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A B S T R A C T

Big Data processing, especially with the increasing proliferation of Internet of Things (IoT)

technologies and convergence of IoT, edge and cloud computing technologies, involves handling

massive and complex data sets on heterogeneous resources and incorporating different tools,

frameworks, and processes to help organizations make sense of their data collected from

various sources. This set of operations, referred to as Big Data workflows, requires taking

advantage of Cloud infrastructures’ elasticity for scalability. In this article, we present the

design and prototype implementation of a Big Data workflow approach based on the use of

software container technologies, message-oriented middleware (MOM), and a domain-specific

language (DSL) to enable highly scalable workflow execution and abstract workflow definition.

We demonstrate our system in a use case and a set of experiments that show the practical

applicability of the proposed approach for the specification and scalable execution of Big Data

workflows. Furthermore, we compare our proposed approach’s scalability with that of Argo

Workflows – one of the most prominent tools in the area of Big Data workflows – and provide

a qualitative evaluation of the proposed DSL and overall approach with respect to the existing

literature.

1. Introduction

Massive amounts of data is being generated especially with the rise of Internet of Things (IoT) technologies creating new value

creation opportunities through Big Data analysis. Accordingly, Big Data analysis has been a driving factor in revolutionizing major

sectors, such as mobile services, finance, and scientific research. Big Data workflows are composed of multiple orchestrated steps, such

as workflow activities that perform various data analytical tasks. They are different from business and scientific workflows since they

are dynamic, process heterogeneous data, and are executed in parallel instead of a sequential set of scientific operators [1]. Although

many organizations recognize the significance of Big Data analysis, they still face critical challenges when implementing data

analytics into their process [2]. Firstly, multiple experts, ranging from technical to domain experts, need to be involved in specifying

such complex workflows. Secondly, given the fact that IoT, Edge and Cloud technologies converge towards a computing continuum,
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workflow steps need to be mapped dynamically to heterogeneous computing and storage resources to ensure scalability [3,4].

Providing a scalable, general-purpose solution for Big Data workflows that a broad audience can use is an open research issue [2,4].

The challenges in devising an applicable generalized solution come from the fact that bottlenecks can occur on an individual

workflow step level – for example, when the throughput of one step is lower than the others. Thus, scaling up the entire workflow

does not address the scalability issues and needs to be done on the individual step level. This issue becomes worse by the fact that

scalability needs to be organized and orchestrated over heterogeneous computing resources. Furthermore, scaling up individual steps

introduces race conditions between step instances that attempt to process the same piece of data simultaneously. Another major

challenge is achieving usability by multiple stakeholders as most Big Data processing solutions are focused on ad-hoc processing

models that only trained professionals can use. However, organizations typically operate on specific software stacks, and getting

experts in Big Data technology can introduce costs that are not affordable or practical. Even if an organization has the necessary

technical personnel, data workflow steps pertain to specific domain-dependent knowledge, which is possessed by the domain experts

rather than the data scientists who set up the data workflows. In this respect, this work aims to provide an approach that allows:

(a) Conceptualization of Big Data workflows using a domain-specific language (DSL) to support the high-level definition of

complex data processing across multiple types of parameters, inputs, and outputs; and

(b) Scalable execution of Big Data workflows using software container technologies and message-oriented middleware solutions.

In this article, we present the design and implementation of a Big Data workflow approach based on the use of software container

technologies, message-oriented middleware (MOM), and a DSL to enable highly scalable workflow execution and abstract workflow

definition [5]. Our design allows for scaling up on the level of individual workflow steps on top of heterogeneous infrastructures

while avoiding race conditions through a system of inter- and intra-step coordination. Furthermore, our container-based approach

allows for the separation of concerns between the stakeholders by providing a flexible means of injecting domain-specific code

involving any programming language and enabling the definition of workflows on a high level (i.e., without the step-specific code).

Finally, the DSL allows easy specification of Big Data workflows by abstracting low-level technical aspects. We demonstrate our

approach’s applicability by implementing a prototype based on a real-world data workflow and multiple experiments showing

satisfactory performance. Furthermore, a set of comparative experiments with Argo Workflows shows better performance due to

concurrent workflow execution. A qualitative evaluation of the overall approach and the DSL with respect to the existing literature

presents our approach’s benefits. This article extends our previous work in [5] by providing (i) more insights and explanations

about the motivation, approach and solution details, (ii) an extended presentation and analysis of the related work, (iii) an elaborate

account and analysis of the requirements for enabling Big Data workflows on the Computing Continuum, (iv) a qualitative evaluation

and discussion of the proposed DSL, and (v) a set of examples of real-life use cases of the approach.

The rest of the article is organized as follows. Section 2 sets the background, while Section 3 discusses related work. Section 4

describes the requirements and Section 5 presents the proposed approach. Section 6 discusses our proof-of-concept implementation

based on the proposed design, Section 7 provides an evaluation, and, finally Section 8 concludes the article and discusses possible

future work.

2. Background

In this section we briefly introduce technological background relevant in the context of scalable Big Data workflows execution.

2.1. Big data workflows

A Big Data workflow is the computerized modeling and automation of a process consisting of multiple orchestrated steps that

perform various data analysis tasks [6]. In practice, most Big Data workflows are usually represented by a Directed Acyclic Graph

(DAG) [7]. Various processing models can be applied for parallelizing data processing known as workflow data patterns [8]. In this

context, Pipe and Filter (P&F) is a relevant architectural design to decompose a larger processing task into a series of smaller, separate

processing steps (filters) that are connected by channels (pipes) [9]. The filters can then be integrated into a workflow, whereby

each filter receives and sends data in a standardized way, thus implementing the ‘‘shared data passed by reference’’ pattern [8].

This pattern, given that different steps are loosely coupled, enables scalability at the workflow step level, but introduces the issue

of handling concurrency control.

2.2. Message-oriented middleware

Achieving race-condition-free consistency and concurrency for scaling the homogeneous Big Data workflow steps requires using

a synchronization mechanism across the different step instances. One approach for addressing such synchronization issues is to

use Message-Oriented Middleware (MOM). MOM provides an infrastructure for loosely-coupled and asynchronous inter-process

communication using messaging capabilities [10]. In a system integrated using MOM, a client can send messages to and receive

from the other clients of the messaging system (without losses or message duplication) in a race-condition-free way through the use

of a message queue. Thus, in the context of Big Data workflows, the middleware can act as a medium for communication, whereby

step instances coordinate passing intermediate results through sending/receiving messages in MOM queues.
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2.3. Container technology

A container is a packaged, standalone, deployable collection of program elements [11]. Containers provide an isolated virtual

environment and include all the required dependencies of the provisioned tools. Docker is one of the most well-known platforms

for organizing solutions based on container technologies. When executing multiple containers, a container orchestration system can

manage their deployment, scaling, and networking. In particular, container technology is useful for deploying distributed scalable

applications (such as Big Data workflows), as it provides transparent means for infrastructure management and easy scalability of

individual application sub-components. Orchestration tools use a configuration file to define container images, network, and related

deployment schemes of an application.

