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a b s t r a c t

The concept of Virtual Synchronous Machines (VSMs) is emerging as a flexible approach for controlling
power electronic converters in grid-connected as well as in stand-alone or microgrid applications.
Several VSM implementations have been proposed, with the emulation of inertia and damping of a tradi-
tional Synchronous Machine (SM) as their common feature. This paper investigates a VSM imple-
mentation based on a Voltage Source Converter (VSC), where a virtual swing equation provides the
phase orientation of cascaded voltage and current controllers in a synchronous reference frame. The con-
trol system also includes a virtual impedance and an outer loop frequency droop controller which is func-
tionally equivalent to the governor of a traditional SM. The inherent capability of the investigated VSM
implementation to operate in both grid-connected and islanded mode is demonstrated by numerical sim-
ulations. Then, a linearized small-signal model of the VSM operated in islanded mode while feeding a
local load is developed and verified by comparing its dynamic response to the time-domain simulation
of a nonlinear system model. Finally, this small-signal model is applied to identify the dominant modes
of the system and to investigate their parametric sensitivity.

� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Virtual Synchronous Machines (VSMs) have recently been pro-
posed as a suitable concept for controlling power electronic con-
verters in power system applications [1–4]. In the context of
large-scale power systems, VSMs can provide a flexible approach
for introducing additional damping and virtual inertia as an inher-
ent part of the control system of grid integrated Voltage Source
Converters (VSCs) [2,5,6]. A few proposed implementations of the
VSM concept can also allow for stand-alone and parallel-connected
operation in Microgrids or other isolated system configurations
with similar performance and flexibility as traditional
Synchronous Machines (SMs) [4,7–9].

The VSM concept is still in an early stage of development and
many possible implementations, targeted for various types of
applications, have been proposed, as reviewed in [4,10]. Thus, most
publications until now have been mainly concerned with the
development of particular VSM implementations and the
presentation of case studies demonstrating the corresponding
operational features. A systematic small-signal analysis of a speci-
fic VSM implementation was first presented in [11], intended for
controller tuning and stability improvement by utilizing the
sensitivities of the system eigenvalues with respect to the con-
troller parameters.

The VSC control system investigated in [11] included only the
VSM swing equation for damping and inertia emulation, a droop-
based reactive power controller according to [12,13] and cascaded
voltage and current control loops. However, there was no external
power control included in the model, and the implementation of
the damping of the VSM did not automatically take into account
variations in the steady-state grid frequency. Thus, the applicabil-
ity of the studied control system was limited to either stand-alone
operation for feeding a local load or the operation in a strong grid
with a known, fixed, frequency. An extension of the VSM control
system design described in [11] was presented in [14]. To achieve
full flexibility in allowable operating conditions, the resulting con-
trol system included an outer loop frequency droop controller with
functionality equivalent to the steady-state control characteristics
of traditional SMs [16]. A Phase Locked Loop (PLL) [17,18] was also
introduced for tracking the actual grid frequency needed for imple-
menting the VSM inertial damping under deviations from the
nominal grid frequency. Furthermore, a virtual impedance, similar
to the implementations proposed in [19,20], was included in the
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VSM to improve the decoupling between active and reactive power
when operating in resistive grids. Active damping of LC-oscillations
was also introduced to ensure stable operation of the VSM in case
of LC or LCL filters as the grid side interface of the VSC [21,22].
Mathematical models for all the individual elements of the inves-
tigated VSM configuration were described in detail in [14], and a
corresponding small-signal state-space model of the entire system
was developed, verified and analyzed for grid connected operation.
The same control system and the corresponding small signal model
for grid connected operation was further elaborated and analyzed
in [15].

Although the mathematical model and the analysis of the VSM
implementation from [14] and [15] were only valid for grid con-
nected operation, the presented VSM implementation was also
intrinsically suitable for stand-alone operation. This paper will
start from the same control system implementation and the
corresponding model description as presented in [14], and will
demonstrate the inherent capability of this VSM implementation
for both grid-connected and stand-alone operation by time-
domain simulations. A nonlinear analytical model for stand-alone
operation will be formulated and linearized to obtain a small-sig-
nal state-space representation. This model will be validated by
simulations of the nonlinear system model and applied to study
the small-signal dynamic properties of the VSM in islanded opera-
tion. In particular, the model will be used to analyze the influence
of operating conditions on the VSM performance in stand-alone
mode, and to identify the parametric sensitivity of the dominant
eigenvalues. Together with the results presented in [14], this will
provide a complete framework for analyzing the tuning and the
dynamic operation of the investigated VSM implementation in
both grid-connected and stand-alone operation.

Virtual synchronous machine modeling

This section presents the investigated VSM-based control
scheme and the modeling of its functional elements. It is assumed
that the dc-link of the VSC is connected to an energy storage unit or
to a source with sufficient available buffer capacity. The dc voltage
is assumed to be determined by this source, so the modeling and
control of the dc side of the converter will not be further discussed.
Although most parts of the model description are available in [14],
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Fig. 1. Overview of investigated system configuration and control structure for
all main equations and descriptions are repeated here for com-
pleteness of the presentation when introducing the adaptations
required to represent the VSM in stand-alone operation.

System configuration and control system overview

An overview of the studied VSM configuration is shown in Fig. 1,
where a VSC is connected to a grid or a local load through an LC filter.
For simplicity in the modeling, the local load is connected in parallel
to a stiff voltage source. Thus, the investigated system will represent
grid connected operation when the breaker indicated in the figure is
closed as discussed in [14], while it will represent stand-alone
operation for feeding a local load when the breaker is open.

