
On corner cutting in multi-obstacle
avoidance problems

Florin Stoican ∗ Esten Ingar Grøtli ∗∗ Ionela Prodan ∗∗∗

Cristian Oară ∗

∗ Department of Automatic Control and Systems Engineering, UPB,
Romania (florin.stoican@acse.pub.ro)

∗∗ Applied Cybernetics, SINTEF IKT, Norway (Esten
Ingar.Grotli@sintef.no)

∗∗∗ Laboratory of Conception and Integration of Systems (LCIS EA
3747), Grenoble INP, France (ionela.prodan@lcis.grenoble-inp.fr)

Abstract: One challenging and not extensively studied issue in obstacle avoidance is the corner
cutting problem. Avoidance constraints are usually imposed at the sampling time without
regards to the intra-sample behavior of the dynamics. This paper improves upon state of the art
by describing a multi-obstacle environment over a hyperplane arrangement scaffolding, provides
a piecewise description of the “shadow” regions and represents them into a combined mixed
integer and predictive control formulation. Furthermore, over-approximation constraints which
reduce to strictly binary formulations are discussed in detail. Illustrative proofs of concept,
comparisons with the state of the art and simulation results over a classical multi-obstacle
avoidance problem validate the benefits of the proposed approach.

Keywords: Corner cutting problem, Hyperplane arrangement, Model Predictive Control
(MPC), Mixed-Integer Programming (MIP), Multi-obstacle environment.

1. INTRODUCTION

Obstacle avoidance problems represent an active research
topic due to both their wide applicability in practical
settings and theoretical depths. The major issue is that the
avoidance constraints lead to a feasible space which is non-
convex and often non-connected. It is worth emphasizing
that such an outcome is not just an artifact of the problem,
but rather an intrinsic property which cannot be avoided.

The present paper concentrates on a particular issue: the
corner cutting problem under a predictive control frame-
work. Avoidance constraints are usually imposed at the
sampling time without regards to the intra-sample behav-
ior of the agent. This means that it is possible for an agent
to “cut the corner” of an obstacle while apparently respect-
ing the constraints. This is usually handled by changing
the constraints to take into account the future position of
the agent with respect to its current position. There are
a variety of ways of implementing these requirements but
they all seem (to the best of the authors’ knowledge) to
be conservative in their description Richards and Turnbull
[2015], Maia and Galvão [2009], Deits and Tedrake [2015].

Here, we propose to use hyperplane arrangements as the
main theoretical tool for constraint description. Namely,
we partition the space into disjoint cells which can be
either forbidden (the obstacles) or admissible (parts of the
feasible space) and use this scaffolding to characterize the
shadow region spanned by the agent in question. This area
of the space blocked from view by an obstacle is in fact the
region in which we do not allow the agent to jump. Further,

we consider over-approximations which, at the price of
being more conservative, allow for simpler coding of the
constraints. We note that the hyperplane arrangement is
not only a convenient way to describe the obstacles but
also serves as support for the shadow area function (i.e.,
the structure of the shadow region remains constant over a
fixed cell) which henceforth allows a piecewise description.

To put the previous constructions into a manageable
form we use mixed integer programming Jünger et al.
[2009], Reinl and von Stryk [2007]. The particularity is
that we use the hyperplane arrangement construct to
both simplify the formulation Prodan et al. [2012] and
to exploit the piecewise nature of the shadow regions
Stoican et al. [2014]. Through codification methods found
in Vielma and Nemhauser [2011] we provide mixed integer
constructs which describe both the shadow region and its
complement in both exact and over-approximation forms.
For the latter we arrive to a simplified form (involving
only binary variables) which seems to be a generalization
of results shown in Maia and Galvão [2009] and Richards
and Turnbull [2015]. Lastly, we introduce these constraints
into an MPC problem and verify that no corners are cut.

