i in S and a node j in T or in X, we use the
different estimates of m(i) as in the original algorithm, except that again,
we need to take into account the different combinations of entering and
leaving, making the expression less pretty. Connections internal to T and
X are handled as in the original algorithm.

As can be concluded from the above argumentation, the algorithm presented
in this paper indeed yields a feasible lower bound for the NEARP.

3.4 Lower bound - Extensions

To strengthen the quality of the bound, for each of the nodes of U ′ on line
28, the node is added to U and we skip back to line 2. When we reach line
28 again the node is once more removed from U before the next node is
added and we redo the procedure. We only move to line 29 after all nodes
of U ′ have been examined. This can strengthen the quality of the bound in
that part of the matching. This procedure has been proven valid for similar
lower bound procedures in [4, 11]. When testing the addition of nodes from
U ′ to U , the number of nodes added jointly as well as their combination
influences the quality of the bound. Unfortunately, the best number and
best combination cannot easily be predicted beforehand. We have chosen to
add the nodes individually.

18

4 New NEARP benchmarks

Only one set of test instances exists for the NEARP: the CBMix instances
[31]. These instances are all based on graphs with a grid structure. To ensure
more diversity in the test platform for future algorithm developments and
for testing the lower bound algorithm described above, we present two new
benchmarks. The first, called BHW, is based on classical CARP instances
from the literature. The second, called DI-NEARP, is based on real-life
instances of an industrial application. We adopt the convention for the
CBMix benchmark, i.e., only the total traversal cost of a solution is reported.
The instance definition files and numerical results for all three benchmarks
are found at SINTEF’s NEARP website [2].

4.1 The BHW instances

This benchmark is generated from benchmark instances for the CARP. More
specifically, we have used a selection of instances from the Gdb [6], Val [10],
and Eglese [19] benchmarks.

For each instance, we have kept the underlying graph structure, the existing
demand, and the vehicle capacity. We have made the following modifica-
tions to the instances: Some undirected edges have been replaced by directed
arcs. If the edge was required, the demand is transmitted to the arc. Other
undirected edges have been replaced by two directed arcs, one in each di-
rection. If the edge was required, the demand is either transferred to one of
the arcs or both arcs have been made required, each with a demand equal
to the demand of the edge. Finally, some edges have been left unchanged.
Furthermore, some of the nodes are made required.

Table 1 gives the most important properties for each instance. The first
column states the name of the instance and the second provides a reference
to the underlying CARP instance. The next three columns give the total
number of nodes, undirected edges, and directed arcs in the graph. The
following three columns give the same information for required entities. The
next column states the vehicle capacity. Note that the vehicles are assumed
to be identical. The remaining six columns provide statistical information
regarding required entities. Pairwise, these columns provide the mean and
standard deviation of the demand of the required nodes, edges, and arcs
in the graph. Note that only the required entities are included in these

19

calculations. All instances have relatively sparse networks, as they simulate
real-life situations. The depot is located in node 1 in all BHW instances.

4.2 The DI-NEARP instances

This benchmark is defined from six real-life cases from the design of carrier
routes for home delivery of subscription newspapers and other media prod-
ucts in the Nordic countries. The company Distribution Innovation AS (DI)
[1] operates a web-based solution for design, revision, management, and con-
trol of carrier routes. Route design and revision are based on electronic road
and address data provided by commercial GIS vendors. Sophisticated mod-
els for travel and service time are utilized. The Spider VRP solver provided
by SINTEF [3] is integrated in the solution.

The GIS road network data may have been improved by the user through
manual editing due to errors or lack of detail. All delivery points are
geocoded, and the enhanced road network data are transformed into an
internal graph representation in Spider. The basic node routing problem
cases typically have a large number of points. Through road topology based
aggregation heuristics in Spider, the original problem has been transformed
to a NEARP with side constraints. The graph topology of the instances is
taken directly from the Spider graph.

Data for the six instances was retrieved from the DI web server in 2011.
These particular cases only have required edges and nodes, but no required
arcs. The edges have symmetrical travel costs. The travel and service costs
are set to the travel and service times calculated by the models in the DI
system, as there is a close correlation between total route duration and the
actual cost of the route plan. The index of the depot node is given explicitly.