As indicated in Fig. 1, the VSM-based power control with virtual
inertia provides frequency and phase angle references to the VSC
control system while a reactive power controller provides the volt-
age amplitude reference. Thus, the VSM inertia and the reactive
power controller appear as outer loops providing the references
for the cascaded voltage and current controllers in a synchronously
rotating reference frame. A PLL detects the actual grid frequency,
but it should be noted that this frequency is only used for imple-
menting the damping term of the VSM swing equation. Thus, the
reference frame orientation of the inner loop controllers of the
VSC is determined only by the power-balance-based synchroniza-
tion mechanism of the VSM inertia and does not rely on the PLL as
in conventional control systems. This applies both when grid con-
nected and in stand-alone operation where the operating fre-
quency of the VSM will be determined by the power balance of
the VSM and the power-frequency droop settings. This func-
tionality will not be influenced by the PLL, which will continue
to track the actual frequency of the voltage at the filter capacitors
independently of changes in the operating mode.

Non-linear system model

In the following subsections, the mathematical models of the
different elements of the system from Fig. 1 are presented as basis
for developing a nonlinear mathematical model of the investigated
VSM configuration in stand-alone operation. This model captures
the main dynamics of the proposed implementation, including
the nonlinearity introduced by the active and reactive power
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feedback in the outer loops. However, it should be noted that a
modeling based on continuous-time approximations is applied,
so the model does not aim to replicate nonlinear effects introduced
by the switching operation of the converter or the discrete time
implementation of the control system. It is also assumed that the
VSM is kept within its normal operating range, so any nonlinear
effects caused by saturation of reference signals or by voltage sat-
uration due to limited available dc-voltage are not considered. The
resulting nonlinear model will serve as a basis for the derivation of
a linearized small-signal model of the VSM in islanded operation
while feeding a local load.

Modeling conventions
Upper case symbols in Fig. 1 represent physical values, while

the modeling will be presented in per unit quantities, denoted by
lower case letters. The base values for the per unit system are
defined from the total kVA rating of the converter and the peak
value of the rated phase voltage. Transformations of three phase
variables into Synchronous Reference Frames (SRFs) are based on
the amplitude-invariant Park transformation [26]. Thus, per unit
active and reactive powers are defined according to (1). The cur-
rent directions indicated in Fig. 1 results in positive values for
active and reactive powers when flowing towards the grid:

p ¼ vo;d � io;d þ vo;q � io;q

q ¼ �vo;d � io;q þ vo;q � io;d
ð1Þ

Whenever possible, SRF equations will be presented in complex
space vector notation according to:

x ¼ xd þ j � xq ð2Þ

Electrical system equations
For modeling of the electrical system, an instantaneous average

value model will be used for the VSC. In islanded operation of the
VSM, the electrical circuit model from Fig. 1 includes an LC-filter in
addition to the series RL equivalents for representing the grid
impedance and the load. The state space equations of the AC sys-
tem in a synchronously rotating reference frame defined by the
VSM can then be expressed as given by (3) [12,27].

dicv

dt
¼ xb

lf
vcv �

xb

lf
vo �

rlf xb

lf
þ j �xVSMxb

� �
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dvo

dt
¼ xb

cf
icv �

xb
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ig � j �xVSMxb � vo

dio

dt
¼ xb
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ð3Þ
Fig. 2. Virtual impedance, voltage
In these equations icv is the current in the converter and filter
inductor, vcv is the converter output voltage, vo is the voltage at
the filter capacitors and ig is the current flowing into the grid or
load equivalent. The inductance and equivalent resistance of the
filter inductor are given by lf and rlf , the filter capacitor is cf , while
the inductance and resistance of the grid and the load are given by
lg ; rg ; ll and rl respectively. The per unit frequency determined by
the VSM is given by xVSM , while the base angular grid frequency
is defined by xb.

Current controllers and active damping
The inner loop current controllers of the VSM control structure

are conventional SRF PI controllers with decoupling terms accord-
ing to [12,27], and are shown in the right side part of Fig. 2. The
output voltage reference from the PI controller is therefore defined
by (4), where the resulting voltage reference for the converter is
denoted by v�cv while the current reference tracked by the con-
troller is given by i�cv . The proportional and integral gains of the
PI controller are defined by kpc and kic , and c is defined to represent
the states for the integrators of the PI controllers according to (5).

v�cv ¼ kpc i�cv � icv
� �

þ kic � cþ j � lf �xVSM � icv þ kff v � vo � kAD uþ voð Þ
ð4Þ

dc
dt
¼ i�cv � icv ð5Þ

In (4), a gain factor kff v , which can be set to 0 or 1, is used to dis-
able or enable the voltage feed-forward in the output of the con-
trollers. It should be noted that the decoupling terms of the
current controllers are based on the per unit angular frequency
xVSM originating from the VSM inertia emulation.

The voltage reference for the converter also includes an active
damping term designed for suppressing LC oscillations in the filter
[21,22]. The implementation of the active damping algorithm
applied in this case is shown in Fig. 3, and the damping voltage
reference v�AD is based on the difference between the measured fil-
ter voltage vo and the low pass filtered value of the same voltage,
scaled by the gain kAD. The corresponding internal states u are
defined by (6), where xAD is the cut-off frequency of the applied
low-pass filters.

du
dt
¼ xAD � vo �xAD �u ð6Þ

For the actual implementation of the VSC control system, the
voltage reference v�cv resulting from the current controller and
the active damping is divided by the measured dc-link voltage to
control and current control.



