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Abstract: Stochastic dual dynamic programming (SDDP) has become a popular algorithm used in
practical long-term scheduling of hydropower systems. The SDDP algorithm is computationally
demanding, but can be designed to take advantage of parallel processing. This paper presents
a novel parallel scheme for the SDDP algorithm, where the stage-wise synchronization point
traditionally used in the backward iteration of the SDDP algorithm is partially relaxed.
The proposed scheme was tested on a realistic model of a Norwegian water course, proving that
the synchronization point relaxation significantly improves parallel efficiency.
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1. Introduction

Optimal long-term hydropower scheduling (LTHS) essentially aims at finding a production
target for each individual power plant in each time stage of the planning period, so that the optimal
objective is reached and all relevant physical and legislative constraints are met. The objective is
typically to minimize system costs in system studies or to maximize profit for a single hydropower
producer. Computing accurate production targets is of crucial importance in LTHS decision support
tools, e.g., used for price forecasting, detailed operational planning and expansion planning.

The LTHS problem can be formulated as an optimization problem with three characteristic
properties. Firstly, it is dynamic in time due to the ability to store water in hydro reservoirs. That is,
there is a link between reservoir discharge decisions taken in a given time stage and the future cost
of operating the system. Secondly, the problem is stochastic, since important variables, such as
future inflow to reservoirs, wind power production, demand, etc., are not precisely known for the
future. Finally, hydro systems normally comprise multiple reservoirs possibly allocated in multiple
water courses. The scheduling period needs to be long enough to reflect the storage capability of
the reservoirs and the time resolution fine enough to capture the basic hydro system constraints.
Consequently, the problem can often be characterized as large scale in terms of the number of state
variables (reservoirs), stochastic variables and time stages.

Numerous solution strategies have been applied to the LTHS problem; see e.g., [1] for a thorough
review on solution methods for the optimal operation of multi-reservoir systems. Stochastic dynamic
programming (SDP) has proven to be well suited for systems with relatively few reservoirs, but will
suffer from the curse of dimensionality when considering realistic multi-reservoir systems. In spite of
this shortcoming, models based on SDP are widely used by power market participants, e.g., in the
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Nordic power market. Such operative models have been documented by several authors; see,
e.g., [2,3]. These models are based on some kind of reservoir aggregation and depend on heuristics to
address the multi-reservoir aspect in a realistic manner.

In order to avoid the dimensionality problem of the SDP algorithm, an approach known as
stochastic dual dynamic programming (SDDP) was presented in [4]. Currently, SDDP seems to
be the state-of-the-art method for solving the LTHS problem in regions where hydropower is the
dominant technology for producing electric power; see e.g., [5,6]. Unlike the case with SDP, there
is no need to fully discretize the state space with the SDDP algorithm. SDDP is a sampling-based
variant of multi-stage Benders decomposition, where an outer approximation of a convex future cost
function is constructed iteratively for each time stage by adding Benders cuts. Thus, the overall
optimization problem is decomposed into small linear programming (LP) problems that can be solved
independently. The problem decomposition makes the SDDP algorithm well suited for parallel
processing. However, the algorithm is not embarrassingly parallel due to the intuitive stage-wise
synchronization of parallel workers.

A recent study in [7] presented several successful strategies for efficiently running the
SDDP algorithm applied to the LTHS problem in parallel. In particular, strategies for dynamic
load balancing, asynchronous grouping of Benders cuts, reduced amount of communication and
customization of the communication topology to multi-core-based processors were presented. In
this work, we go a step further in the search for an efficient large-scale parallelization of the SDDP
algorithm. To the knowledge of the authors, parallel implementations of the SDDP algorithm applied
to the LTHS problem have (at least) synchronization points between stages in both the forward
and backward iterations. In this work, the presence of the stage-wise synchronization points in the
backward iteration is challenged by partially relaxing it.

This paper is outlined as follows. First, a basic mathematical description of the LTHS problem
and the SDDP algorithm is provided in Section 2. Subsequently, the proposed parallel processing
scheme is outlined in Section 3. This scheme is tested in a case study in Section 4, before the
conclusions are drawn in Section 5.