2.4. Domain-specific languages

DSLs are programming languages or specification languages that target a specific problem domain. DSLs are small, descriptive,

and contain only the details needed for the desired domain. In general, there are two types of DSLs: internal and external [12]. An

internal DSL is a specific form of Application Programming Interface (API) in a host general-purpose language (GPL). In contrast, an

external DSL is a language that is parsed independently of the host GPL. Unlike GPLs, DSLs are limited in scope and cannot cover

all aspects of a given problem. However, they are more effective than GPLs in providing expressiveness at the cost of generality.

DSLs offer better domain-specificity and significantly improve collaboration between domain experts and developers [13].

3. Related work

In this section, related work is presented in terms of related scientific literature and commercial and non-commercial software

tools. Aspects such as workflow resource scheduling and others, as described in [4,14], are complementary to our approach as the

described concept uses container orchestration systems to specify them.

3.1. Related software tools

There is a large variety of Big Data workflow solutions that share similar design principles while fulfilling the needs of various

groups of users and use cases. We carried out a comparative analysis of the most promising workflow tools (chosen based on their

mass user base and relevance), including Pachyderm,1 Apache Airflow,2 Snakemake,3 Apache NiFi,4 Node-RED,5 Argo Workflows,6

NextFlow,7 and Conductor.8 An overview of the comparison is presented in Table 1 with respect to workflow type, usability for

non-technical experts, run time container support, and generality of the solution.

We consider two main types of workflows — scientific and general-purpose. Scientific workflow approaches are built to be applied

in homogeneous infrastructures, such as High-Performance Computing (HPC) clusters, where resources are shared between multiple

workflows and dedicated algorithms are used to optimize job scheduling and resource allocation. On the other hand, general-purpose

workflow tools are applicable in varying domains/scenarios and can be executed in heterogeneous computing infrastructures. In

terms of usability for non-technical experts, we consider three levels of support — easy, medium, and difficult. We regard approaches

that provide a dedicated DSL/UI that caters to domain experts as easy. If the approach requires the use of coding of the Big Data

workflows in a specific programming language, we consider the approach of medium usability. On the other hand, if the approach

requires coding and the use of approach-specific concepts and libraries in order to declare a workflow, we consider the approach to

be hard in terms of usability to non-technical experts. With respect to container support, we classify the approaches on whether or

not they support the use of container technologies (e.g., Docker) for encapsulating the entire Big Data workflow or individual steps.

We note that although some of the tools, such as Apache NiFi, are packaged and deployable using container technology,9 but we

do not consider them to provide container support. We consider the solutions in terms of whether or not they are generic or catered

for a specific vertical domain of knowledge. Thereby, we regard approaches that are applicable in any vertical domain as generic

and vice versa. Finally, in terms of monitoring capabilities, we classify workflow tools by the availability of monitoring execution

of the workflow. Depending on how the execution can be monitored, it can be further classified into logging and runtime. We regard

those tools that provide real-time monitoring as runtime. If the monitoring is based on logs at the end of execution, we classify the

tools as logging. Tools that mainly provide logging-based monitoring, which also support limited real time monitoring capabilities,

are regarded as logging and (partial) runtime.

1 https://www.pachyderm.com.
2 https://airflow.apache.org.
3 https://snakemake.readthedocs.io.
4 https://nifi.apache.org.
5 https://nodered.org.
6 https://argoproj.github.io/argo.
7 https://www.nextflow.io.
8 https://netflix.github.io/conductor.
9 https://hub.docker.com/r/apache/nifi.
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Table 1

Comparison matrix for tools supporting Big Data workflows.

Tool name Workflow type Usability Container support Generic solution Monitoring

Airflow General-purpose Difficult Docker Yes Logging and (partial) runtime

Argo General-purpose Difficult Docker Yes Logging and (partial) runtime

Conductor General-purpose Difficult No Yes Logging

Nextflow Scientific Medium Docker No Runtime

NiFi General-purpose Medium No No Runtime

Node-RED General-purpose Medium No No Logging

Snakemake General-purpose Medium Docker Yes Runtime

Pachyderm General-purpose Difficult Docker No Runtime

Our approach General-purpose Easy Docker Yes Runtime

Argo Workflows natively supports containers in workflows by implementing each step as a container. The workflow definition

and automation are done by YAML templates based on a custom DSL.10 The steps can be arranged either sequentially or in a DAG,

making it possible to orchestrate and parallelize jobs. However, Argo Workflows does not have a middleware solution to handle

inter-step communication, which may result in step instances running into race conditions when scaled horizontally. Additionally,

individual steps cannot be scaled up in order to increase the workflow throughput (although they can be run in parallel).

Nextflow is a workflow framework based on the dataflow paradigm [15]. It uses a declarative processing model to execute

parallel tasks and supports step-level scalability. Nextflow has built-in support for container technologies and the communication

among processes is handled using channels, and asynchronous First-In-First-Out (FIFO) queues preventing race conditions. Nextflow

provides a custom DSL to write complex workflows, which is an extension to Apache Groovy.11 Nextflow does not provide a clear

separation of concerns between workflow definition and implementation and relies on a specific software stack (through the DSL)

for workflow step implementation.

Apache Airflow is a platform for the creation, scheduling, and monitoring of data workflows. Python scripts are used to describe

DAG structured workflows. Airflow has a scheduler that executes workflows on a set of workers, but it lacks a mechanism to

avoid race-conditions when scaled. Airflow has a rich user interface support allowing users to visualize workflows and monitor

their execution. The workflow definition is done via programming. Pachyderm is a tool for managing data workflow and related

input/output data that results in all the data workflows’ reproducibility and scalability. Pachyderm is based on Docker and

Kubernetes, and provides advanced features such as pluralization and incremental processing. Users need technical knowledge to

define workflows.

Snakemake is a workflow system in which workflows are defined in terms of rules presenting the input–output conversion of

files. Determining dependencies between rules, Snakemake automatically forms parallelizable DAG workflows. It provides a concise

and readable DSL, an extension of Python programming language, for defining rules and workflow specific properties. It was initially

developed for scalable workflows in bioinformatics. Apache NiFi is a project of Apache Software Foundations that allows automation

of data flow between systems. It is based on a flow-based programming model for building scalable data workflows. Although it

comes with a user interface, it requires technical knowledge to design workflows.