The industrial case, vehicle capacity is not constraining, but there is a con-
straint on route duration. We have transformed the duration constraint
to a capacity constraint and selected four different values for capacity that
produce a reasonable range for the number of routes, including the actual
number from the real application. Hence, the DI-NEARP benchmark con-
sists of 24 instances. They are named DI-NEARP-nr -Qqk, where r is the
total number of required nodes, edges, and arcs and q is capacity in thou-
sands. Table 2 gives the most important properties for each instance. The
structure of this table is similar to that of Table 1 except for the second
column which is not relevant for the DI-NEARP instances.

20

5 Computational Results

We have implemented the lower bound algorithm in two versions: one ver-
sion where all nodes neighboring U are added at once, and one version where
the addition of each node is tested separately before all nodes are added, as
explained in Section 3.4. In this section, we report our experimental results
for both implementations, while referring to the latter as AD1. All lower
bound calculations are performed on a PC with an Intel Core 2 Duo CPU,
running at 2.53 GHz and with 2GB of RAM.

The results obtained for the three benchmark sets are given in Tables 3,
4, and 5. In each table, the second column provides the best known upper
bound for the instance, hereafter referred to as BU . For the CBMix instances
these are obtained from [31], [27], and [26]. For the BHW and the DI-
NEARP instances, the first upper bounds were obtained with the Spider
solver [26]. Remember that the cost reported is the total traversal cost.

For each of the two lower bound versions, we give the obtained value of the
lower bound algorithm BL, and the relative optimality gap GO, i.e., the
percentage gap from the best known upper bound to the lower bound, as
calculated by the following formula:

GO =
BU −BL

(BU +BL)/2
100

Finally, we provide the running time of the lower bound algorithm in sec-
onds. We imposed a time limit of 10,000 seconds. For the large-size DI-
NEARP instances, the calculation of the AD1 lower bound was not com-
pleted within this time limit. Hence, the AD1 column has been omitted in
Table 5.

For the CBMix benchmark, the gaps vary between 3.0% and 39.5% with an
average of 23.1%. The variation is larger for the BHW benchmark, where
the minimum, maximum, and average gaps are 0.0%, 55.4%, and 24.2%,
respectively. The average gap for the large-size DI-NEARP instances is
27.8%, with a minimum of 7.0% and a maximum of 54.7%.

For three instances: BHW2, BHW4, and BHW6, the lower bound proves
optimality of the best known solutions. For all other instances, the optimal
solution is unknown. It is therefore not possible to determine if the size
of the gap is mainly explained by the quality of the lower bound or by
the quality of the best known solutions. It is, however, noted that for the

21

CARP, the corresponding lower bound closes the gap to the optimal solution
for 1/3 of the benchmark instances, [33]. Along with the fact that only few
algorithms for the construction of feasible solutions have been developed for
the NEARP, this lead us to believe that a large portion of the gap may be
explained by the quality of the upper bound.

The quality of the lower bound can be measured in two ways. For a solution
for NEARP to be feasible it must satisfy two general conditions, 1) the
flow balance, which enforces that each vehicle traverses the graph such that
whenever it arrives at a node it will also leave the node; 2) the packing
constraints which enforce that each vehicle does not exceed its capacity Q.

The MCNDLB lower bound provides solutions where the flow balance is
satisfied to some extent due to perfect matching in the first iteration which
enforces the necessary number of deadheading links. However, the bound
only avoids 2-cycles and the path is thus not elementary. The other discrep-
ancy is that the cost of these deadheadings in the succeeding cuts may be
underestimated. We sum the costs of the cheapest way to cross each cutset,
but not the cheapest way to cross all the cutsets. Hence, the bound does
not foresee if a more expensive link should have been used.

As regards the packing constraints, we believe that these contribute the most
to the quality of the gap. If we assume that the capacity Q accommodates all
demand, such that only one vehicle would be required, the packing constraint
would not contribute to the gap. If we inspect the solutions to the DI-
NEARP instances it is obvious that the gap decreases when the capacity of
the vehicles increases. This is because the packing constraints become less
important.