2. Model Description

2.1. General Problem Formulation

The objective of the scheduling is to minimize the expected system operation costs over the
period of analysis. A typical scheduling horizon used by players in the Nordic power market is
3–5 years, using a stochastic time-resolution of one week. That is, at the beginning of a given week, the
realizations of stochastic variables are known for that week. This is considered suitable for describing
inflow stochasticity for the combination of reservoir sizes and regulating capability in the Nordic
system. Thus, the decomposition in the SDDP algorithm is carried out on a weekly basis, considering
the values of the stochastic variables given within the week. The week can be further divided into K
sub-periods, which could be used to account for variations in demand or other parameters.

For a given time stage (or week) t, a vector xt is defined, comprising all decision variables for
that week, such as water releases, spillages and thermal generation, etc., except the vector of reservoir
volumes vt. A cost vector ct comprising all direct costs for the week is associated with xt. It is assumed
that all costs and relationships are linear or piecewise linear. The overall objective is then to find an
operating strategy to obtain:

min E

{
T

∑
t=1

cᵀt xt −Ψ(vT)

}
(1)

The expectation is to be taken over all stochastic variables, e.g., inflow, wind power and demand.
In this presentation and in the case study, we will limit the representation of stochastic variables to
inflow. The function Ψ(vT) estimates the value of water left in the reservoirs at time T, the end
of the study period. Since water left in a reservoir at the end of a week is carried over to the
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next week, the water balances for the reservoirs become coupled in time, making the optimization
problem a dynamic one. Thus, the problem in Equation (1) is a multi-stage stochastic optimization
problem, which may be efficiently solved by decomposition techniques [8]. This work uses the SDDP
algorithm [4], which is a sampling-based variant of multi-stage Benders decomposition. An outer
approximation of a convex future cost function is constructed for each time stage. The decomposition
technique will be outlined in Section 2.4, but first, the weekly decision problem will be presented.

2.2. The Weekly Decision Problem

For a given realization of inflows, the decomposition in the SDDP algorithm leads to an LP
problem for week t, described by an objective function:

Jt = min(αt + cᵀt xt) (2)

where αt denotes the future expected cost function. The objective function is subject to the constraints:

zt = Φtzt−1 + ξt (3)

vt −Atxt −Qtzt = vt−1 + mt (4)

Btxt = dt (5)

αt + (κr
t)
ᵀvt + (µr

t)
ᵀzt ≥ br

t , r = 1, ..., R (6)

where vt is a vector of reservoir volumes at the end of week t and At is a matrix given by the
hydro system topology. It contains zeros in the columns not associated with releases or spillages
in xt. These equations are split into balances for each sub-period, so that At is composed of K blocks.
The inflow model Equation (3) is described through a correlation matrix Φt and a noise vector ξt. zt

is the normalized inflow vector, and this variable transformation is described in Section 2.3. mt and
Qt denote the mean and standard deviations of the inflow for week t as a vector and diagonal matrix,
respectively. Equation (4) contains the water balances for the reservoirs after Equation (9) has been
substituted for the physical inflow. All volumes are in Mm3.

The system’s power balances are in the form Equation (5). Bt is a matrix containing the power
balances required to meet the firm power demand dt, which has units of MWh/h. The constraints
of type Equation (6) represent hyperplanes or cuts, which limit the future expected cost function at
the end of week t, where κr

t and µr
t are the hydro storage and inflow cut coefficients, respectively,

for cut r in ¤/Mm3. The right-hand side constant br
t is in units of ¤. Details on how to compute the

cut coefficients and right-hand side can be found, e.g., in [4]. The problem is generally bounded by
the limits in Equations (7) and (8).

xmin
t ≤ xt ≤ xmax

t (7)

vmin
t ≤ vt ≤ vmax

t (8)

The above formulation of the weekly decision problem is general and does not include all details
normally found in an operational model. It should be noted that penalty variables are used to avoid
infeasible solutions and, thus, assure relatively complete recourse. Other features, such as power flow
constraints and linearized start-up costs on thermal units, can, e.g., be modeled as in [9].

2.3. Inflow Model

One of the key challenges in solving the LTHS problem is to efficiently and accurately represent
inflow stochasticity in an unbiased manner. In the SDDP context, it is also important that the inflow
model preserves convexity. In the presented model, the physical inflows qt were normalized to
eliminate seasonal variations.
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zt =
qt −mt

Qt
(9)

Assuming that the normalized inflow represents a weakly stationary process, a first-order vector
autoregressive model of type Equation (3) was fitted.