1.1 Notation

The collection of all possible combinations of N binary

variables is given by {0, 1}N = {(b1, . . . , bN) : bi ∈ {0, 1} ,
∀i = 1 . . . N}, the same definition holds for sign tuples
{−,+}N . Cone(p,X) = {p + α(x − p), ∀x ∈ X,∀α ≥ 0}
denotes the pointed cone with extreme point p and tangent

to set X. Conv(X,Y) = {αx + (1 − α)y,∀x ∈ X, ∀y ∈
Y, 0 ≤ α ≤ 1} is the convex hull of the sets X and Y .

2. PRELIMINARIES

Let us consider a finite collection of hyperplanes from Rn,
H = {Hi}i∈I with

Hi = {x ∈ Rn : hix = ki} , i ∈ I, (1)

where I , {1 . . . N} and (hi, ki) ∈ R1×n × R.

Each of these hyperplanes partitions the space into two
disjoint regions (which halve the space and hence are called
“half-spaces”):

H+
i = {x ∈ Rn : hix ≤ ki} , (2a)

H−
i = {x ∈ Rn : −hix ≤ −ki} . (2b)

Furthermore, hypeplanes (1) cut the space Rn into disjoint
cells

A(σ) =
∩
i∈I

Hσ(i)
i , (3)

which are feasible intersections of halfspaces (2a)–(2b)
with the signs appropriately taken from the sign tuple
σ = (σ(1), . . . , σ(N)). Such a partitioning of the space
is called a hyperplane arrangement and is the union of
all cells (3), that is, Rn = A(H) =

∪
σ∈Σ A(σ) where

Σ ⊂ {−,+}N denotes the collection of all tuples describing
non-empty regions (3).

We can then partition the sign tuples into ‘admissible’
(σ◦ ∈ Σ◦) and ‘forbidden’ (σ• ∈ Σ•) where Σ◦ ∩ Σ• =
∅ and Σ• ∪ Σ◦ = Σ. The latter subset describes the
obstacles whereas the former describes the complement of
the obstacle collection:

S ,
∪

σ•∈Σ•

A(σ•), Rn \ S ,
∪

σ◦∈Σ◦

A(σ◦). (4)

In addition, let us consider a point x ∈ Rn \ S. Then, the
shadow region B(S, x) given as in Strutu et al. [2013] is
the collection of all the points from Rn \ S which are not
“visible” from ‘x’:

B(S, x) = {y ∈ Rn : [x, y] ∩ S ̸= ∅}. (5)

This simply states that if the segment [x, y] intersects S
it means that point x is “hidden” by obstacles S and
therefore is not “visible” from the viewpoint of x.

Considering definition (4), region (5) is rewritten 1 as

B(S, x) =
∪

σ•∈Σ•

B (σ•, x) . (6)

To construct set (6) we have to deal with the parameter
x. In order to do so, consider hereinafter the auxiliary
construction

E(σ•, x) = A(σ•)∩

 ∪
x/∈Hσ•(i)

i

Hi

∩

 ∪
x∈Hσ•(i)

i

Hi

 , (7)

which denotes the tangent points of A(σ•) from the
viewpoint of x.

Remark 1. In R2, (7) reduces to a set of disconnected
extreme points of the obstacle A(σ•). In general, in Rn

we obtain a connected union of n− 1 flats (“ridges”). �
1 To shorten the notation, we write B (A(σ•), x) in the compact
form B (σ•, x).

Proposition 2. For any x ∈ A(σ◦) where σ◦ ∈ Σ◦, the
shadow region B(σ•, x) has a constant structure given by

B(σ•, x) = Cone (x, E(σ•, x)) ∩
∩

σ◦(i) ̸=σ•(i)

H
σ•(i)
i (8)

where 2

E(σ•, σ◦) = A(σ•) ∩

 ∪
σ◦(i)̸=σ•(i)

Hi

 ∩

 ∪
σ◦(i)=σ•(i)

Hi


(9)