Node-RED is another flow-based programming workflow tool that is built based on Node.js run-time. It follows the event-driven

and non-blocking model. It provides a Web-based visual editor for designing workflows, but it still requires technical knowledge

from the user. Even though Node-RED was initially designed for Internet-of-Things (IoT) applications, it has evolved to develop

various applications. Conductor is a workflow orchestration engine by Netflix that allows creating microservice-based business and

process workflows. Workflows are composed of tasks that are executed by remote workers. A JSON-based DSL is used to define

workflows.

3.2. Related studies

Many efforts have been made to use containers to address the challenges of scalability, resource provisioning, scheduling,

orchestration, and data management of data workflows. Authors in [16] propose an approach for decomposing scientific workflows

into micro-units that are containerized and contain sub-workflows that communicate through streaming middleware among each

other and other applications and devices. This approach is specific to the domain of digital twins and addresses the job dependency,

job scheduling, and streaming support issues, but does not provide means of independent scaling of steps and is domain-specific.

Another set of approaches relies on the use of container technology to deploy workers that execute jobs. Authors in [7] use

Docker to deploy a software stack to homogenize the environment where tasks are run. However, their approach has limitations

on the number of workflow step containers deployed on a single host and does not support long-running tasks (i.e., containers are

shut down after executing). The approach in [17] uses containers to encapsulate workers that contain the workflow engine and

execution environment but is applicable only in the context of workflows expressed in a specific stream-based dataflow DSL [18],

which reduces applicability for general-purpose data workflows.

10 https://argoproj.github.io/argo-workflows/fields.
11 https://groovy-lang.org.
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Another set of data workflow implementations in the area of HPC are built on top of the Shifter [19] framework. Authors

in [20] use the framework to distribute jobs and entire workflows (encapsulated in a single container) over an HPC cluster. This

approach does not support individual steps’ scalability but views data workflows as entire units of work. Authors in [21] rely on

Shifter for defining virtual HPC clusters to run jobs. Thereby, containers are used for creating worker nodes with the necessary HPC

functionality and for managing the jobs, but their approach is not applicable for general-purpose data workflows.

One approach that comes close to the one described in this paper is presented in [1], whereby containers are used to wrap

individual steps. The framework uses a TOSCA [22] to describe both the deployment and workflow steps, which containers can

implement. However, the framework does not support dynamic workflows — tasks are executed in a sequential manner, whereby

a task must finish for next to be deployed, which makes the approach not suitable for long-running workflows.

Finally, authors in [23] use Cloud orchestration for deploying distributed workflows in a similar manner as the one described

here, although containers are not supported. However, the approach does not support run-time scalability and relies on the step

definition to manage the input and output between the steps. Furthermore, the approach uses a DSL that provides no clear separation

of concerns between the design- and run-time phases of data workflows.

4. Requirements

Commonly used data processing frameworks (such as Spark, Flink, Beam) are designed with ad-hoc processing models that

technical experts on specific technology stacks can only use. The focus is on the programming and run-time aspects of workflows

than the actual definition of workflows themselves. Even though some solutions, as discussed in related work, have demonstrated

defining and executing Big Data workflows, they do not cater to the needs of domain experts. Solutions like Pachyderm, Snakemake,

and Airflow are merely designed for technical experts, and the definition of workflows is done using high-level programming and

scripting languages. To enable domain experts to participate in the process, some tools provide a user-friendly interface to define

workflows. However, they either are made for a specific application domain (e.g., bioinformatics, computational chemistry, ecology,

genomics, etc.) or require some level of technical knowledge to manipulate the data. Thus, although most approaches and tools

use some form of DSL or UI, the abstraction level is not sufficient to allow for separation of concerns between definition and

implementation, which is necessary to effectively involve domain experts in workflow definition.

Another major challenge in Big Data workflows is the dynamic mapping workflow steps to heterogeneous computing and storage

resources to ensure scalability. This challenge comes from the fact that bottlenecks can occur on an individual workflow step level,

e.g., the throughput of one step is lower than others. Thus, scaling up the entire workflow does not solve the scalability issues and

needs to be done on the individual workflow step level. This issue is exacerbated by the fact that the scalability needs to be organized

and orchestrated over heterogeneous computing resources. Achieving scalability in Big Data workflows has another dimension of

challenges: exchanging data among workflow components and race conditions when multiple instances of workflow components try

to modify a shared resource (e.g., a file) at the same time. Multiple workflow step instances can make up a large set of capabilities

to deliver the workflow’s needs. Some approaches and tools discussed in the related work attempt to address this issue through

the use of containers and different types of middleware. However, no approach is able to unlock the full potential for achieving

step-level scalability of workflows, which relies on workflow and step encapsulation.

Finally, in Big Data workflows, data need to be passed between the workflow components so that the communication overhead

is minimal. A communication solution must decouple the communication between the steps to be scaled up while maintaining race-

condition-free data access. Additionally, this communication module has to play a central role in determining data flow between

workflow steps. Based on our analysis of the state of the art, we find there is no holistic Big Data workflow solution that can provide

such a communication module along with high-level workflow definition and scalable execution.

Accordingly we extracted the following requirements for our Big Data Workflow solution:

(a) A workflow definition mechanism with a clear separation between design- and run-time aspects and not limited to a specific

technology stack, application domain or ad-hoc processing models;

(b) A workflow run-time support that considers workflows as separate units, rather than as a single unit, for individual workflow

steps; and

(c) A workflow enactment approach with event driven execution and support for race-condition-free parallel execution.

5. Proposed solution

In this section, we propose an approach for the workflow step design and inter-step communication. For the description of the

Big Data Workflow we use the DSL from [24].

5.1. Overall architecture

The solution enables various stakeholders to be involved in the creation of Big Data workflows. The desired properties of the

system are achieved by utilizing container and orchestration technologies and a DSL. The workflow system is composed of three

components: Workflow Modeling Manager, Deployment Service Runtime, and Data Storage/Sharing Ecosystem (see Fig. 1).