In the first iteration of the MCNDLB algorithm, there is a stronger focus
on flow balance than packing. As cuts are added in subsequent iterations,
emphasis is progressively shifted from flow balance towards packing.

6 Summary and Conclusion

The VRP literature has often been criticized for being based on idealized
assumptions that render the proposed models inadequate for real life appli-
cations. In particular, there has been a strict separation of node routing
and arc routing problems in the literature until 2004. In [31] Prins and
Bouchenoua proposed the Node, Edge, and Arc Routing Problem (NEARP).

22

They argued that there are real-life applications that can neither be ade-
quately modeled as pure arc routing problems, nor as pure node routing
problems.

In this paper, we have reinforced the claims of Prins and Bouchenoua and
argued that the NEARP represents an important, new dimension of VRP
model richness. We have also argued that the tradition of modeling ap-
plications such as newspaper delivery, mail delivery, and communal waste
collection as arc routing problems is problematic. For real-life, large-size
instances of such applications, where demand is basically located in nodes,
abstraction techniques such as aggregation of demand may be needed to pro-
vide high-quality solutions. Reasonable aggregation heuristics will typically
produce instances with demand on nodes, edges, and arcs.

The main contribution of this paper is to provide (to the best of our knowl-
edge) the first lower bound procedure for the NEARP. Also, we provide two
new sets of test instances: the BHW benchmark derived from 20 well-known
CARP instances, and the DI-NEARP benchmark with 24 instances derived
from real-life data from carrier routing of subscription newspapers and other
media products. The new benchmarks complement the grid-based CBMix
benchmark proposed by Prins and Bouchenoua, for which two other papers
also provide upper bounds. For the BHW and DI-NEARP benchmarks, the
first upper bounds have been produced by Hasle et al. [26], so we now have
lower and upper bounds for all test instances. For three instances, the gaps
have been closed. The average gap is rather large: 25.1%. The lower bound
procedure is based on a high quality lower bound for the CARP. This fact,
and the limited amount of work on approximate methods for the NEARP,
give us reason to believe that the main reason for the large gaps is the quality
of the upper bound.

The NEARP is a theoretically interesting problem with high industrial rel-
evance. The numerical results presented here should motivate the research
community to develop better heuristics and also exact algorithms that take
advantage of the structure of this important problem. Moreover, NEARP
extensions should be proposed on the basis of important industrial aspects.

7 Acknowledgments

The authors would like to thank the company Distribution Innovation AS for
giving us access to real-life case data from their newspaper delivery routing

23

system. We would also like to thank Morten Smedsrud at SINTEF ICT
for his assistance in extracting and processing the data for the DI-NEARP
benchmark and for running the Spider solver on all three benchmarks.

The work presented here has been funded by the Research Council of Norway
as a part of the Effekt project (contract number 187293/I40, SMARTRANS),
and the DOMinant II project (contract number 205298/V30, eVita).

References

[1] Distribution Innovation home page. http://www.di.no/?lang=en. Ac-
cessed: 27/07/2012.

[2] NEARP web pages. http://www.sintef.no/NEARP. Accessed:
27/07/2012.

[3] Spider web pages. http://www.sintef.no/Projectweb/

Transportation-planning/Software/Spider/. Accessed:
27/07/2012.

[4] Dino Ahr. Contributions to multiple postmen problems. PhD thesis,
University of Heidelberg, 2004.

[5] Anita Amberg and Stefan Voss. A hierarchical relaxations lower bound
for the capacitated arc routing problem. Proceedings of the 35th Annual
Hawaii International Conference on System Sciences, 3, 2002.

[6] Edward K. Baker, James S. DeArmon, and Bruce L. Golden. Compu-
tational experiments with algorithms for a class of routing problems.
Computers and Operations Research, 10(1):47–59, 1983.

[7] Roberto Baldacci, Paolo Toth, and Daniele Vigo. Exact algorithms for
routing problems under vehicle capacity constraints. Annals of Opera-
tions Research, 175:213–245, 2010. 10.1007/s10479-009-0650-0.