Fig. 3. Active damping.
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result in the modulation index m as shown to the right of Fig. 2
[23]. Neglecting the delay effect of the PWM implementation, the
instantaneous average value of the converter output voltage is
given by the product of the modulation index and the actual dc-
voltage. Thus, calculating the modulation index by the division
indicated in the figure ensures that the per unit output converter
voltage will be approximately equal to the voltage reference from
the current controller, as summarized by (7). Since this will effec-
tively decouple the AC side control of the converter from variations
in the dc voltage, the dynamic response of the dc source does not
have to be included in the modeling of the VSM for the purpose
of the presented study.

m ¼ v�cv
vDC

; vcv �m � vDC ! vcv �
v�cv
vDC
� vDC ¼ v�cv ð7Þ
Voltage controllers and virtual impedance
The structure of the SRF voltage controller for the filter capaci-

tor voltage is shown in the middle of Fig. 2 and is based on the
same principles as the current controller [12]. Thus, the current
reference used in (4) results from the voltage controller as given
by (8). In this equation, the PI controller gains are defined by kpv

and kiv , while the gain kffi is used to enable or disable the feed-for-
ward of measured currents flowing into the grid. The integrator
state n of the PI controllers is defined by (9).

i�cv ¼ kpv v�o � vo
� �

þ kivnþ j � cf �xVSM � vo þ kffi � io ð8Þ

dn
dt
¼ v�o � vo ð9Þ

The voltage reference vector v�o used in (8) and (9) is a result of the
voltage amplitude reference v̂ r� provided by the reactive power
control loop and the virtual impedance. The influence from the vir-
tual resistance rv and inductance lv on the capacitor voltage
Fig. 4. Reactive power droop controller.

Fig. 5. Virtual synchronous machine inertia
reference is defined on basis of the current io according to (10), as
illustrated to the left of Fig. 2.

v�o ¼ v̂ r� � rv þ j �xVSM � lvð Þ � io ð10Þ
Reactive power droop controller
The droop-based reactive power controller is shown in Fig. 4

and is similar to the controllers commonly applied in microgrid
systems as discussed in [12,13]. As shown in the figure, the voltage
reference v̂ r� used as input to the virtual impedance from (10) is
calculated by (11) where v̂� is the external voltage amplitude refer-
ence and q� is the reactive power reference. The gain kq is the reac-
tive power droop gain acting on the difference between the
reactive power reference and the filtered reactive power measure-
ment qm. The state of the corresponding low pass filter is defined
by (12), where xf is the cut-off frequency.

v̂ r� ¼ v̂� þ kq q� � qmð Þ ð11Þ

dqm

dt
¼ �xf � qm þxf � q ð12Þ
VSM swing equation and inertia emulation
The main difference between a VSM-based control structure

and conventional VSC control systems is the inertia emulation by
the VSM swing equation. For the investigated VSM imple-
mentation, the swing equation is linearized with respect to the
speed so that the power balance determines the acceleration of
the inertia as shown to the right in Fig. 5 [4,11]. In this figure, pr�

is the virtual mechanical input power, p is the measured electrical
power, and the mechanical time constant is defined as Ta

(corresponding to 2H in a traditional SM). The per unit mechanical
speed xVSM of the virtual inertia is resulting from the integral of the
power balance, and the corresponding instantaneous phase angle
hVSM representing the position of the VSM-oriented SRF in the sta-
tionary reference frame is given by the integral of the speed. As
shown in the figure, the VSM damping power pd represents the
damping effect in a traditional synchronous machine. This damp-
ing power is defined by the damping constant kd and the difference
between the VSM speed and the actual grid frequency, which in
this case will be provided by a PLL as will be discussed in the fol-
lowing subsection.

For the investigated VSM configuration, an external steady-
state frequency droop is also included in the power control of
the VSM as shown in the left part of Fig. 5. This frequency control
loop is characterized by the droop constant kx which is acting on
the difference between the frequency reference x�VSM and the
actual VSM speed. The system also has an external power reference
input or set-point given by p�. Thus, the total power balance of the
VSM inertia can be expressed by:

dxVSM

dt
¼ p�

Ta
� p

Ta
� kd xVSM �xPLLð Þ

Ta
þ

kx x�VSM �xVSM
� �

Ta
ð13Þ
emulation with power-frequency droop.
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During islanded operation, the system frequency is determined
by the VSM speed, and there is no phase displacement between the
VSM internal voltage and any external voltage source that must be
explicitly modeled. Thus, the phase orientation of the SRF does not
have to be represented for a model defined in the VSM-oriented
SRF, and the state-space model for the VSM in islanded operation
will have one state less than the model for grid connected opera-
tion from [14]. The instantaneous phase angle hVSM associated with
the VSM inertia will, however, be defined directly according to the
block diagram of Fig. 5, as given by (14). As for the model in grid
connected mode, this will be a saw-tooth signal between 0 and
2p which will be used for transformations between the SRF defined
by the VSM inertia and the three phase electrical system as indi-
cated in Fig. 1, but it will not be represented as a state variable
in the VSM-oriented SRF model.

dhVSM

dt
¼ xVSM �xb ð14Þ
Phase locked loop
The basic scheme of the Phase Locked Loop (PLL) used to track

the frequency of the voltage at the filter capacitors is based on
[17,18] and its structure is shown in Fig. 6. This PLL is using first
order low-pass filters on the estimated d- and q-axis voltages
and an inverse tangent function to estimate the actual phase angle
error of the PLL. This phase angle error is the input to a PI controller
which is used to eliminate the frequency error with respect to the
speed of the VSM. Thus, the VSM speed is used as a feed-forward
signal in the PLL, as indicated in the figure. This is a similar
approach as used in the recently proposed PLLs with secondary
control path [24,25], where a dynamic feed-forward of estimated
frequency is used as an offset to the output of the PI-controller of
the PLL. However, the frequency feed-forward is in this case not
an estimate, since the actual VSM frequency is directly available
in the control system. The resulting frequency xPLL estimated by
the PLL is integrated to obtain the estimate of the corresponding
phase angle.