Note that this inflow model may generate negative inflows, which should not be modified due to
the convexity requirement of the SDDP algorithm. We have introduced artificial variables at high cost
in the reservoir balances to compensate for this. For further discussions on the treatment of negative
inflows in SDDP-based models, see [6,10].

2.4. Problem Decomposition

The overall optimization problem is solved by SDDP, as discussed and illustrated in this section.
By using dynamic programming principles and representing the future expected cost functions by
cuts, the problem is broken down to solving an LP problem for each week and with given values
of inflows. The weekly decision problem objective function was formulated in Equation (2) subject
to the constraint Equations (4)–(8). The algorithm builds an operating strategy (represented by cuts)
iteratively. The two basic steps of a main iteration are illustrated in Figure 1 and discussed below.

System
State

Figure 1. Illustration of a main iteration in the stochastic dual dynamic programming
(SDDP) algorithm. Circles indicate system states, and branches correspond to realizations of
stochastic variables.

(1) Forward iteration: From the initial state represented by reservoir volumes v0 and inflows z0,
the system is simulated for a set of NS sampled inflow scenarios. For a given scenario sample
and time stage, the weekly decision problem described in Section 2.2 is solved provided that
inflows are known at the beginning of that week. Subsequently, the simulated state at the end
of the week is used as the initial state for the next week. The forward simulation provides an
updated set of state trajectories, as illustrated by following the black (thicker) lines in Figure 1
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forward in time for each scenario sample {s1, s2, s3}. The forward simulation is used to obtain
the upper (J+) and lower (J−) bounds, in Equations (10) and (11), respectively.

J+ =
T

∑
t=1

NS

∑
s=1

cᵀtsxts (10)

J− = α1 + cᵀ1 x1 (11)

(2) Backward iteration: Cuts at the end of week T can be obtained from the final value function Ψ.
For each state trajectory obtained in the previous forward iteration, one starts from the state at
the end of week T − 1, and for each of the NB sampled inflow realizations, one computes the
optimal operation for week T. This is illustrated for inflow realizations {z1, z2, z3} in Figure 1.
From the sensitivities of the objective function to the initial state values, new cuts at the end of
week T − 1 are obtained. These cuts are constructed by averaging contributions over the NB
realizations of stochastic variables for a particular state. Thus, inflow realizations in week T for
scenario sample s1 in Figure 1 are used to construct one cut. If the lag-one model Equation (3) is
perfectly valid for the normalized inflow, then the noise vector ξt should be state independent,
and thus, ξt is uncorrelated from stage to stage. Therefore, the cuts constructed will be valid
for all scenario samples {s1, s2, s3} at time T − 1 in Figure 1. This is often referred to as
cut sharing [11] and is of crucial importance for the computational performance of the SDDP
algorithm. One then repeats the procedure for week T − 1, and so on, to obtain an updated
operating strategy.

The upper bound computed in Equation (10) is obtained from a set of NS samples in the
stochastic tree structure and will therefore be uncertain. Convergence is declared when the lower
bound found in Equation (11) is within the 95% confidence interval of the upper bound.

3. Parallel Processing

In the following, the parallel SDDP scheme used in this work is elaborated. We use a master
process to designate the decomposed LP problems to a set of slave processes. In the SDDP scheme
outlined in the previous section, the forward iteration is performed along NS forward samples.
For each time stage in the backward iteration, the NB backward realizations are considered for each
of the NS states obtained from the previous forward iteration. Thus, it is clear that the backward
iteration is more computationally demanding, as it needs to solve NB as many LP problems as in the
forward iteration. In other parallel implementations of SDDP applied to the LTHS problem, there
seems to be (at least) two types of synchronization points; between stages in both the forward and
backward iterations; see e.g., [7,12]. In this work, the presence of the synchronization points between
stages in the backward iteration is challenged.