Proof. By construction, the shadow area can be written as

B(σ•, x) = Cone (x,A(σ•))∩
∩

x/∈H
σ•(i)
i

H
σ•(i)
i . This becomes

(8) if we note that the cone spanned from x and tangent to
A(σ•) is completely characterized by x and E(σ•, x). Term
(7) is rewritten in form (9) is we note that the indices for

which x /∈ H
σ•(i)
i and x ∈ H

σ•(i)
i remain the same for any

point taken from A(σ◦) and are in fact given by checking
whether the regions A(σ•) and A(σ◦) lie on the same (or
opposite) sides of the i-th hyperplane. �
Proposition 2 shows that it suffices to compute a para-
metrized set for any x in a given cell A(σ◦) and then
replace the parameter x with the actual value at run-
time. While this reduces the computation burden, the
formulation for the shadow area is still relatively difficult
due to Cone (x, E(σ•, σ◦)). A solution, as shown in the
next corollary, is to consider an over-approximation of the
shadow region.

Corollary 3. Let there be B(σ•, σ◦) =
∪

x∈A(σ◦) B(σ•, x)

the shadow region associated to a feasible tuple σ◦. Then,
this region depends only on σ◦ and is described as follows:

B(σ•, σ◦) =
∩

σ◦(i)̸=σ•(i)

H
σ•(i)
i , (10)

Proof. From the definition of B(σ•, σ◦), the fact that∪
i(Ai∩B) = (

∪
i Ai)∩B and (8) follows that B(σ•, σ◦) =∪

x∈A(σ) Cone (x, E(σ•, σ◦))∩
∩

σ◦(i)̸=σ•(i)

H
σ•(i)
i which leads

to (10). �
By using the over-approximation (10) the shadow region
not only retains the same structure for any x ∈ A(σ◦)
but actually remains constant. Hence, at run-time it is
necessary only to identify the currently active tuple σ◦

and use the corresponding region (10).

Remark 4. In general, we may consider the blind area
resulting from a set rather than from a point (x ∈ X). The
only difficulty is to check whether the set X stays in one
or more of the regions (3). Defining ΣX , {σ ∈ Σ◦ : X ∩
A(σ) ̸= ∅} ⊆ Σ◦ allows to characterize the shadow region:

B(σ•,X) =
∪

x∈X∩A(σx),σx∈ΣX

(B(σ•, x)) , (11a)

B(σ•,ΣX) =
∪

σX∈ΣX

B(σ•, σX). (11b)

along the lines of Proposition 2 and Corollary 3. �
2 To underline that the set depends only on σ◦ and not on any
particular x ∈ A(σ◦) we changed from E(σ•, x) to E(σ•, σ◦).

2.1 Illustrative example

Consider the example depicted in Figure 1 with two
obstacles in R2, S = S1 ∪ S2 defined by 5 hyperplanes.
These partition the space into 16 cells from which 2
describe the obstacles and the rest characterize the feasible
space R2 \ S. More precisely, we identify Σ• = {σ1, σ2}
such that S1 = A(σ1) and S2 = A(σ2) for σ1 = (− −
+++) and σ2 = (+−−++). We apply now the shadow

− +

H
1

−
+

H2

−
+

H 3

−
+

H
4

−+

H
5

S1

A(−− + + +)

S2

A(+−− + +)

Fig. 1. Illustration of a collection of obstacles and their
associated hyperplane arrangement.

region descriptions for S1. In Figure 2 we take a point
x1 ∈ A(σ) for σ = (+ + + + +). Checking the signs for

− +

H
1

−
+

H2

−
+

H 3

−
+

H
4

−+

H
5

S1

S2

x1

x2

B(σ1, x1)

B(σ1, x2)

B(σ1, σ)

Fig. 2. Illustration of exact and over-approximated shadow
regions.

tuples σ1 and σ we note that x1 shares the same half-
spaces with S1 for indices 3, 4 and 5, the only different
signs being at indices 1 and 2. Using this information
in (7), or alternatively in (9), we note that the set of
tangent points of S1 from the viewpoint of x1 consists
of two points E(σ1, x1) = {H2 ∩ H4,H1 ∩ H4}. Next, we
can compute Cone(x1, S1), which is the cone defined by
the rays starting from x1 and passing through E(σ1, x1).
By adding the half-spaces separating the obstacle from
the observation point (H−

1 ,H
−
2) we obtain the shadow

region B(σ1, x1) = Cone(x1, S1) ∩ H−
1 ∩ H−

2 . We depict
in Figure 2 the over-approximation strategy employed in
Corollary 3. That is, we take an additional point x2 ∈ A(σ)

from the same cell and depict the resulting shadow region
B(σ1, x2) = Cone(x2, S1) ∩ H−

1 ∩ H−
2 . Comparing with

B(σ1, σ) = H−
1 ∩ H−

2 , constructed as in Corollary 3, it
can be seen that B(σ1, σ) contains any region B(S1, x) for
x ∈ A(σ), and in particular for x ∈ {x1, x2}.