The states of the low-pass filters of the PLL, resulting in the fil-
tered voltage vPLL, is given by (15), where the last term shows the
transformation of the voltage vector vo into the local reference
frame defined by the PLL. The cut-off frequency of the applied
low pass filters is given by xLP;PLL.

dvPLL

dt
¼ �xLP;PLL � vPLL þxLP;PLL � voe�jdhPLL ð15Þ

The integrator state ePLL of the PI controller is defined by (16),
and the per unit speed deviation dxPLL between the SRFs defined
by the PLL and the VSM is defined by (17) for SRF-based small-sig-
nal modeling. The corresponding phase angle difference dhPLL

between the local reference frame defined by the PLL and the
VSM-oriented reference frame, is defined by (18), in a similar
way as described for the grid connected operation in [14].

dePLL

dt
¼ arctan

vPLL;q

vPLL;d

� �
ð16Þ
Fig. 6. Phase locked loop.
dxPLL ¼ kp;PLL � arctan
vPLL;q

vPLL;d

� �
þ ki;PLL � ePLL ð17Þ

ddhPLL

dt
¼ dxPLL �xb ð18Þ

The actual per unit frequency xPLL detected by the PLL is defined
by (19), and will always settle to the same value as the VSM speed
in steady state. In the same way as for the VSM, the phase angle
used for the transformation of the measured three phase voltages
into the local SRF defined by the PLL is defined by hPLL according
to (20).

xPLL ¼ dxPLL þxVSM ð19Þ

dhPLL

dt
¼ xPLL �xb ð20Þ
Reference frame transformations
Considering the control system in Fig. 1, the VSM swing equa-

tion in Fig. 5 and the explanations in the previous subsections, it
should be clear that the entire control system except for the PLL
is implemented in a SRF defined by the angular position hVSM of
the VSM virtual inertia. Thus, the electrical circuit is also modeled
in the same VSM-oriented SRF, while the PLL is defining a local SRF
based on the voltages at the filter capacitors. For the investigated
case of islanded operation, the phase angle orientation of the PLL
is defined with respect to the VSM-oriented SRF by dhPLL. This angle
can also be considered as the difference between the instantaneous
phase angle hVSM of the VSM internal voltage and the estimated
phase angle hPLL of the filter capacitor voltages. An overview of
the voltage vectors and phase angles defining the SRF trans-
formations of the control system is shown in Fig. 7. This figure indi-
cates how the dq reference frame defined by the VSM is used as the
main SRF orientation for the modeling of the system. From the
phase angles defined in the vector diagram, it is also clearly seen
how hVSM and hPLL are representing the actual phase angles used
for transformations between the stationary reference frame and
the SRFs used for controller implementation and modeling of the
system. The figure also shows how dhPLL defined by (18) represents
the phase displacement between the VSM-oriented and PLL-ori-
ented SRFs.

Linearized system model

A non-linear state-space model of the electrical grid and the
VSM control system can be established by reducing the equations
Fig. 7. Vector diagram defining the VSM-oriented SRF and corresponding phase
angles.
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presented in the previous section, and the resulting set of equa-
tions is given by (24) in the Appendix A. The state variables x
and input signals u of the investigated VSM model for islanded
operation are listed in (21), resulting in a state space model of
18th order.
x ¼ vo;d vo;q icv ;d icv;q cd cq io;d io;q ud uq vPLL;d vPLL;q ePLL nd nq qm xVSM dhPLL
� �T

u ¼ p� q� v̂� x�½ �T
ð21Þ
The corresponding linearized small-signal state space model of
the system can be found from the non-linear model in (24) and
defined on the general form given by (22) [26].

D _x ¼ A � Dxþ B � Du ð22Þ

The model defined by (22) is only expressing small-signal
deviations around the point of linearization, and the states and
inputs are therefore denoted by D. For the elements in the A and
B matrices depending on the linearization point of the system,
the initial operating points of the states are denoted by subscript
0 and must be found by solving for the steady state solution of
(24) with a given set of reference signals and system parameters.
The elements of the resulting small-signal state-space equation
of the VSM are presented by Eqs. (26)–(29) in the Appendix A.

Analysis of The VSM in islanded operation

This section analyses the behavior of the proposed VSM imple-
mentation in islanded operation. The presented analysis is
intended to complement the studies of the same control system
in grid connected operation from [14] and [15]. Thus, together
these studies should provide a comprehensive analysis of the func-
tional behavior and dynamic characteristics of the investigated
VSM scheme in both grid connected and stand-alone operation.
For this reason, the main system parameters used for the sim-
ulations and numerical analysis, as listed in Table 1, are main-
tained the same as in [14]. In addition to the parameters listed in
the table, it should be mentioned that the active damping is dis-
abled by setting the gain kAD equal to zero and that the voltage
feed-forward for the current controller is enabled while the current
feed-forward for the voltage controller is disabled.