[8] Enrico Bartolini, Jean-François Cordeau, and Gilbert Laporte. Im-
proved Lower Bounds and Exact Algorithm for the Capacitated Arc
Routing Problem. Mathematical Programming, forthcoming.

[9] José M. Belenguer and Enrique Benavent. A cutting plane algorithm
for the capacitated arc routing problem. Computers and Operations
Research, 30(5):705–728, 2003.

24

[10] Enrique Benavent, Vicente Campos, Angel Corberán, and Enrique
Mota. The capacitated arc routing problem: Lower bounds. Networks,
22:669–690, 1992.

[11] P. Breslin and A. Keane. The Capacitated Arc Routing Problem: Lower
Bounds. Master’s Thesis. University College Dublin, Department of
Management Information Systems, 1997.

[12] Bode Claudia and Stefan Irnich. Cut-first branch-and-price-second for
the capacitated arc-routing problem. Technical report, LM-2011-03,
Johannes Gutenberg University Mainz, Germany, 2011.

[13] Angel Corberán, Adam N. Letchford, and José M. Sanchis. A cutting
plane algorithm for the general routing problem. Mathematical Pro-
gramming, 90:291–316, 2001.

[14] Angel Corberán, Enrique Mota, and José M. Sanchis. A comparison of
two different formulations for arc routing problems on mixed graphs.
Computers and Operations Research, 33:3384–3402, 2006.

[15] Angel Corberán, Isaac Plana, and José M. Sanchis. A branch & cut
algorithm for the windy general routing problem and special cases. Net-
works, 49:245–257, 2007.

[16] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Man-
agement Science, 80(6), 1959.

[17] Karl Doerner and Verena Schmid. Survey: Matheuristics for rich vehicle
routing problems. In Mara Blesa, Christian Blum, Gnther Raidl, An-
drea Roli, and Michael Sampels, editors, Hybrid Metaheuristics, volume
6373 of Lecture Notes in Computer Science, pages 206–221. Springer
Berlin / Heidelberg, 2010. 10.1007/978-3-642-16054-7 15.

[18] M. Dror. Arc routing: theory, solutions, and applications. Kluwer
Academic, 2000.

[19] Richard W. Eglese and Leon Y.O. Li. An interactive algorithm for
vehicle routeing for winter-gritting. Journal of the Operational Research
Society, 47:217–228, 1996.

[20] Dominique Feillet. A tutorial on column generation and branch-and-
price for vehicle routing problems. 4OR, 8(4):407–424, 2010.

[21] Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi
de Aragão, Marcelo L. Reis, and Renato Fonseca F. Werneck. Robust

25

branch-and-cut-and-price for the capacitated vehicle routing problem.
Mathematical Programming, 106(3):491–511, 2006.

[22] M. Gendreau, J. Y. Potvin, O. Bräysy, G. Hasle, and A. Løkketangen.
Metaheuristics for the vehicle routing problem and its extensions: a
categorized bibliography. In B. Golden, S. Raghavan, and E. Wasil,
editors, The Vehicle Routing Problem - Latest Advances and New Chal-
lenges. Springer Verlag, Heidelberg, 2008.

[23] B.L. Golden, S. Raghavan, and E.A. Wasil. The vehicle routing problem:
Latest advances and new challenges. Operations Research Computer
Science Interfaces Series. Springer, 2010.

[24] Bruce L. Golden and Richard T. Wong. Capacitated arc routing prob-
lems. Networks, 11:305–315, 1981.

[25] Geir Hasle and Oddvar Kloster. Industrial vehicle routing. In Geir
Hasle, Knut-Andreas Lie, and Ewald Quak, editors, Geometric Mod-
elling, Numerical Simulation, and Optimization - Applied Mathematics
at SINTEF, pages 397–435. Springer, 2007.

[26] Geir Hasle, Oddvar Kloster, Morten Smedsrud, and Kevin Gaze. Exper-
iments on the node, edge, and arc routing problem. Technical Report
A23265, SINTEF, 2012.