3. MIXED INTEGER REPRESENTATION

In Section 2 we gave various formulations for shadow
regions observed from the point of view of an agent
and with multiple obstacles. Regardless of the particular
construction, the issue is that the resulting feasible region
is non-convex (and in the case of multiple obstacles, not
even connected) and the problem is nonlinear. Henceforth,
we use mixed integer formulations, that is, we add to the
original problem binary variables which help describe the
problem in a pseudo-linear formulation.

As a first step, we define the mapping δ : {−,+}N ×
{−,+}N → {0} ∪ [1,∞):

δ(σ1, σ2) =
∑
i

δi(σ1, σ2), (12)

where δi(σ1, σ2) =

{
1− σ2(i), σ1(i) = ‘+′

σ2(i), σ1(i) = ‘−′ . We abuse the

notation and whenever convenient (in the definition of
(12) for example) we equate ‘-’ with ‘0’ and ‘+’ with ‘1’.
With this in mind, if follows that δ maps the difference
between the two sign tuples σ1 and σ2: δ(σ1, σ2) ={
0, σ1 = σ2

≥ 1, σ1 ̸= σ2
. Using constructions similar to the ones

in Vielma and Nemhauser [2011] and the references therein
the following representation of B(σ•, x) is provided.

Proposition 5. Let there be a point x ∈ A(σ) and an
obstacle A(σ•). Then a point x+ is inside B(σ•, x) iff

x+ = x+
∑
j

βj(vj − x), (13a)∑
j s.t. vj /∈E(σ•,σ◦)

βj ≤ Mδ(σ◦, σ), ∀σ◦ ∈ Σ◦, (13b)

βj ≥ 0, (13c)

σ•(i)hix
+ ≤ σ•(i)ki +M(1− δi(σ

•, σ)), (13d)

where vj denote the extreme points of the obstacle.

Proof. Equations (13a) and (13c) describe a cone spanned
from x and with rays vj . (13b) ensures that only the
extreme points active for the current cell A(σ) participate
in the cone construction (since the terms βj are positive,
if their sum is zero then each term is zero). Lastly, (13d)
adds to the mix the half-spaces which separate the obstacle
from the point x, as required by definition (8). �
Remark 6. The above equations make use of the “big M”
representation. That is, we consider in the right hand side
a combination of binary variables multiplied by a large
value (i.e., ‘M’). This means that whenever the binary
part is ‘≥ 1’ the right hand is practically ‘infinite’ thus
making the associated inequality redundant. In particular,
in Proposition 5 the current location of point x (i.e, its sign
tuple σ) is unknown. Consequently we enumerate all the
feasible tuples in (13b), and, iff σ ̸= σ◦ the associated
inequality is neglected. �

In Proposition 5 we provided a mixed integer description
of the shadow area. However, if we wish to describe the
feasible region, we need its complement.

Proposition 7. Let there be a point x ∈ A(σ) and an
obstacle A(σ•). Then a point x+ is outside B(σ•, x) iff

M(1− α) ≥ |x+ − x−
∑
j

βj(vj − x)|, (14a)

|βj | ≤ Mδ(σ◦, σ), ∀j s.t. vj /∈ E(σ•, σ◦), (14b)

βj ≤ M(1− γj), (14c)

γj ≤ δ(σ◦, σ), ∀j s.t. vj /∈ E(σ•, σ◦), (14d)∑
j

γj > 0, (14e)

−σ•(i)hix
+ ≤ −σ•(i)ki +M [δi(σ

•, σ) + α+ ρi], (14f)

N >
∑
i

[ρi + δi(σ
•, σ)] , (14g)

for any σ◦ ∈ Σ◦ and with α, γj , ρi ∈ {0, 1} auxiliary binary
variables.