As a starting point, the inherent ability of the investigated VSM
implementation to operate in both grid connected and stand-alone
modes is demonstrated by a simulation example showing the
response to a sudden islanding condition. Then, the validity of
the linearized model for islanded operation developed in the pre-
vious sections is verified by numerical simulations before it is used
to analyze the eigenvalues and parametric sensitivities of the VSM
when feeding a local load.
Table 1
Parameters of investigated VSM configuration in islanded operation.

Parameter Value

Rated voltage, VS;LL;RMS 690 V
Rated power, Sb 2.75 MVA
Rated angular frequency, xb 2p�50 Hz
VSM Inertia constant, Ta 2 s
VSM Damping coefficient, kd 400
Current controller gains, kpc ; kic 1.27, 14.3
Voltage controler gains, kpv ; kiv 0.59, 736
Power reference, grid connected, p� 0.7 pu
Speed reference, x� 1.0 pu
Voltage reference, v̂� 1.0 pu
Reactive power reference, q� 0.0 pu
Simulated response to sudden islanding

As already explained, an essential feature characterizing the
investigated VSM implementation is the possibility to operate both
in grid connected and islanded mode. Moreover, the transition
between the two operating modes is almost seamless and does
not require any modification to the internal control configuration
or controller settings, and transition from grid connected to
islanded operation does not depend on any islanding detection
algorithm. To demonstrate this, an example of a sudden transition
from grid connected operation to islanded mode while feeding a
local load has been simulated numerically in the Matlab/
Simulink environment, based on the system configuration from
Fig. 1 and the parameters listed in Table 1. The simulation model
includes a full representation of the electrical system by the
SimPowerSystems block-set of Simulink, with the only simpli-
fication that an ideal average model of the converter, represented
as a controllable three-phase voltage source, is used for the VSC.

The main results from the simulation are displayed in Figs. 8
and 9. The VSM is initially in steady state operation, connected
to a grid represented by an ideal voltage source. The power refer-
ence for the VSM is set to 0.7 pu and the frequency reference as
well as the grid frequency are equal to 1.0 pu. As shown in
Fig. 8(a), the output power of the VSM is following its reference
value when the system is grid connected. Then, at time t = 0.5 s,
the grid is disconnected and the VSM unit remains connected to
a local load represented by a simple RL-equivalent with a resis-
tance of 2.0 pu and an inductance of 0.2 pu. When the islanding
condition occurs, the output power from the VSM is rapidly
decreased to approximately 0.44 pu which is the sum of the power
consumed by the load and the resistive losses of the grid equiva-
lent. The change in the power output is also reflected in the output
current from the VSM as pictured in Fig. 8(b). The response in the
voltage amplitude at the filter capacitors is shown in Fig. 8(c), and
after a short transient due to the breaker operation in the grid,
there is a small drop in voltage due to the reactive power con-
sumption of the local load. The response in the speed of the VSM
is shown in Fig. 9, and since the local load is lower than the power
reference, the frequency is increased in response to the islanding
condition. However, the VSM unit manages to preserve the voltage
amplitude and frequency within the normal operating range, and
the load experiences less than 4% variation in voltage and less than
1.5% variation in the steady-state frequency. It should be empha-
sized that during the transition, the external references and the
Parameter Value (pu)

Filter inductance, lf 0.08
Filter resistance, rlf 0.003
Filter capacitance, cf 0.074
Grid inductance, lg 0.20
Grid resistance, rg 0.01
Load inductance, ll 0.2
Load resistance, rl 2.0
Virtual inductance, lv 0.2
Virtual resistance, rv 0.0
Power droop gain, kx 20
Reactive power droop gain, kq 0.2
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Fig. 8. Power flow, voltage and current from the VSM in response to a sudden islanding condition.
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internal controller settings are unaltered, but still another steady
state condition is reached smoothly within approximately 1.5 s.
The VSM speed exhibits a classical damped oscillatory behavior
similar to a synchronous machine, while the power, voltages and
currents adapt to the new operating conditions through a much
faster, well damped, transient response.

Model validation

The validity of the small-signal state-space model documented
in Appendix A is verified by comparing its dynamic response to the
response of a non-linear simulation model. The same model as
(a) Response in VSM speed (b) Response in
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Fig. 10. Comparison of step response in active power output, filter capacitor voltage an
model when the active power reference is stepped down from 0.7 pu to the actual load
applied for the simulations shown in the previous sub-section is
applied with only minor modifications in the signal routing to
allow for direct comparison with a parallel simulation of the lin-
earized state-space model.

The model validity has been verified for the full operating range
of the VSM by multiple simulations, but will be illustrated for one
particular example by the following figures. For this simulation
case, a steady-state operating point with an active power reference
of 0.44 pu, resulting in VSM speed equal to the reference value of
1.0 pu while feeding the local RL load in islanded mode, is used
for the linearization. However, the system is initially simulated
with a power reference of 0.7 pu corresponding to the same
operating conditions as resulting from the sudden islanding condi-
tion simulated in the previous sub-section. At time t = 0.5 s, the
power reference is stepped down to the value of 0.44 pu as used
for the linearization.