The Workflow Modeling Manager is the central element for defining workflow steps and composing them in workflows. It comprises

a set of tools and configurations that allow the formation of deployable Big Data workflows. The component uses models that provide
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Fig. 1. Overview of the our workflow system.

high-level descriptions of workflow steps and their dependencies. This component handles storage configurations, data preparation,

and step-level data processing and transformation operations. The output of the component is a deployable data workflow. The

Deployment Service Runtime is a component representing the collection of hybrid computing resources where workflows steps are

deployed. As individual workflow steps are wrapped as containers, container orchestration tools play an important role in managing

the heterogeneous resources and allowing workflows step containers to be deployed. The component also controls operations such

as scaling and load balancing. Data Storage/Sharing Ecosystem is responsible for storing intermediate and output data and the data

exchange mechanism during workflow execution. As workflow steps are deployed across heterogeneous distributed environments,

the data exchange mechanism is an essential element that binds the workflow steps together by allowing them to pass data.

The system ensures the separation of design-time and run-time aspects of the workflows, i.e., workflow definition is done

without considering the run-time execution. This allows having a separation of concerns among the involved stakeholders. Thereby,

domain-experts can be responsible for extracting data processing requirements and structuring the high-level design of workflow

steps. Technical experts provide the concrete programmatical implementations of the steps — for example, data scientists may

provide workflow step-specific analytical models and data preparation code. Finally, DataOps experts are engaged in deploying and

maintaining data workflows in production settings and monitoring data quality and related infrastructure status.

5.2. Big data workflow description

The DSL used in this work [24] for representing Big Data workflows is inspired by [25] and is shown in Fig. 2. The domain

conceptualized by the DSL is container-based Big Data workflows, which is reflected in the choice of concepts. The main concepts

of the metamodel are used to represent the different aspects of the Workflow Modeling Manager element shown in Fig. 1. Workflow

Step Definition is implemented by the Workflow concept, which is comprised of a set of Steps in the DSL. Additionally, the element

Data Preparation and Storage Configuration is implemented by the concepts Parameter, Trigger and Communication Medium, whereas

the Workflow Step Composition element relates to the Step Implementation concept in the metamodel.

AWorkflow is a sequence of steps that need to be executed in some order to process a set of data. It represents the conceptualized

series of steps that perform different data ingestion, transformation, and analytics tasks. A given workflow can be defined by reusing

another workflow. Besides the steps, a workflow is composed of a communication medium and a set of parameters. The Steps

are the building blocks of a workflow, and each step corresponds to a single unit of data processing work in the workflow. The

steps in a workflow are executed independently and are isolated from each other. Further, a step can have various options for its

implementation and trigger mechanisms for executions.

A Parameter represents an input configuration value needed for the execution of a specific workflow instance. In addition to

workflows, parameters can also be used to define configurations for workflow steps. The Trigger concept represents how the execution

of a step instance is instantiated. In our metamodel, step execution can be triggered from a schedule that runs in a fixed interval of

time, or it can be configured to run only once (e.g., during initialization of the workflow). Execution can also be triggered by an

external event (e.g., invocation from a REST API or availability of input data in a message queue).

The Step Implementation is a concept that represents how the actual implementation of a workflow step is performed. A container-

based implementation can be considered as an example of step implementation. In this way, the DSL provides explicit support for the

container-based Big Data workflow approach described in the rest of this paper and additionally allows for other implementations

that may not necessarily make use of containers. The communication Medium represents the mechanism in which workflow steps

exchange data. A workflow step can pass data to another step using a message queue. Nevertheless, our approach allows that data

exchange be performed using other means such as distributed file systems or Web services.
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Fig. 2. Metamodel for the proposed DSL for representing Big Data workflows.

The design of the DSL emphasizes separation of concerns between the structural and implementation details of a workflow

(e.g., through the clear separation between Step usage in workflow and Step Implementation). These aspects correspond to the domains

of concerns of the two main groups of stakeholders — non-technical personnel (e.g., experts in a vertical domain) and technical

experts (e.g., programmers). In that way, the DSL satisfies the requirement discussed in Section 4). Furthermore, we assume that

the DSL should be used by non-technical experts and, therefore, should avoid complex constructions as much as possible. Therefore,

another approach we apply in the language design is introduction of language concepts only if necessary. This means that only

concepts used in our practical cases are supported in this first version of the DSL. Thus, constructs, such as loops and conditional

steps have not been introduced into the DSL presented in this paper. The introduction of more advanced control structures is part

of ongoing work in the context of the DataCloud project.12

5.3. Step design

Our approach takes advantage of container technology [26] in order to implement step encapsulation (in the DSL, this is reflected

in the Docker Implementation sub-class of the Step Implementation concept shown in Fig. 2). The implementation of the approach

implies wrapping workflow steps as containers and having step containers run independently of each other and in parallel. Moreover,

step templates (container images) are downloaded once, and multiple instances of the same template can be deployed.

To enable the definition and deployment of workflow steps and their composition into a workflow, workflow steps are derived

from a generic workflow step template supporting multiple programming languages. A workflow step can be prepared by customizing

the generic template according to the need of the step and other settings. To achieve such flexibility, this template needs to be

designed so that it is easy to introduce customization. The step template is composed of three main components: Input Processing,

Workflow Step Action, and Output Processing (see Fig. 3).

The Input Processing is responsible for handling incoming data; this includes fetching data from remote sources (e.g., copying or

downloading a file from shared file volumes and moving the data to the step workspace, where it will be processed). Based on the

step’s configuration, input data can be fetched once at a container startup or scheduled to poll for the data availability at a specific

time interval. The Input Processing can be triggered when a piece of data is available at the source. The Workflow Step Action is

a wrapper component for step-specific data processing code. This component allows the injection of custom code using different

programming languages. The data fetched by the Input Processing component is processed using the step-specific code in the step.

The Output Processing component is responsible for delivering the processed data to a specific destination (e.g., upload to a remote

source or move it to a shared volume for further processing by next steps) and notifying that the processed data is available for

the next steps. Output Processing also includes the clearing up of temporary and input data from the step workspace. Configuration

and attributes of a workflow step can be expressed as parameters and injected at the deployment time. The step parameters are

accessible only by the corresponding step, but workflow-level parameters can be defined as well.

12 https://datacloudproject.eu.
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Fig. 3. Components of workflow step template.

5.4. Inter-step communication

The step design approach described in the previous section implements loose coupling of steps that comprise a workflow.

However, in order to ensure that data between steps are transmitted consistently and correctly, consecutive steps need to

communicate to notify each other of data availability. This communication corresponds to the Fetch input data and Notify Next

Steps sub-processes of the Input and Output processing components in Fig. 3. In the proposed workflow approach, MOM serves as

a medium for workflow step communication. Two inter-dependent workflow steps communicate by passing data through MOM

without direct interaction. The sender step pushes data to the MOM so that it is consumed by the receiver step at any time after the

data becomes available in the MOM. The two steps do not need to run simultaneously for interaction, ensuring temporal decoupling.