Proof. Using (8) and the fact that A ∩B = A ∪ B we

have that B(σ•, x) = Cone (x, E(σ•, x))∪
∪

σ◦(i) ̸=σ•(i)

H
σ◦(i)
i .

Binary variable α selects between Cone (x, E(σ•, x)) and∪
σ◦(i) ̸=σ•(i)

H
σ◦(i)
i , ρi which appear in (14f), (14g) select

one of the half-spaces H
σ◦(i)
i . The rest of the constraints,

(14b)–(14e) describe the complement of the cone: (14a)
describes a cone spanned from x and with rays vj and
(14b) lets only the extreme points active for the current
sign tuple to participate in the cone construction; (14e)
with (14d) ensure that at least one of the active coefficients
γj is equal to one (and hence that at least a βj is negative
thus ensuring that we are outside of the cone). �
Remark 8. In both Proposition 5 and 7 we considered only
one obstacle (the one defined by tuple σ•). The extension
to the case of multiple obstacles is straightforward. For
the shadow area additional binary variables need to be
considered in order to describe the union of shadow regions
resulting from each of the obstacles. On the other hand, to
describe the visible region, we simply intersect the regions
obtained in (14a)–(14g): x /∈

∪
σ•∈Σ•

B(σ•, x) is equivalent

with x ∈
∪

σ•∈Σ•
B(σ•, x) ⇔ x ∈

∩
σ•∈Σ•

B(σ•, x). �

The exact formulations (13a)–(13d) and (14a) –(14g) are
complex due to the presence of term Cone(σ•, x). If on the
other hand we use the over-approximation of Corollary 3,
we greatly simplify the representations.

Proposition 9. Assume that the current position is x ∈
A(σ) and that the obstacle is A(σ•). Then the future
position x+ ∈ A(σ+) is constrained as follows:

(i) for x+ ∈ B(σ•, σ):∑
i

δi(σ
•, σ) · δi(σ•, σ+) = 0, (15)

(ii) for x+ /∈ B(σ•, σ):∑
i

δi(σ
•, σ) · δi(σ•, σ+) > 0, (16)

Proof. For both cases it is a matter of ignoring the
constraints related to the term Cone(σ•, x) which means
that we remain with (13d) and (14f)–(14g), respectively.
Further, we interpret these constraints in terms of three
sign tuples: σ+ characterizes the shadow/visible region and
is constrained by the current position (σ) and the obstacle
(σ•). We limit σ+ to describing: the regions defined only
by the half-spaces which separate between the obstacle and
the current position.

This constraint is expressed by δi(σ
•, σ) · δi(σ•, σ+) =

0: whenever σ•(i) and σ(i) share the same sign (i.e.,
δi(σ

•, σ) = 0) the value of σ+(i) is not constrained; when-
ever σ•(i) and σ(i) have opposite signs (i.e., δi(σ

•, σ) = 1)
we have that σ+(i) is constrained to have the same sign
as σ•(i) (thus making δi(σ

•, σ+) = 0).

Depending which region we wish to describe (shadow or
visible region) we reach (15) or (16). For case (i), forcing
the equality means that each of the terms of the sum is
zero (since we have a sum of positive terms). To describe
case (ii) it suffices that at least one of the terms of the
sum is non-zero. Since each of the sum terms is positive,
the fact that the sum is positive means that at least one
of them is positive. �
In Proposition 9 the constraints (15)–(16) are linear only
if σ is known. If σ is itself a variable we have bilinear
binary terms which make any optimization problem into
which they appear MINLP. Needless to say, this should be
avoided at all costs. The solution is to provide a piecewise
description which, through an increase in the number of
constraints, keeps the formulation linear.