Comparisons of the response obtained with the electrical sim-
ulation model and the linearized small-signal state-space model
are shown in Figs. 10–12. The results in Fig. 10(a) clearly show that
the speed response of the VSM, and thus the power-balance-de-
pendent operating frequency of the system, is accurately repre-
sented by the small-signal model. Similarly, the voltage
amplitude at the filter capacitors and the output power of the
VSM, which can be calculated from the state variables of the
small-signal model, are also coinciding with the results from the
nonlinear electrical simulation model. The phase angle displace-
ment between the VSM orientation and the local SRF defined by
the PLL is shown in Fig. 11, and is also accurately represented by
the small signal model. The d- and q-axis components of the out-
put currents from the VSM are shown in Fig. 12, and in this case
a very small deviation can be seen between the two models.
Although it might be expected that the operation before time
 voltage amplitude  (c) Response in power flow
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Table 2
System eigenvalues under stand-alone operation.

k1 = �20 k11;12 = �639 ± j 169
k2 = �20 k13 = �4722
k3 = �500 k14;15 = �13 ± j 38
k4;5 = �1351 ± j 3 226 k16 = �9.5
k6;7 = �1124 ± j 3 058 k17 = �11.2
k8;9 = �3465 ± j 297 k18 = �11.2
k10 = �1001
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t = 0.5 s should show some deviations since the small-signal model
is then operating away from the linearization point, a small devia-
tion can also be observed in the steady-state operation correspond-
ing to the linearization point. This is mainly because the detailed
electrical simulation model inherently implies minor delays asso-
ciated with the numerical implementation and the trans-
formations between the different reference frames, while these
effects are not represented in the small-signal state-space model.
However, the deviations are very small, and most of the curves
produced by the two models are practically overlapping. Thus,
the presented results clearly demonstrate that the linearized
model can accurately capture the dynamic response of the system.
It should be noted that a similar degree of accuracy is obtained also
for the other state variables in the system, and that the accuracy is
not much affected by the operating conditions and the correspond-
ing linearization point.

From the plotted results, it can be observed that the step change
in the power reference leads to an over-damped transient response
and that the system reaches a new steady-state condition in
approximately 0.5 s. As expected, the frequency is slightly reduced
when the power reference is reduced, as shown in Fig. 10(a). The
voltage amplitude and the output active power are slightly
increased, and the main reason for this is that the reduced fre-
quency leads to a reduced voltage drop across the internal virtual
impedance of the VSM, which again causes higher output voltage
and accordingly higher power consumption in the load resistance.
From the plotted curves it should also be noticed that the system
shows a more damped response than usually expected from a tra-
ditional SM. This is because the damping of the VSM can be speci-
fied to a high value without considering any of the design
constraints influencing the parameters of a physical SM.
System eigenvalue analysis

Since the developed linearized small-signal model has been
shown to accurately represent the investigated system, the eigen-
values of the A matrix can be calculated to systematically identify
all the modes of the system. All the system eigenvalues for the
steady-state operating point corresponding to islanded operation
with 0.44 pu power reference are listed in Table 2. For studying
system stability, the slow and poorly damped poles will be of main
interest, and from the listed poles it can be noticed that the system
has several real poles and one pair of complex conjugate poles
close to the origin. There are also two pairs of poles with a rela-
tively high oscillation frequency associated with the LC resonances
in the system. However, in the case of islanded operation with a
local RL-load, the damping of these poles is significantly higher
than for the case of grid connected operation discussed in [14].
This is mainly because the resistance of the local RL-load is directly
introducing more damping to the electrical circuit compared to the
case of grid connected operation.

As already seen from the time-domain simulations, the system
is stable with the parameters and operating conditions specified in
Table 1. However, the small-signal model can easily be utilized to
further investigate the dynamic characteristics of the system under
various operating conditions and with various system parameters.
As a first example, the eigenvalue trajectory of the system when
sweeping the active power reference in the full operating range
from �1.0 pu to 1.0 pu is shown in Fig. 13(a) where the color gra-
dient from blue towards red indicate the change of the power
reference. As already explained, the steady state frequency and
operating conditions of the system will change if the power refer-
ence is changed while the load is kept constant. However, the pole
trajectory in Fig. 13(a) shows that the system eigenvalues are not
much influenced by the change of power reference, indicating that
variations in the steady-state operating frequency due to the
power-frequency droop will not have significant impact on the
dynamic response of the VSM.

A further investigation on how changes of system parameters
are influencing the dynamic response of the investigated VSM con-
figuration is shown in Fig. 13(b) and (c) where the load resistance
is swept from a high load case of 0.9 pu to 1000 pu corresponding
to almost open circuit, no-load, conditions. An overview of the



(a) System eigenvalue trajectory with power 
reference p* swept from −1.0 pu to 1.0 pu 

(b) System eigenvalue trajectory with load 
resistance rl swept from 0.9 pu to 1000 pu

(c) Zoom of system eigenvalue trajectory with 
load resistance rl swept from 0.9 pu to 1000 pu
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Fig. 13. Impact of power reference and load resistance on system eigenvalues.
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resulting trajectories for all the system eigenvalues is shown in
Fig. 13(b) while a zoom of the eigenvalues closest to the origin is
shown in Fig. 13(c). From these figures, it is clearly seen that the
oscillatory eigenvalues associated with the LC resonances in the
system are strongly influenced by the load resistance, which is
directly influencing the damping of the electrical system. When
the load resistance is increasing, these eigenvalues start moving
towards the right but if the load resistance becomes very large,
i.e. when the load becomes very low, they start moving towards
the right again while almost no current will flow towards the load.
It can also be seen that two sets of complex conjugate pole pairs
with low oscillation frequency are monotonously moving towards
the right when the load resistance increases, and this is because
these modes are related to the RL-time constants of the system.
Thus, most oscillatory modes in the system will always be more
damped for the islanded operation with a local RL-load than for
the grid connected operation analyzed in [14]. However, if the load
is not passive, but instead represented by a controlled converter,
the eigenvalues associated with LC-oscillations in the electrical
system will have a stronger influence on the system dynamics in
a similar way as for the operation in grid connected mode [14].