The space decoupling is also achieved since none of the sequential steps needs to know the other nor how many other steps are in

the workflow. Since workflow steps are loosely coupled, they can be scaled independently. Therefore, it is possible to assign more

instances to bottleneck workflow steps that are, for example, more computationally heavy and reduce the overall processing time.

Specifically, message queues are used as a communication medium so that two inter-dependent workflow steps can share a

queue to exchange data asynchronously. Both workflow step processes do not necessarily need to be running simultaneously to

interact with the queue. Additionally, the messaging system is capable of providing an exactly-once message delivery guarantee.

Furthermore, MOM-based communication ensures that the workflow does not run into race conditions. These can be seen in two

scenarios:

• A workflow step that receives data does not access the data while the predecessor step is writing it. Message queues ensure

that sending a message to a queue is independent of when it enters the queue and when the receiver reads it; and

• When a workflow step is scaled up, a step instance does not process a piece of data already being processed. This problem is

avoided since a message is delivered to only a single step instance, i.e., data access is only for a specific instance.

The data patterns of the designed workflow are characterized according to the major workflow data patterns described in [27].

From a data visibility perspective, data elements are accessible from all workflow steps (e.g., data can be stored in shared file

storage). Though a data element is accessible for all, it can only be used by a single workflow step instance at a time (e.g., when a

reference of a file is transferred to the step from a message queue). Internally, data interaction happens only between two workflow

step instances. Depending on the workflow step’s purpose, it can also interact with an external source (e.g., by downloading a file

from a remote source or invoking an external API endpoint). Data transfer is undertaken by the reference to the data element in

some shared location (e.g., a file can be stored in a shared location, and its reference is exchanged over a message queue). In this

case, data locking is not required; message queues restrict concurrent access to the data element. In terms of data-based routing, a

given workflow step is executed whenever data are available at a network location.

6. Prototype implementation

To demonstrate the applicability of the proposed solution, we developed a prototype Big Data workflow (see Fig. 4) that

implements the design choices described in Section 5 (available on GitHub13 including a small anatomized sample of the used

data). The prototype workflow comes from the domain of digital marketing (see [28] for a detailed description) and was chosen

13 https://github.com/SINTEF-9012/ebw-prototype.
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such that some of its steps have higher compute requirements than others. Those steps need to be assigned with more computing

resources than other workflow steps to enable faster data processing. This makes it possible to demonstrate the applicability of

step-level scalability. The prototype workflow demonstrates the implementation of Big Data workflows using container technology

(encapsulating individual steps of the workflow), a messaging system (Message Queue), shared file system volumes (can be local

or distributed file system), and includes the following steps: (i) extract tab-separated values (TSV) files from an archive file stored

on a volume in a shared file system, (ii) convert TSV files to comma-separated values (CSV) files, (iii) split CSV files into smaller

pieces if the number of rows in the files is above a certain number, (iv) clean and pre-process CSV files, (v) and convert tabular

CSV files to JSON collections for further storage. The DSL description of the prototype workflow using an Xtext-based14 grammar

specification over our DSL model is given in Listing 1.

6.1. Inter-step communication

Asynchronous FIFO message queues are used to implement inter-step communication and the KubeMQ15 messaging system

was chosen for this purpose. KubeMQ provides multiple message queues with a guarantee of exactly-once message delivery. A

communication link is established when a workflow step is configured with a message queue as its output channel, and the same

queue is used as an input channel for another step. In this way, the latter step waits for the output of the former and its execution

is triggered immediately when the shared queues have content. This communication mechanism enables the two step instances

to run concurrently during execution while maintaining race-condition-free data access. Such workflow execution follows the P&F

architecture, i.e., step instances as filters and message queues as pipes. In the example prototype, a containerized instance of KubeMQ

is used to handle the communication between the steps and is made accessible to all workflow steps. Each consecutive workflow

step is configured to share a message queue (except the first and last steps). Thereby, steps in the workflow use two message queues:

one for retrieving information about available input data from the previous step and one for signaling that data have been made

available for the next step. There is no direct link between two consecutive steps; instead, the message queue they share creates a

logical connection.

14 https://www.eclipse.org/Xtext/.
15 https://kubemq.io.
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Fig. 4. Prototype Big Data workflow.

Even though the message queues in the prototype workflow serve as a communication mechanism, the actual data for processing

are not stored in the message queues but are stored on shared volumes. Only references to the data are placed in the message

queues. To organize the processing of the data, a step container allocates at least four different file storage volumes: in, work, out,

and sandbox. When a file reference becomes available in the input message queue of a step container, it reads the file reference from

the queue and accesses the file from its in volume. Then, the file is moved to the work volume for processing. When file processing

is completed, the result is stored in the out volume, and the reference of the output file is published in the output message queue so

that the next step can use it for further processing. The sandbox volume is used to store any files that are not processed successfully.

6.2. Container orchestration

The individual steps in a workflow are wrapped as Docker containers. The Docker images of the workflow steps are derived

from a generic step template that implements the input processing, output processing, and communication logic. The template

is modified by adding the installation script for any necessary software libraries in the Docker image building configuration and

injecting relevant code scripts (step processing code) in a specific place in the template logic. Container orchestration systems provide

effective means to deploy distributed applications across a heterogeneous cluster of resources. To use these tools, it is necessary to

prepare a deployment configuration file either in JSON or YAML, which describes the location of the container images, network

setups, and other configurations. In the case of Big Data workflows, the configuration needs to include the description of different

workflow steps and the communication medium. Scalability and other constraints can also be stated in the configuration. When

deploying a workflow, the orchestration tool will automatically schedule the deployment of each workflow step to a cluster and

pick the right host, taking into account any stated requirements or constraints.

The prototype workflow deployment was done by composing individual workflow step Docker containers using a Docker-compose

file. A workflow step description in the file includes shared volumes, environment values, and message queue assignments. The

communication medium, KubeMQ, is also included as a separate service in addition to the workflow steps. Rancher16 is used as

an orchestration tool to deploy the workflow on a private cloud environment running Docker containers. In Rancher, the number

of instances for each step can be defined in a separate YAML file. When this YAML file, together with the Docker compose file, is

supplied, Rancher handles the deployment by taking the scalability requirement into account and finding the right host for each

container.

16 https://rancher.com.
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Table 2

Summary of feature-based comparison.