Corollary 10. Assume that the obstacle is A(σ•). Then
the future position x+ ∈ A(σ+) is constrained as follows:

(i) for x+ ∈ B(σ•, σ):∑
i

δi(σ
•, σ◦) · δi(σ•, σ+) ≤ Nδ(σ◦, σ), (17)

(ii) for x+ /∈ B(σ•, σ):∑
i

δi(σ
•, σ◦) · δi(σ•, σ+) > −Nδ(σ◦, σ), (18)

for all σ◦ ∈ Σ◦.

Proof. We write the equations (15)–(16) for each of the
feasible sign tuples σ◦ ∈ Σ◦. Further, recall that δ(σ◦, σ)
is ≥ 1 iff σ◦ ̸= σ. It follows that out of the equations (17)–
(18) only the ones corresponding to the active sign tuple
remain and the rest are ignored (as they are always true,
regardless of the left-hand side value). �

3.1 Illustrative example

We consider the example from Section 2 and recall that
the shadow region spanned from point x1 with respect to
obstacle S1 = A(σ1) was found to be:

B(σ1, x1) = Cone(x1, S1) ∩H−
1 ∩H−

2 .

Using Proposition 5 we obtain the following mixed integer
formulation (as seen in Figure 3, the extreme points of S1

are denoted as v1, v2, v3):

x+ = x+ β1(v1 − x) + β2(v2 − x) + β3(v3 − x),

.

β3 ≤ M (5− σ(1)− σ(2)− σ(3)− σ(4)− σ(5)) ,

.

β1 ≥ 0, β2 ≥ 0, β3 ≥ 0,

−hix
+ ≤ −ki +M(1− σ(i)), i ∈ {1, 2}

hix
+ ≤ ki +Mσ(i), i ∈ {3, 4, 5}

We observe that the cone can be composed from at most
three rays (the extreme points of S1). Which of these is
active is governed by equations (13b). For compactness
reasons we consider here only the case σ◦ = (+ + + +
+). The last five constraints show which of the half-
spaces of the obstacle remain active in the shadow region
representation. Consider that in the above equations σ is
replaced with σ◦. The following effects can be observed: 1)
the right side of the third equation becomes zero and hence
β3 = 0 which means that the cone formulation becomes
x+ = x + β1(v1 − x) + β2(v2 − x); 2) out of the half-
space constraints we remain with only −h1x

+ ≤ −k1 and
−h2x

+ ≤ −k2. We can then conclude that by choosing σ◦

we retrieve the shadow region B(σ1, x1).

− +

H
1

−
+

H2

−
+

H 3

−
+

H
4

−+

H
5

S1

S2

x1

− +

H
1

−
+

H2

−
+

H 3

−
+

H
4

−+

H
5

v1v2

v3 v4

v5

v6

Fig. 3. Illustration of over-approximated shadow regions
in a multi-obstacle environment.

Proposition 7 has a similar construction as the one pro-
vided in the above illustrative example, hence we skip
to the over-approximate representations given in Proposi-
tion 9. We consider B(σ•, σ◦) with the sign tuples defined
as in (10). Then, the shadow region inclusion constraint is
given as:

σ+(1) + σ+(2) = 0,

and the shadow region exclusion constraint as

σ+(1) + σ+(2) > 0.

This can be easily checked in Figure 3. From the first equa-
tions we have that x+ can lie in any region which respects
σ+(1) = σ+(2) = ‘−′, in other words x+ ∈ H−

1 ∩ H−
2

whereas the second equation imposes the opposite, that
x+ cannot lie in any region which respects simultaneously
both σ+(1) = σ+(2) = ‘−′, hence that x+ /∈ H−

1 ∩ H−
2 .

These constraints can easily manipulate multiple obsta-
cles: the patterned region from Figure 3 describes the over-
approximate shadow region spanned from x1 with respect
to obstacles S1 and S2. Constraints:

σ+(1) + σ+(2) > 0, σ+(2) + σ+(3) > 0.

describe the feasible space in which x+ can lie. The
extension to Corollary 10 is straightforward and thus not
exemplified here.