Observing the zoom of the trajectories for the slowest eigenval-
ues of the system shown in Fig. 13(c), it can be noticed that they
are not much influenced by the load resistance. Thus, the dominant
transient responses to small variations in system operating condi-
tions will not strongly depend on the loading of the system.
However, further analysis of the system eigenvalues can be applied
to reveal and understand how the different eigenvalues are influ-
enced by the system parameters and how the system can be tuned
to improve the dynamic response.
Parameter sensitivity of dominant system eigenvalues

Investigation of the system stability by ad hoc variations of the
controller parameters and corresponding calculation of system
poles is challenging for a high order system as the investigated
VSM. Instead, the sensitivity of the most critical poles with respect
to the system parameters can be investigated in order to reveal
which parameters will influence the different eigenvalues and for
identifying measures that might ensure system stability and
satisfactory dynamic response.

The parameter sensitivity of the system poles is defined as the
derivative of the eigenvalues with respect to the system parame-
ters. For a dynamic system of order N and with a set of K tunable
parameters, the sensitivities define a sensitivity matrix of N by K
complex elements. The relative sensitivity an;k of the eigenvalue
kn with respect to the parameter qk can be expressed by (23),
where WT
n and Un are the left and right eigenvectors associated to

the eigenvalue kn [26,28].

an;k ¼
@kn

@qk
¼

UT
n
@A
@qk

Wn

UT
nWn

ð23Þ

The real part of the sensitivities is directly associated to the
derivatives of the pole location along the real axis with respect
to each parameters, where a positive value means that an increase
of the actual parameter will move the corresponding pole to the
right. Similarly, the imaginary part of the sensitivity is associated
to the derivative of the pole location along the imaginary axis.
However, since the real parts of the pole locations determine the
stability and the corresponding time constant of the associated
system mode, only the real part of the sensitivity matrix will be
investigated in the following.

Examples of the calculated parametric sensitivities for two of
the system poles are plotted in Figs. 14 and 15, where Fig. 14
shows the parameter sensitivity of the slowest pole in the system,
while Fig. 15 shows the parameter sensitivity of the slowest com-
plex conjugate pole pair in the system. From Fig. 14, it can be
noticed that the slowest pole is mainly dependent on the mechani-
cal time constant, the frequency droop gain and the virtual impe-
dance, and could be made faster by reducing Ta or lv , or by
increasing kx or rv . However, since this pole is not much influenced
by any of the other parameters, it is also unlikely to cause instabil-
ity in the system. Thus, this pole might be dominant in the tran-
sient response for any of the system states, but is not a critical
pole in the sense that it can easily cause instability.

The complex conjugate pole pair studied in Fig. 15 is also sig-
nificantly influenced by the virtual impedance and the mechanical
time constant, but is further influenced by the integral gain of the
PLL and the total equivalent resistance rt and inductance lt result-
ing from the series connection of the grid equivalent and the RL-
load. Since all of these parameters, except for the system impe-
dance, can be selected during the control system design and will
not change due to external conditions during normal operation,
it is also unlikely that this pole pair will cause instability.
However, it should be noted that although the controller parame-
ters can be utilized to speed-up the transient response of this
mode, the mechanical time constant and the virtual impedance
will usually be selected according to other criteria. Thus, it is lim-
ited how much the transient response of this pole pair can be
improved without degrading the intended performance of the
VSM. On the other hand, it is again demonstrated how the investi-
gated VSM implementation has a faster and more damped
response when feeding a local load under islanding conditions than
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Fig. 14. Parametric sensitivity of the pole with the highest real value.
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Fig. 15. Parametric sensitivity of the complex conjugate pole pair with the highest real part.
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when connected to the grid. In case it is possible to identify operat-
ing conditions or special events where the system eigenvalues are
close to the stability limit or the system has poor dynamic perfor-
mance due to poles located close to 0, the parameter sensitivities
can be used for the tuning of the system, either by manual analysis
or by automated iterative procedures as investigated in [11,29].
Conclusion

This paper has presented the detailed modeling and analysis of
a Virtual Synchronous Machine (VSM) configuration operated
under islanded conditions. The VSM inertia emulation is based
on the simplified swing equation of traditional synchronous
machines and provides a power-balance-based grid synchroniza-
tion of the converter control system when connected to an external
grid. However, the same swing equation can also establish the
power balance and corresponding operating frequency under
islanded operation. This has been demonstrated by simulations,
showing a seamless transfer from grid connected to stand-alone
operation of the VSM. Each individual element of the investigated
control system has also been presented in detail, and the
corresponding equations needed for developing a linearized
small-signal model of the overall system under islanded conditions
have been derived. The validity of the developed small-signal
model has been verified by comparison to a simulation model of
the system including the nonlinearities, and has been applied to
analyze the system eigenvalues and their sensitivities with respect
to the system parameters. Combined with the results from pre-
vious investigations of the VSM under grid connected operation,
the presented results for islanded operation are providing
enhanced insight into the dynamic characteristics and internal
modes of the investigated VSM configuration under various operat-
ing conditions.
Acknowledgement

The work of SINTEF Energy Research in this paper was sup-
ported by the project ‘‘Releasing the Potential of Virtual
Synchronous Machines – ReViSM’’ through the Blue Sky instru-
ment of SINTEF Energy Research as a Strategic Institute
Programme (SIP) financed by the national Basic Funding
Scheme of Norway



S. D’Arco et al. / Electrical Power and Energy Systems 72 (2015) 3–15 13
Appendix A. State-space model

A.1. Non-linear state-space model

The non-linear state-space model of the investigated VSM con-
figuration in islanded operation can be found by reducing the
equations presented in the section ‘Non-linear system model’ to
state-space form, and is defined by:

dvo;d

dt
¼ xbxVSMvo;q þ

xb

cf
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A.2. Linearized small-signal state-space model

The states and the A-matrix of the investigated VSM config-
uration are in the following written according to (25), where the
4 individual sub-matrices of A are presented in full detail by Eqs.
(26)–(29), while the matrix B is given directly by (30)
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[12] Pogaku N, Prodanović M, Green TC. Modeling, analysis and testing of
autonomous operation of an inverter-based microgrid. IEEE Trans Power
Electron 2007;22(2):613–25.