[27] Hisafumi Kokubugata, Ayako Moriyama, and Hironao Kawashima. A
practical solution using simulated annealing for general routing prob-
lems with nodes, edges, and arcs. In Proceedings of the 2007 interna-
tional conference on Engineering stochastic local search algorithms: de-
signing, implementing and analyzing effective heuristics, SLS’07, pages
136–149, Berlin, Heidelberg, 2007. Springer-Verlag.

[28] Jens Lysgaard, Adam N. Letchford, and Richard W. Eglese. A new
branch-and-cut algorithm for the capacitated vehicle routing problem.
Mathematical Programming, 100(2):423–445, 2004.

[29] Rafael Martinelli, Marcus Poggi, and Anand Subramanian. Improved
bounds for large scale capacitated arc routing problem. Technical re-
port, Monografias em Ciencia da Computacao 14/11, Pontificia Uni-
versidade Catolica, Rio de Janeiro, Brazil, 2011.

[30] C.S. Orloff. A fundamental problem in vehicle routing. Networks, 4:35–
64, 1974.

26

[31] Christian Prins and Samir Bouchenoua. A memetic algorithm solv-
ing the VRP, the CARP and general routing problems with nodes,
edges and arcs. In W Hart, N Krasnogor, and J Smith, editors, Re-
cent Advances in Memetic Algorithms, Studies in Fuzziness and Soft
Computing, pages 65–85. Springer, 2004.

[32] Paolo Toth and Daniele Vigo, editors. The vehicle routing problem. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2001.

[33] Sanne Wøhlk. New lower bound for the capacitated arc routing prob-
lem. Computers and Operations Research, 33(12):3458–3472, 2006.

[34] Sanne Wøhlk. A decade of capacitated arc routing. In Bruce L. Golden,
S. Raghavan, and Edward A. Wasil, editors, The vehicle routing prob-
lem: Latest advances and new challenges. Springer, 2008.

27

In
st
an

ce
B
as
is

In
st
an

ce
T
ot
al

n
u
m
b
er

R
eq
u
ir
ed

C
ap

ac
it
y

N
o
d
e
d
em

an
d

E
d
ge

d
em

an
d

A
rc

d
em

an
d

Nodes

Edges

Arcs

Nodes

Edges

Arcs

Mean

Std.

Mean

Std.

Mean

Std.