Workflow tool Step-level

containerization

Communication

mechanism

Parallelism DSL for

workflow

Separation of

concerns

Airflow Yes Yes No Yes Yes

Argo Yes No Yes No Yes

Conductor No Yes Yes Yes No

Nextflow Yes Yes Yes Yes No

NiFi No Yes No Yes No

Node-RED No No No No Yes

Pachyderm Yes No No No Yes

SnakeMake Yes No Yes No Yes

Our approach Yes Yes Yes Yes Yes

6.3. Fault tolerance

To address faults in Big Data workflows, it is necessary to keep track of each file’s status while it is being processed. Having this

information stored in a structured way helps for monitoring and debugging purposes. To this end, a centralized logging functionality

writing structured logs in JSON format is incorporated. These logs are stored in scalable message queues, such as Kafka [29], and

contain important execution statuses, warnings, and errors. A centralized logging system can be a bottleneck when the system grows.

This is because the logging unit gets overwhelmed by the flow of log data coming from scaled up workflow step instances. This

slows down the overall performance of the workflow. However, our implementation is not significantly affected by this problem as

the centralized logging approach is inspired by the state management system in well-known scalable platforms, such as Flink [30]

and MillWheel [31]. In addition, the bottleneck on the logging mechanism can also be alleviated by using decentralized queuing

systems. Errors in the common and step-specific scripts are handled differently by using a separate exception handler. This is done

by checking exit codes of program calls and operating system control flow constructs. Using such constructs, important program

calls in the scripts are bound together with an error handler function. The error handler will be invoked when the program exits

with an error code and logs error information, including the file causing the error, the line number that caused the error, and the

input file’s name being processed.

To make the workflow more resilient to intermittent failures, we implemented retrying processing of failed input files. Whenever

an error occurs, the input file is moved to the respective sandbox volume to be processed later or to be archived. Since the message

queue implements exactly-once delivery, the reference of the file will not be available in the queue for retrials. In this case, all the

failed files can be accessed directly from the sandbox without the need to access the message queue. When a step becomes free,

i.e., when there are no more files in the message queue (or input directory for the first step), it tries to re-process files from the

sandbox. With the current implementation, retrial is done only once.

7. Evaluation

In this section, we present the evaluation of the proposed solution. It includes a feature-based comparison of the workflow

solution against existing workflow tools and performance experiments based on the prototype implementation.

7.1. Feature-based comparison

To compare the proposed workflow solution with other similar tools, we selected five main implementation features: (i) the

ability to wrap workflow steps as containers (isolated units); (ii) communication mechanism between steps and their activation

trigger; (iii) parallel execution of workflow steps; (iv) inclusion of DSL for workflow definition; and (v) separation of concerns. (see

Table 2).

Granular containerization (i.e., step-level containerization) is not provided out of the box for Big Data workflows containing

multiple steps. Hence, step-level scalability cannot be achieved when faster processing is needed for an individual workflow step.

Argo Workflows, Nextflow, Pachyderm, and SnakeMake are instances of the few Big Data workflow tools supporting step-level

containerization. Nextflow also has an additional feature that allows deploying the entire workflow as a single container. The

majority of existing data workflow tools lack such a separate communication link and instead, steps in these tools are tightly coupled.

Thereby, the logic that determines the flow of step execution is embedded as part of the step implementation. Even though Argo

Workflows provides both sequential and parallel workflow step definitions, this type of communication mechanism is missing.

Apache NiFi and Nextflow use a queuing system for inter-step communication. Nextflow provides advanced data binding and

publish/subscribe features. Conductor has a special type of workflow step (i.e., event step) to enable event-based dependencies for

steps by publishing events internally or an external message queuing system like Amazon SQS. Apache Airflow uses a feature called

XCom to communicate small messages between steps and larger data are exchanged using remote storage such as S3 and HDFS.

Workflow tools such as Apache Airflow, Conductor, Nextflow, and Apache NiFi provide parallel execution of step instances from

different workflow steps. In Apache Airflow and Conductor, special operators are used to define a parallel set of workflow steps.

Parallelism support in Argo Workflows is limited to all workflows in the system (i.e., it is not granular to a class of workflows, or

steps within them).
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Fig. 5. Results of the horizontal scalability test.

Defining workflows in existing data workflow tools requires knowledge of general-purpose programming and scripting languages

such as Java, Python, Scala, or R. Consequently, domain-experts face a significant learning curve to master these languages. The

need for DSLs is indispensable in this regard. Only a few Big Data workflow tools, e.g., Argo Workflows, Conductor, Nextflow, and

SnakeMake, support a custom-made DSL for workflow definitions.

Separation of concerns is not a focus in tools like Conductor, Nextflow and Apache NiFi. Hence, there is no mechanism for the

separation of high-level workflow definition concerns from step-specific implementation and deployment details. Therefore, such

tools do not ensure the separation of design- and run-time aspects of workflows.

7.2. Performance evaluation

We evaluated our workflow approach’s horizontal scalability using the prototype workflow and compared it with the Argo

Workflows. We used eight heterogeneous physical hosts configured to form our distributed testbed. Three of them have 12-core

Intel CPUs and 64 GB RAM each; the other five — four-core AMD CPUs and 16 GB RAM each. The hosts are connected in a Gigabit

Ethernet network, share a distributed file system, and run the Docker engine connected to Rancher.

7.2.1. Scalability evaluation

Our workflow solution allows us to scale individual workflow steps. Hence, it is worth investigating the impact of horizontal

scalability on the performance of the workflow. Therefore, we designed an experiment to determine how the number of workflow

step instances (i.e., containers) affects workflow execution performance. The prototype workflow, shown in Listing 1, was used for

this experiment. We defined an increasing number of workflow step instances and measured the time it takes to complete processing

input files. Input data size is kept constant over all iterations. The results of this experiment are shown in Fig. 5.

We performed the scalability experiment by processing approximately 100 GB of compressed TSV files in nine rounds. These

are historical data from the use case described in [28] that comprises a large volume of extracts from the Google Ads platform17

and made available for this experiment by a digital marketing company. For each round, we increased the number of workflow

step instances by five (starting from 10), and the increased number was distributed among the steps based on the previous step

execution time. Hence, the step that takes the longest time was allocated a higher number of instances. We stopped adding more

step instances after nine rounds since we noticed the minimal effect in the last two rounds. Fig. 5 shows that with four times increase

in the number of instances, the total execution time decreases from 1406 to 455 min, i.e., approximately a three-times decrease.

There is a significant reduction of execution time up to 20 containers. However, from 25 containers upwards, the reduction in

execution time gets smaller. This reduction in performance gains is due to resource bottlenecks with the addition of more instances.