3.2 Comparison with the state of the art

Since the paper aims to provide an exact description of
the shadow region we investigate the proposed approach
through comparison with the state of the art. Specifically,
we refer to Maia and Galvão [2009] and Richards and
Turnbull [2015], where it appears that barring a change
in notation, constraints involving binary variables are of
the same type as in Corollary 10. That is, Maia and
Galvão [2009] imposes a similar set of constraints in the
over-approximate case while Richards and Turnbull [2015]
considers a subset of these constraints (as it limits their
variation along the prediction horizon). Several remarks
are to be made. Foremost is that the constructions shown
in these papers consider as obstacle a single polyhedral set
whereas the approach proposed here considers arbitrarily
many obstacles. And although their formulation can be
generalized to also include arbitrarily many obstacles, it
appears that the constraint design is not fully exploited.
For example, the obstacle is defined as the intersection of
the ‘+’ side of its support hyperplanes, hence, it is not
clear how the constraints would be written in the more
general case. It is also worth noting that the number of
binary variables depends on both the number of obstacles
and their complexity, while in our approach the number
of binary variables remains fixed (as the obstacles are
characterized by forbidden sign tuples).

4. MPC IMPLEMENTATION

Up to this point the paper mainly discussed the geometric
interpretation and the mixed integer formulation of the
shadow region (and its complement). Next, the proposed
novel description is integrated within an MPC framework
since it deals natively with constraints and is thus, well
suited for obstacle avoidance control problems. Assuming,
as it reasonable to do for small sampling times, that in
a sampling interval an agent moves along a straight line
we can avoid cutting the corner of an obstacle by forcing
the next position of the agent to be outside of the shadow
region spanned by the current position and the obstacle(s).
In fact, for an LTI dynamic given as

xk+1 = Axk +Buk, yk = Cxk (19)

we impose that yk+1 /∈
∪

σ•∈Σ•
B(σ•, yk) – or its over-

approximation counterpart B(σ•, σk) – in addition to the
usual constraints 3 (e.g., yk ∈ Y, uk ∈ U). The sign
tuple σk+i characterizing the predicted output yk+i is
itself a variable and cannot be assumed as a constant.
Here we make use of the previous sections where we
have provided piecewise descriptions of the shadow regions
(either through Proposition 7 or Corollary 10). With these
constructs we can now formulate the optimization problem
and solve it:

3 With Np the prediction horizon, Q and R the positive definite
weighting matrices.

u∗ =arg min
uk,σk+1,...uk+Np−1,σk+Np

Np−1∑
i=0

∥xk+i+1∥Q + ∥uk∥R,

(20a)

s.t.xk+i+1 = Axk+i +Buk+i, (20b)

yk+i ∈ Y, uk+i ∈ U , (20c)

yk+i+1 /∈
∪

σ•∈Σ•

B(σ•, σk+i), i = 1 . . . Np. (20d)

The result is an MILP problem which requires specialized
solvers (CPLEX, Gurobi, etc) but which can be handled
relatively easy.

We proceed to do so for the dynamics used for UAV path
planning in Grøtli and Johansen [2012], Grancharova et al.
[2014] of the form (19):

xk+1 =

[
I2 I2
02 I2

]
xk +

[
02
I2

]
uk, yk = [I2 02]xk, (21)

which is a discretized integrator with sampling time ∆t =
1, the state is composed from position and velocity and the
output is the agent’s position. For the MPC problem we
choose Q and R as identity matrices, a prediction horizon
Np = 10 and output, and respectively, input constraints

of form Y = {y : |y| ≤ [8 8]
⊤} and U = {u : |u| ≤ 0.25}.

The result of simulating with starting coordinates x0 =

[6.07 2.09 0 0]
⊤

and using the shadow region exclusion
constraints from Corollary 10 is the trajectory (dotted
blue line) depicted in Figure 4. Note that the constraints
apply only to the position component of the state. For
comparison, we simulate from the same starting point
without the corner cutting constraints (i.e., (20d)) and
impose only obstacle avoidance constraints (dashed red
line). As expected, we observe that the addition of corner
cutting constraints leads to a trajectory which avoids
intra-sample obstacle collision.