B
H
W

1
G
D
B

1
12

11
22

7
11

11
5

1.
0

0.
0

1.
0

0.
0

1.
0

0.
0

B
H
W

2
G
D
B

6
12

0
25

4
0

25
5

1.
0

0.
0

-
-

1.
0

0.
0

B
H
W

3
G
D
B

12
13

8
30

5
8

7
35

7.
2

3.
5

8.
0

4.
1

9.
0

2.
3

B
H
W

4
G
D
B

22
11

0
44

6
0

44
27

5.
0

2.
4

-
-

4.
0

2.
7

B
H
W

5
V
al

7a
40

0
13
2

30
0

13
2

20
0

8.
5

4.
3

-
-

8.
0

3.
3

B
H
W

6
V
al

7a
40

37
58

15
37

58
20
0

7.
3

4.
8

8.
0

2.
5

7.
0

3.
0

B
H
W

7
V
al

10
d

50
0

19
4

35
0

19
4

75
9.
1

4.
6

-
-

7.
0

2.
3

B
H
W

8
V
al

10
d

50
0

19
4

20
0

97
75

7.
6

3.
3

-
-

7.
0

1.
7

B
H
W

9
V
al

10
d

50
26

14
2

10
26

14
2

75
8.
6

3.
1

6.
0

1.
6

7.
0

2.
3

B
H
W

10
E
gl

e1
A

77
0

19
6

40
0

10
2

30
5

30
.0

13
.3

-
-

28
.0

15
.3

B
H
W

11
E
gl

e1
A

77
0

19
6

20
0

51
30
5

28
.3

11
.1

-
-

28
.0

10
.8

B
H
W

12
E
gl

s1
B

14
0

0
38
0

40
0

75
15
0

29
.7

11
.1

-
-

18
.0

6.
9

B
H
W

13
E
gl

s1
B

14
0

0
38
0

25
0

15
0

15
0

29
.0

11
.2

-
-

18
.0

9.
7

B
H
W

14
E
gl

e4
C

77
0

19
6

25
0

19
6

13
0

31
.2

13
.0

-
-

25
.0

20
.7

B
H
W

15
E
gl

e4
C

77
0

19
6

30
0

98
13
0

33
.0

11
.9

-
-

25
.0

14
.6

B
H
W

16
E
gl

s4
C

14
0

0
38
0

30
0

38
0

12
0

24
.4

16
.9

-
-

22
.0

16
.9

B
H
W

17
E
gl

s4
C

14
0

0
38
0

50
0

19
0

12
0

22
.3

7.
1

-
-

22
.0

11
.9

B
H
W

18
E
gl

e3
B

77
0

19
6

20
0

17
4

19
0

25
.0

8.
1

-
-

25
.0

19
.6

B
H
W

19
E
gl

e3
B

77
0

19
6

20
0

87
19
0

24
.1

9.
0

-
-

25
.0

13
.8

B
H
W

20
E
gl

s2
A

14
0

51
27
8

50
51

19
2

23
5

19
.0

9.
1

23
.0

13
.4

20
.0

13
.3

T
ab

le
1:

D
et
ai
ls

on
th
e
n
ew

B
H
W

in
st
an

ce
s.

28

In
st
an

ce
N
u
m
b
er

of
R
eq
u
ir
ed

C
ap

ac
it
y

N
o
d
e
d
em

an
d

E
d
ge

d
em

an
d

A
rc

d
em

an
d

Nodes

Edges

Arcs

Nodes

Edges

Arcs

Mean

Std.

Mean

Std.

Mean

Std.