3.1. Forward Iteration

The forward iteration has to be completed before the backward cycle starts, so we get
a synchronization point in between the two cycles. Furthermore, for each stage in the forward
iteration along a sampled inflow scenario s, the LP problem corresponding to that stage is solved,
and the resulting state variables (reservoir levels) are passed on to the next time stage to be evaluated
along sample s. All of the NS LP problems formulated in each stage can be solved in parallel.
However, due to the time-sequential coupling along scenario samples in the forward iteration,
one cannot expect speedup in the forward iteration if the number of slave processors NP is greater
than the number of forward scenarios NS.
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3.2. Backward Iteration

For each evaluated state in a stage t in the backward iteration, a Benders cut is created for stage
t− 1 by averaging contributions from the LP problems solved corresponding to the NB realizations of
inflow. Each new inflow realization will in practice introduce a modest change in the right-hand side
of the LP problem. Thus, the LP problem can normally be solved within a relatively low number of
simplex iterations, provided that the previous solution basis is available. In this work, the advantage
of warm starting LP problems in the backward iteration was appreciated by letting a designated
processor solve all NB problems originating from a given initial state. This is illustrated in Step 1
in Figure 2 with processors p1 − p3. Allowing the NB realizations from a given state to be divided
between different processors could add flexibility to the parallel processing scheme, but one would
lose some of the warm start advantage. We have focused on limiting the communication between
processors, and thus, the communication of the warm start basis was not considered.

Figure 2. Parallel processing scheme used in the backward iteration. Each of the processors p1 − p3

solves NB linear programming (LP) problems and sends one cut to all states at stage t− 1, as indicated
by black arrows.

The linear inflow model presented in Section 2 allows cuts to be shared among different states.
This is illustrated in Step 1 in Figure 2, where the cut created for the state obtained following
sample s1 in stage t − 1 is shared with the other states in that stage. Although convenient from an
implementation point of view, it is not mathematically necessary to wait for all processors to create
a cut for stage t − 1 before continuing backwards in time to construct cuts for stage t − 2; see [13]
for a formal treatment of SDDP convergence properties. Each additional cut considered for stage
t gives a better approximation to the future expected cost function α(t). However, waiting for all
cuts to be created forces all processors to be synchronized at each stage in the backward iteration. In
the presented work, these stage-wise synchronization points in the backward iteration are relaxed,
allowing each processor to wait for NW cuts, where NW ≤ NS. Let NW = 1 in Figure 2 and assume
that processor p1 computes its cut before p2 and p3 have finished. After communicating its cut to the
master process, process p1 is then flagged as available and will be assigned a new state at stage t− 2
by the master process, as shown in Step 2 in Figure 2. By setting NW = 1, we fully relax the stage-wise
synchronization points, and no processor is unused at any time during the backward phase. The cost
of not waiting for all cuts may be slower convergence, as more iterations may be needed to converge.

4. Case Study

The SDDP model with the proposed parallel processing scheme was implemented in C++, using
the dual simplex algorithm from the COIN-OR linear programming solver library for solving LP
problems and the MPI protocol for message passing through the OpenMPI library. All simulations
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were carried out on a Linux cluster comprising 93 compute nodes, each with 2 × 6 core AMD
processors at 2.4 GHz. The cluster operating system is CentOS 5.4.

The hydro system model used in this case study is based on a representation of the water
course Nea-Nidelva in Norway comprising 12 hydro power plants with upstream reservoir capacity
and with a total installed capacity of 536 MW. The reservoir sizes vary, ranging from annual to
weekly storage. We estimated the stochastic inflow model from a historical inflow series for the
area comprising 50 years of data, as shown in Figure 3. Inflows to individual reservoirs were scaled
according to individual targets for expected annual inflow.

Normally, in a liberalized power market, a regional water course would be scheduled using
exogenously-given stochastic price data, e.g., as described in [14]. However, to simplify the
mathematical model, we considered it as an isolated system being scheduled together with thermal
power production serving a time-varying load. Purchase of thermal power power was modeled
by 70 steps, each characterized by a fixed capacity increment and a marginal cost, which is
stepwise increasing. The system was created and tuned to obtain reasonable power prices and
reservoir trajectories.
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Figure 3. Historical inflow data used for fitting the stochastic inflow model. Values are in
fraction of the maximum inflow value.

Table 1. Test case characteristics.

NS NB Max no. processors Serial CPU time
Case 1 71 12 72 1 hr 10 min
Case 2 200 50 144 5 hr 3 min

Figure 3. Historical inflow data used for fitting the stochastic inflow model. Values are in fractions of
the maximum inflow value.

The system was simulated for 156 weeks, using a weekly stochastic time resolution and
with seven sub-periods within each week. The decomposed LP problems have on average
777 variables and 98 constraints (excluding cuts). We tested the proposed parallelization scheme
using two different combinations of forward samples NS and backward realizations NB, as shown in
Table 1. These settings are similar to those being used in many operational models. For both cases,
we experimented with different numbers of processors (NP) and cuts to wait for in the backward
iteration (NW). To ensure that the forward iteration did not become a bottleneck for parallel efficiency,
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the maximum number of slave processors was kept lower than or equal to the number of forward
samples in both of the cases.