[13] Rocabert J, Luna A, Blaabjerg F, Rodríguez P. Control of power converters in AC
microgrids. IEEE Trans Power Electron 2012;27(11):4734–49.

[14] D’Arco S, Suul JA, Fosso OB. Small-signal modeling and parametric sensitivity
of a virtual synchronous machine. In: Proceedings of the 18th power systems
computation conference, PSCC 2014, Wrocław (Poland); 18–22 August 2014. 9
pp.

[15] D’Arco S, Suul JA, Fosso OB. A Virtual Synchronous Machine Implementation
for Distributed Control of Power Converters in SmartGrids. Electr Power Syst
Res 2015;122:180–97.

[16] Machowski J, Bialek JW, Bumby JR. Power system dynamics and
stability. Chichester (UK): Wiley; 1997 [chapters 2 and 5].

[17] Kaura V, Blasko V. Operation of a phase locked loop system under distorted
utility conditions. IEEE Trans Indust Appl 1997;33(1):58–63.

[18] Kolstad H. Control of an adjustable speed hydro utilizing field programmable
devices. Ph.D. thesis, Norwegian University of Science and Technology; 2002.

[19] Haddadi A, Joos G. Load sharing of autonomous distribution-level microgrids.
In: Proceedings of the 2011 IEEE PES general meeting: the electrification of
transportation and the grid of the future, Detroit (MI, USA); 24–28 July 2011. 9
pp.

[20] He J, Li YW. Design, and implementation of virtual impedance for power
electronics interfaced distributed generation. IEEE Trans Indust Appl
2011;47(6):2525–38.

[21] Mo O, Hernes M, Ljøkelsøy K. Active damping of oscillations in LC-filter for line
connected, current controlled, PWM voltage source converters. In: Proceedings
of the 10th European conference on power electronics and applications, EPE
2003, Toulouse (France); 2–4 September 2003. 10 pp.

[22] Malinowski M, Kazmierkowski MP, Bernet S. New simple active damping of
resonance in three-phase PWM converter with LCL filter. In: Proceedings of the
2005 IEEE international conference on industrial technology, ICIT 2005, Hong
Kong; 14–17 December 2005. p. 861–5.

[23] Kroutikova N, Hernandez-Aramburo CA, Green TC. State-space model of grid-
connected inverters under current control mode. IET Electr Power Appl
2007;1(3):329–38.

[24] Indu Rani B, Aravind CK, Saravana Ilango G, Nagamani C. A three phase PLL
with a dynamic feed forward frequency estimator for synchronization of grid
connected converters under wide frequency variations. Int J Electr Power
Energy Syst 2012;41(1):63–70.

[25] Golestan S, Ramezani M, Guerrero JM. An analysis of the PLLs with secondary
control path. IEEE Trans Indust Electron 2014;61(9):4824–8.

[26] Kundur P. Power system stability and control. New York: McGraw-Hill; 1994.
[27] Blasko V, Kaura V. A New mathematical model and control of a three-phase

AC–DC voltage source converter. IEEE Trans Power Electron
1997;12(1):116–23.

[28] Garofalo F, Iannelli L, Vasca F. Participation factors and their connections to
residues and relative gain array. In: Proceedings of the 15th triennal world
congress of the international federation of automatic control, Barcelona
(Spain); 21–26 July 2002. 6 pp.

[29] D’Arco S, Suul JA, Fosso OB. Automatic tuning of cascaded controllers for power
converters using eigenvalue parametric sensitivities. IEEE Trans Indust Appl
2015;51(2):11.

http://refhub.elsevier.com/S0142-0615(15)00088-5/h0060
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0060
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0060
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0065
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0065
http://refhub.elsevier.com/S0142-0615(15)00088-5/h7763
http://refhub.elsevier.com/S0142-0615(15)00088-5/h7763
http://refhub.elsevier.com/S0142-0615(15)00088-5/h7763
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0075
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0075
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0080
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0080
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0095
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0095
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0095
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0110
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0110
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0110
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0115
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0115
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0115
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0115
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0120
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0120
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0125
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0130
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0130
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0130
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0140
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0140
http://refhub.elsevier.com/S0142-0615(15)00088-5/h0140

	Small-signal modeling and parametric sensitivity of a virtual synchronous machine in islanded operation
	Introduction
	Virtual synchronous machine modeling
	System configuration and control system overview
	Non-linear system model
	Modeling conventions
	Electrical system equations
	Current controllers and active damping
	Voltage controllers and virtual impedance
	Reactive power droop controller
	VSM swing equation and inertia emulation
	Phase locked loop
	Reference frame transformations

	Linearized system model

	Analysis of The VSM in islanded operation
	Simulated response to sudden islanding
	Model validation
	System eigenvalue analysis
	Parameter sensitivity of dominant system eigenvalues

	Conclusion
	Acknowledgement
	Appendix A State-space model
	A.1 Non-linear state-space model
	A.2 Linearized small-signal state-space model

	References