−4 −3 −2 −1 0 1 2 3 4 5 6 7

−2

0

2

4

6

y1

y 2

Fig. 4. Illustration of corner cutting simulation.

5. CONCLUSIONS

This paper proposed an in depth analysis of the corner
cutting problem and provided a framework which can
handle a multi-obstacle environment. Both exact and over-
approximation constructs for the shadow region have been
given. Moreover, we have shown that the mapping of such
a region is piecewise with the support generated by a
hyperplane arrangement. Mixed integer formulations have
been considered and compared with the state of the art.

We employed the theoretical results in an MPC scheme
and have shown through simulations the desired obstacle
avoidance behavior.

Acknowledgment. This work has been partially funded
by the Sectorial Operational Programme Human Re-
sources Development 20072013 of the Ministry of Eu-
ropean Funds through the Financial Agreement [grant
number POSDRU/159/1.5/S/132395] and by a grant of
the Romanian National Authority for Scientific Research,
CNCS - UEFISCDI, project identification number PN-II-
ID-PCE-2011-3-0235.

REFERENCES

R. Deits and R. Tedrake. Efficient mixed-integer planning
for UAVs in cluttered environments. In Proc. of IEEE
Int. Conf. on Robotics and Automation, 2015.

A. Grancharova, E. I. Grøtli, D.-T. Ho, and T. A. Jo-
hansen. UAVs trajectory planning by distributed MPC
under radio communication path loss constraints. Jour-
nal of Intelligent and Robotic Systems, 2014. doi: 10.
1007/s10846-014-0090-1.

E. I. Grøtli and T. A. Johansen. Path planning for UAVs
under communication constraints using SPLAT! and
MILP. Journal of Intelligent and Robotic Systems, 65
(1-4):265–282, 2012. doi: 10.1007/s10846-011-9619-8.

M. Jünger, M. Junger, T.M. Liebling, D. Naddef,
G. Nemhauser, and W.R. Pulleyblank. 50 Years of
Integer Programming 1958-2008: From the Early Years
to the State-of-the-Art. Springer Verlag, 2009.

M. H. Maia and R. K. H. Galvão. On the use of mixed-
integer linear programming for predictive control with
avoidance constraints. Int. J. Robust Nonlinear Control,
19:822–828, 2009. doi: 10.1002/rnc.1341.

I. Prodan, F. Stoican, S. Olaru, and S.I. Niculescu.
Enhancements on the Hyperplanes Arrangements in
Mixed-Integer Techniques. Journal of Optimization
Theory and Applications, 154(2):549–572, 2012. ISSN
0022-3239. doi: 10.1007/s10957-012-0022-9.

C. Reinl and O. von Stryk. Optimal control of multi-
vehicle-systems under communication constraints using
mixed-integer linear programming. In Proc. of the 1st
Int. Conf. on Robot comm. and coordination, 2007.

A. Richards and O. Turnbull. Inter-sample avoidance
in trajectory optimizers using mixed-integer linear pro-
gramming. Int. J. Robust Nonlinear Control, 25:521–
526, 2015. doi: 10.1002/rnc.3101.

F. Stoican, I. Prodan, M. I. Struţu, and D. Popescu.
Geometrical interpretation on the coverage problems for
a mobile agent. In Proc. of the 18th Int. Conference on
System Theory, Control and Computing, pages 791–796,
2014.

M.-I. Strutu, F. Stoican, I. Prodan, D. Popescu, and
S. Olaru. A characterization of the relative position-
ing of mobile agents for full sensorial coverage in an
augmented space with obstacles. In Proc. of the 21st
Mediterranean Conf. on Control and Automation, pages
936–941, 2013.

J.P. Vielma and G.L. Nemhauser. Modeling disjunctive
constraints with a logarithmic number of binary vari-
ables and constraints. Mathematical Programming, 128
(1):49–72, 2011.

	1 Introduction
	1.1 Notation

	2 Preliminaries
	2.1 Illustrative example

	3 Mixed integer representation
	3.1 Illustrative example
	3.2 Comparison with the state of the art

	4 MPC implementation
	5 Conclusions