In our experimental setup, resources available to the containers are shared. They are split among the containers by availability time,

size or processing power and increasing the number of instances beyond 50 does not improve the performance further. Even though

such an arrangement helps to utilize the resources effectively, it can cause resource contention among the containers. As the number

of instances increases, it leads them to compete for the resources. Further increase of instances can result in degraded performance

due to CPU, memory, and I/O bottlenecks. Measuring the usage of such resources (CPU, memory, I/O, Network Receive/Transmit

Throughput, etc.) would be interesting but is considered out of scope for this evaluation as the container orchestration system does

not allow to easily change or customize them.

17 https://ads.google.com/home.
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Fig. 6. Workflow execution times (a) using Argo Workflows and (b) using the proposed approach.

7.2.2. Comparison with Argo Workflows

The implemented workflow approach allows individual workflow steps to run independently. In this experiment, we investigated

the effect of concurrent workflow execution on the workflow’s performance by comparing our approach with another workflow

tool that does not have built-in concurrency support. For the comparison, we chose Argo Workflows since it does not have built-in

concurrency support. The composition of a workflow can be done quickly using its custom DSL that is similar to traditional YAML.

Together with the step template invocator, the container template was used to compose the sequential workflow with a single

instance assigned for each step. The experiment had two parts: one using fixed input data size, and the other is by using increasing

input data size.

Experiment with fixed input data size. In this experiment, we compose workflows in both approaches and measure the execution time

of each step with a fixed volume of input data. We measure each the start and end time of each step to observe the performance

difference between concurrent and sequential execution modes. To achieve this, we used the workflow in Listing 1 and followed

the same workflow composition as in the scalability evaluation from Section 7.2.1, but with a single container instance assigned to

each step. A similar workflow structure was composed in Argo Workflows using the same step container images. Both workflows

were executed using 100 MB of input data on a Kubernetes cluster (Argo Workflows runs only on Kubernetes). We measured the

execution time for each step. To minimize systematic errors, we repeated each experiment 20 times and took the arithmetic mean of

execution time to compare the two modes. The repetitions were done in a cool start fashion without caching result or intermediate

data from previous rounds.

The sequential execution mode in Argo Workflows takes 38.7 min to complete, whereas the concurrent mode takes 34.6 min,

which shows a slight performance gain when using our approach. Fig. 6(a), shows the execution time for each step in Argo

Workflows. Since the workflow is in sequential execution mode, step container execution starts after the previous completes

processing all the input files. In this mode, step containers are not initialized at the time of workflow submission, and initialization

occurs right before step execution, which results in a short gap in between consecutive steps. The concurrent workflow execution

based on our workflow implementation is shown in Fig. 6(b). We observe a slight performance gain due to the concurrent execution

of steps. Concurrency is enabled by the P&F architectural design which allows workflow step container to continue processing the

next input file right after passing the processed file to the next step. Moreover, concurrent step containers share the host machine’s

resources, which explains the longer execution time of the last step (compared to sequential mode). Additionally, we do not observe

positive effects of the concurrency in the first three steps since their execution times are relatively short (they are completed in a

couple of minutes).
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Fig. 7. Performance with increasing input size.

Experiment with increasing input data size. The previous experiment is repeated to evaluate which of the two workflow approaches

performs better with increasing input data of compressed CSV files. To achieve this, we used the workflow from Listing 1 once again

and measured execution time for both approaches using input data starting from 0.1 up to 3 GB. Fig. 7 shows the results of the

experiment. It is evident from these results that our workflow approach performs better than Argo Workflows in all cases, with an

approximate performance gain of 36%. However, we did not observe a significant performance gain when input data are further

increased. This is because the last two steps are computationally intensive and they determine the overall speed of the workflow.

Having a single container instance for each step, the addition of more input data does not bring any significant performance gain

as the execution rate of steps is (relatively) constant independent of the size of the input data.

7.3. DSL evaluation

We evaluated the proposed DSL qualitatively in what follows from a development and quality perspectives from multiple

dimensions.

7.3.1. Development perspective

One of the benefits of using DSL over general-purpose programming language is to reduce code complexity and increase

development efficiency. However, it is challenging to measure the level of code abstraction introduced by using DSL. A simple

quantitative evaluation metric can be used by measuring and comparing the amount of code required to define a workflow with

and without DSL usage [32]. The measurement can be expressed in lines of code (LOC). Another metric is to compare the number

of concepts or technologies involved with and without the DSL. This metric shows the number of concepts abstracted by the DSL.

For example, to implement the example workflow presented without using the DSL, it is necessary to follow some specific steps;

however, the important work in this process is to compose all the workflow steps into a single deployment file. Then, assuming

we have all the step images ready, it is required to set up the MOM and shared volumes. Also, input/output parameters, message

queues, and environment variables must be adequately assigned for each workflow step. By using the DSL, composing a workflow

requires fewer configurations since the DSL abstracts some concepts. For example, it is not required to set up MOM and assign

message queues for workflow steps. Intermediate storage volumes and settings are not specified either. In other words, workflow

definition using the DSL does not necessarily require knowing technologies like shared volume management, MOM, and message

queues. To provide a quantitative comparison, we examined the LOC required to define workflow shown in Fig. 4 with and without

the DSL. Without using the DSL, the Docker compose file has 133 LOC.18 Whereas the same workflow can only be expressed using

36 LOC by the DSL on a higher level of abstraction — see Listing 1. The DSL provides the capability to define the example workflow

in a short LOC because of the abstraction of key concepts and technologies needed to define a workflow.

To test the functional ability of our DSL in the context of an IoT scenario, we mapped a third-party data preparation workflow

used at Bosch as described in [33]. The mapping of the workflow to our approach is shown in Fig. 8. The IoT scenario represents

18 https://github.com/SINTEF-9012/ebw-prototype/blob/master/docker-compose.yml.
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Fig. 8. Mapping of approach to an IoT Big Data workflow about welding data preparation for machine learning.

a use case at Bosch19 of quality monitoring for resistance spot welding. Data about the conducting of process are continuously

generated at high velocity by sensors attached to the welding equipment and are managed by a welding software system. These

data are stored in a database for and used by the software to signal for the current process status and potential issues. During the

welding process, signals need to be generated at near-real time as any necessary response by the system or operators at the factory

needs to be quickly addressed to avoid delays on the production lines. In addition to the sensor data from the welding machines,

the use case involves reference data that provide information about target parameters of the equipment as well as the settings of

the individual machines and welding programs. The overall goal of the work is to create a workflow for offline batch preparation

of data for machine learning as well as online scenario for real-time monitoring using trained ML models.