D
I-
N
E
A
R
P
-n
24
0-
Q
2k

56
3

81
5

0
12
0

12
0

0
20
00

34
.2

45
.6

78
.2

82
.7

-
-

D
I-
N
E
A
R
P
-n
24
0-
Q
4k

56
3

81
5

0
12
0

12
0

0
40
00

34
.2

45
.6

78
.2

82
.7

-
-

D
I-
N
E
A
R
P
-n
24
0-
Q
8k

56
3

81
5

0
12
0

12
0

0
80
00

34
.2

45
.6

78
.2

82
.7

-
-

D
I-
N
E
A
R
P
-n
24
0-
Q
16
k

56
3

81
5

0
12
0

12
0

0
16
00
0

34
.2

45
.6

78
.2

82
.7

-
-

D
I-
N
E
A
R
P
-n
42
2-
Q
2k

71
0

87
1

0
30
2

12
0

0
20
00

24
.4

39
.1

74
.7

10
2.
1

-
-

D
I-
N
E
A
R
P
-n
42
2-
Q
4k

71
0

87
1

0
30
2

12
0

0
40
00

24
.4

39
.1

74
.7

10
2.
1

-
-

D
I-
N
E
A
R
P
-n
42
2-
Q
8k

71
0

87
1

0
30
2

12
0

0
80
00

24
.4

39
.1

74
.7

10
2.
1

-
-

D
I-
N
E
A
R
P
-n
42
2-
Q
16
k

71
0

87
1

0
30
2

12
0

0
16
00
0

24
.4

39
.1

74
.7

10
2.
1

-
-

D
I-
N
E
A
R
P
-n
44
2-
Q
2k

76
1

91
7

0
29
4

14
8

0
20
00

26
.1

31
.7

69
.1

46
.9

-
-

D
I-
N
E
A
R
P
-n
44
2-
Q
4k

76
1

91
7

0
29
4

14
8

0
40
00

26
.1

31
.7

69
.1

46
.9

-
-

D
I-
N
E
A
R
P
-n
44
2-
Q
8k

76
1

91
7

0
29
4

14
8

0
80
00

26
.1

31
.7

69
.1

46
.9

-
-

D
I-
N
E
A
R
P
-n
44
2-
Q
16
k

76
1

91
7

0
29
4

14
8

0
16
00
0

26
.1

31
.7

69
.1

46
.9

-
-

D
I-
N
E
A
R
P
-n
47
7-
Q
2k

66
7

83
7

0
20
3

27
4

0
20
00

16
.9

35
.8

68
.4

73
.9

-
-

D
I-
N
E
A
R
P
-n
47
7-
Q
4k

66
7

83
7

0
20
3

27
4

0
40
00

16
.9

35
.8

68
.4

73
.9

-
-

D
I-
N
E
A
R
P
-n
47
7-
Q
8k

66
7

83
7

0
20
3

27
4

0
80
00

16
.9

35
.8

68
.4

73
.9

-
-

D
I-
N
E
A
R
P
-n
47
7-
Q
16
k

66
7

83
7

0
20
3

27
4

0
16
00
0

16
.9

35
.8

68
.4

73
.9

-
-

D
I-
N
E
A
R
P
-n
69
9-
Q
2k

98
2

11
03

0
33
5

36
4

0
20
00

57
.3

67
.2

17
6.
1

17
5.
5

-
-

D
I-
N
E
A
R
P
-n
69
9-
Q
4k

98
2

11
03

0
33
5

36
4

0
40
00

57
.3

67
.2

17
6.
1

17
5.
5

-
-

D
I-
N
E
A
R
P
-n
69
9-
Q
8k

98
2

11
03

0
33
5

36
4

0
80
00

57
.3

67
.2

17
6.
1

17
5.
5

-
-

D
I-
N
E
A
R
P
-n
69
9-
Q
16
k

98
2

11
03

0
33
5

36
4

0
16
00
0

57
.3

67
.2

17
6.
1

17
5.
5

-
-

D
I-
N
E
A
R
P
-n
83
3-
Q
2k

11
20

14
50

0
34
7

48
6

0
20
00

31
.9

72
.7

10
4.
2

21
6.
9

-
-

D
I-
N
E
A
R
P
-n
83
3-
Q
4k

11
20

14
50

0
34
7

48
6

0
40
00

31
.9

72
.7

10
4.
2

21
6.
9

-
-

D
I-
N
E
A
R
P
-n
83
3-
Q
8k

11
20

14
50

0
34
7

48
6

0
80
00

31
.9

72
.7

10
4.
2

21
6.
9

-
-

D
I-
N
E
A
R
P
-n
83
3-
Q
16
k

11
20

14
50

0
34
7

48
6

0
16
00
0

31
.9

72
.7

10
4.
2

21
6.
9

-
-

T
ab

le
2:

D
et
ai
ls

on
th
e
D
I-
N
E
A
R
P

in
st
an

ce
s.

29

Instance Best Known Lower Bound Lower Bound AD1
BU BL GO CPU (s) BL GO CPU (s)

CBMix1 2589 2409 7.2 1.0 2409 7.2 3.1
CBMix2 12220 9742 22.3 76.7 9742 22.3 353.4
CBMix3 3643 3014 18.9 7.5 3014 18.9 30.6
CBMix4 7583 5302 35.4 20.9 5302 35.4 118.8
CBMix5 4531 3747 18.9 3.8 3789 17.8 13.1
CBMix6 7087 4983 33.2 16.2 5201 29.1 43.1
CBMix7 9607 7296 27.3 58.7 7296 27.3 193.6
CBMix8 10524 7956 27.8 33.4 7956 27.8 196.8
CBMix9 4038 3460 14.6 2.5 3460 14.6 7.8
CBMix10 7582 6409 16.8 37.5 6432 16.4 113.0
CBMix11 4494 2998 39.9 4.6 3031 38.9 43.9
CBMix12 3235 3138 3.0 2.1 3138 3.0 12.9
CBMix13 9110 6489 33.6 19.4 6524 33.1 238.3
CBMix14 8566 5719 39.9 15.7 5731 39.7 107.5
CBMix15 8280 6270 27.6 10.9 6318 26.9 64.3
CBMix16 8886 7416 18.0 24.5 7416 18.0 172.6
CBMix17 4037 3654 10.0 1.8 3654 10.0 22.0
CBMix18 7098 6089 15.3 25.7 6089 15.3 120.9
CBMix19 16347 11065 38.5 110.5 11143 37.9 549.6
CBMix20 4844 3400 35.0 2.3 3452 33.6 15.7
CBMix21 18069 12474 36.6 61.8 12474 36.6 221.5
CBMix22 1941 1825 6.2 1.8 1825 6.2 4.8
CBMix23 780 667 15.6 0.1 667 15.6 0.8

Table 3: Results obtained for the CBMix instances.