Table 1. Test case characteristics.

Cases NS NB Max No. Processors Serial CPU Time

Case 1 71 12 72 1 h 10 min
Case 2 200 50 144 5 h 3 min

Relaxation of the stage-wise synchronization points in the backward iteration makes sense
as long as LP solution times differ significantly between processors. We measured the time each
processor spent solving all of its NB backward realizations in each time stage for a given backward
iteration in Case 1. The distribution of solution times among different processors per time stage
is shown in Figure 4. The figure displays the significant differences between the outliers (100 and
zero percentiles) and the remaining measurements, represented by the 25, 50 and 75 percentiles.
The large differences between the 100 and zero percentiles indicate that there is a potential for improving
computational performance by relaxing the backward iteration stage wise synchronization points.
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Figure 4. LP solution times (in milliseconds) per time stage in the backward iteration. The curves
represent the 0, 25, 50, 75 and 100 percentiles.

4.1. Parallel Efficiency

Generally, the gain achieved by applying parallel processing can be measured in terms of the
efficiency of the parallel implementation when compared to the serial execution. Efficiency is defined
as the ratio between the serial run-time on one core and the product of the parallel run-time on a
number of cores divided by that number [15].

Each of the curves in Figures 5 and 6 shows the parallel efficiency for different numbers of
processors for a given value of NW for Cases 1 and 2, respectively. Waiting for all cuts, i.e., NW = 72
in Case 1 and NW = 200 in Case 2, serves as the base cases. Thus, we can measure the computational
improvement in synchronization point relaxation against the base cases by inspecting Figures 5 and 6.
All data points represent averages of 10 independent runs. Results from both cases indicate that
optimal parallel efficiency is obtained when partially relaxing the backward iteration stage-wise
synchronization points. By keeping the synchronization points, we experienced a decreasing parallel
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efficiency with increasing number of processors. When partially relaxing the synchronization points,
the parallel efficiency is maintained at a higher level with an increasing number of processors.
Note that the low parallel efficiency shown in both cases when running at a maximum number
of processors and with NW = 1 is due to the additional computation time caused by the slower
convergence when only waiting for one cut.
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Figure 5. Parallel efficiency as a function of the number of processors for Case 1. Each line corresponds
to a separate choice of NW.
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Figure 6. Parallel efficiency as a function of the number of processors for Case 2. Each line corresponds
to a separate choice of NW.

4.2. Convergence

The increase in efficiency when relaxing the synchronization points implies that the convergence
properties of the algorithm have not been dramatically changed. This implication is verified by
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looking at the cost gaps for Case 2 in Figure 7. Generally, lower values of NW result in higher
numbers of iterations until the convergence criteria are met. This was as expected, since by decreasing
NW, each processor may have less cuts available at each stage and is therefore likely to have a less
precise approximation of the future expected cost function. However, for the cases we have studied,
the numbers of additional iterations needed when relaxing the synchronization points were modest.
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Figure 7. Cost gap as a function of the number of iterations in the SDDP algorithm. The data are from
Case 2, with NP = 144 and with different values of NW.

5. Conclusions

A parallel processing scheme for the SDDP algorithm applied to the LTHS problem was
presented. In contrast to traditional parallel schemes used with the SDDP algorithm, the stage-wise
synchronization points in the backward iteration are relaxed. Thus, each processor does not need
to wait for all processors to complete their jobs before starting a new job. Since the expected
generator schedules should not be affected by the synchronization point relaxation, the sole benefit
of introducing the relaxation can be measured in terms of improved computational performance.

A case study based on a Norwegian watercourse was established for the purpose of testing the
parallel processing scheme. The test results show that the parallel efficiency significantly improves
when partially relaxing the backward iteration synchronization points. In between synchronization
and full relaxation, the optimal number of processors to wait for balances the trade-off between
a precise approximation of the future expected cost function and processor waiting time. Results
from two different test cases show that the optimal number of cuts to wait for is case dependent.

The case study reflect a simplified version of operational data, both in terms of system
size and physical details being modeled. However, we believe that the presented case study
results demonstrate a significant potential for improvement in the parallel efficiency of operational
SDDP models.
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