30

Instance Best Known Lower Bound Lower Bound AD1
BU BL GO CPU (s) BL GO CPU (s)

BHW1 337 324 3.9 0.3 324 3.9 1.3
BHW2* 470 470 0.0 0.4 470 0.0 0.9
BHW3 415 326 24.0 0.2 326 24.0 0.5
BHW4* 240 240 0.0 0.5 240 0.0 3.8
BHW5 506 498 1.6 5.4 502 0.8 52.1
BHW6* 388 388 0.0 2.9 388 0.0 32.3
BHW7 1094 930 16.2 41.7 930 16.2 347.2
BHW8 672 644 4.3 6.8 644 4.3 118.8
BHW9 913 791 14.3 28.0 791 14.3 346.5
BHW10 8556 6810 22.7 21.6 6810 22.7 123.1
BHW11 5021 3986 23.0 6.9 3986 23.0 40.0
BHW12 11042 6346 54.0 33.4 6346 54.0 207.7
BHW13 14510 8746 49.6 86.3 8746 49.6 576.7
BHW14 25194 17762 34.6 113.0 17762 34.6 737.5
BHW15 15509 12193 23.9 20.7 12193 23.9 214.2
BHW16 44527 26014 52.5 787.2 26014 52.5 4905.3
BHW17 26768 15396 53.9 162.7 15396 53.9 900.6
BHW18 15833 11202 34.3 77.9 11202 34.3 435.3
BHW19 9424 7065 28.6 14.1 7080 28.6 101.6
BHW20 16625 10730 43.1 269.9 10730 43.1 1388.4

Table 4: Results obtained for the BHW instances.

31

Instance Best Known Lower Bound
BU BL GO CPU (s)

DI-NEARP-n240-Q2k 24371 16376 39.2 368
DI-NEARP-n240-Q4k 18352 14362 24.4 311
DI-NEARP-n240-Q8k 15937 13442 17.0 324
DI-NEARP-n240-Q16k 14953 13116 13.1 334

DI-NEARP-n422-Q2k 18990 11623 48.1 1571
DI-NEARP-n422-Q4k 15987 11284 34.5 1337
DI-NEARP-n422-Q8k 14627 11220 26.4 1049
DI-NEARP-n422-Q16k 14357 11198 24.7 1702

DI-NEARP-n442-Q2k 51656 35068 38.3 1689
DI-NEARP-n442-Q4k 45605 33585 30.4 1715
DI-NEARP-n442-Q8k 44652 32985 30.1 1736
DI-NEARP-n442-Q16k 42797 32713 26.7 1816

DI-NEARP-n477-Q2k 23124 19722 15.9 1572
DI-NEARP-n477-Q4k 20198 18031 11.3 1574
DI-NEARP-n477-Q8k 18561 17193 7.7 1582
DI-NEARP-n477-Q16k 18105 16873 7.0 1575

DI-NEARP-n699-Q2k 59817 34101 54.8 7249
DI-NEARP-n699-Q4k 40473 26891 40.3 6921
DI-NEARP-n699-Q6k 30992 23302 28.3 7133
DI-NEARP-n699-Q8k 27028 21967 20.7 7400

DI-NEARP-n833-Q2k 56877 32435 54.7 8239
DI-NEARP-n833-Q4k 42407 29381 36.3 8739
DI-NEARP-n833-Q8k 35267 28453 21.4 8675
DI-NEARP-n833-Q16k 33013 28233 15.6 8157

Table 5: Results obtained for the DI-NEARP instances.

32

Technology for a better society

www.sintef.no

	Preprint LB paper SINTEF Tech Report.pdf
	NEARP_LB_paper23.pdf
	Preprint LB paper SINTEF Tech Report.pdf