The workflow consists of two parallel dependent sub-workflows that are involved in processing the different parts of the data. We

use a gray shade to represent components specific to our approach that are necessary for the encapsulation of the workflow steps.

Data transmission in this workflow and the rest of the examples in this section is done through shared file volumes of a (possibly

distributed) file system, whereas the coordination of the steps (i.e., informing the next step of available data for processing) is

performed using a Message Queue that is dedicated for each pair of steps. The output of each step is passed by the Output Processing

(OP) script to the Input Processing (IP) script of the next step, both of which are part of the wrapper of the respective images that

wrap the step implementations. The left side of Fig. 8 represents the sub-workflow for processing the reference datasets. In the first

step, data are retrieved from the meta settings and reference process curves databases and sent for further processing. The curves

and metadata are integrated according to a common data model and are also re-formatted and prepared to be referenced by the

larger scale sub-workflow. After the preparation data are stored in a reference database (implemented using MongoDB20) where they

can be accessed for lookups. The reference datasets are continuously but infrequently updated as new machine settings or reference

data become available. The large-scale IoT data sub-workflow is displayed on the right side of Fig. 8. This sub-workflow processes

either very large volumes of historical welding quality and control data from a database (in the offline setting), or direct signals

from the welding software system in real-time (in the online setting). The data retrieval step (numbered as step 4) fetches the data

from the respective source and sends it to a dedicated slicing step. In the offline scenario, this step is used to chunk the data in a

specific way, whereby the data coming from the software system is packaged together with the exact sensor data that relates to it

in chunks of a pre-determined size (this correspondence is needed during the preparation step). The chunk size is calculated so that

when the workflow is scaled, there are enough hardware resources (esp. RAM and CPU) to process them are available. The chunks

19 https://www.bosch.com.
20 https://www.mongodb.com.
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Fig. 9. Mapping of approach to existing Big Data workflows — (a) CloudFlows data mining and (b) ENCODE Data access workflows.

are then sent for preparation during which the data are integrated, reformatted and packaged together with the specific relevant

reference data through a lookup from a reference database. The result is then stored on disk for further training of or use by the

machine learning models for welding quality prediction.

Another case study we tried to express in terms of our DSL is of the workflow CloudFlows, A data mining workflow platform [34].

Fig. 9a shows a semantic triplet graph workflow built on the ClowdFlows framework from an RSS feed workflow.

The first step of the workflow implements an RSS Reader that takes an RSS feed URL as input. The second step summarizes news

articles based on the generated read data from the first step. The text from the news feed is then passed to the next step of the

workflow that performs triplet extraction. This step implements NLP techniques to extract subject–verb–object triples from the news

articles. Step four of the workflow uses a WordNet21 Lemmatizer on the resulting triples, and step five performs a sliding window

that takes the number of triplets as input. Finally, the data window is passed to the Streaming triplet graph, which is the last step

of this workflow.

Another case study is of ENCODE Data Access [35] shown in Fig. 9b. In the first step of the workflow, the user enters a REST-

format ENCODE query or uploads an ENCODE metadata file that represents a dataset array corresponding to the so-called bags of

data. The selected data are then transferred for analysis to the DNase-seq sub-workflow that implements a set of analyses on the

data. After the analysis is performed, the result (also serialized into bags) is published on Amazon S3, and a metadata file (named

‘‘fetch.txt’’) is created and stored for serving to the users of the result. A user may then discover these new bags and perform further

analysis using the same type of querying as in step 1, but with another analysis set.

7.3.2. Quality characteristics

We used the Framework for Qualitative Assessment of DSLs (FQAD) [36] that defines sets of quality characteristics to evaluate

DSLs. The quality characteristics are mainly determined from ISO/IEC 25010:2011 standard but tailored for DSLs. FQAD is helpful

for evaluating the requisite quality characteristics at the outset of DSL development, as well as assessing the end product of the

DSL development process (i.e., the language). It defines a set of assessment goals and DSL characteristics to fulfill them, which are

derived from the ISO/IEC 25010:2011 international systems and software standards model.

Several works in literature have used this framework to evaluate their DSL. For example, Florian et al. [37] used this framework

to evaluate a DSL in the business domain for creating test case specification. They did not evaluate the test language itself but

only the output and, therefore, concentrated only on the expressiveness, usability and productivity characteristics using the sub-

characteristics of completeness, correctness, comprehensibility, reading flow, and reproducibility. Aleksandar et al. [38] employed

21 https://wordnet.princeton.edu.
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the full FQAD framework to perform a quality assessment of their DSL for modeling application-specific functionalities of business

applications. Sadiq and Geylani developed DSML4DT - a domain-specific modeling language for device tree software [39]. For

qualitative assessment of the language, they prepared a comprehensive questionnaire for the users. To prepare the scoring part of

the questionnaire, they employed FQAD and customized with respect to DSML4DT specifications.

Below, we outline the evaluated FQAD characteristics for our DSL and the respective assessments.

• Functional suitability : This refers to the degree to which a DSL is completely developed. Functional suitability further has two

sub-characteristics:

– Completeness: The ability of a DSL to express all concepts and scenarios of the domain is termed as completeness. We

successfully implemented four Big Data and IoT workflows from different domains with our DSL. The language was

expressive enough to describe the workflows efficiently.

– Appropriateness: The scale to which the DSL is appropriate for the particular applications of the domain is called

appropriateness. While implementing the Encode workflow, we faced the challenge of incorporating all elements in one

workflow. However, by breaking it down into two separate workflows based on the functionality and with additional

REST services, we achieved the required functionality with our DSL.

The functional suitability analysis shows that all the important functionality is included in the DSL. In other words, the DSL

should not contain functionalities that are not part of the domain. In this regard, based on the workflows that were mapped

to our DSL, we claim that the DSL implemented in this work covers the core functionality required to define a given data

workflow.

• Usability : This aspect refers to the degree to which a group of users can use a DSL to achieve specific goals. A DSL must be as

simple as possible to express the domain concepts and support its users. As presented, our DSL provides the option to define

concise workflows with minimal technical knowledge.

• Reliability : It defines the characteristics of the language that help to produce reliable code. This includes functionalities to

prevent errors and support for model checking. The DSL was implemented using the Eclipse environment that supports

languages designed with precise semantics based on well-defined principles. Additionally, the Eclipse IDE also has essential

features to debug and handle code errors. The reliability characteristics has two sub-characteristics:

– Model Checking: This concerns whether the DSL reduces user error rates. In comparison to writing YAML files, our

DSL-based approach has lower error rate. This is, on the one hand due to the conceptual schema that is defined using

the Ecore metamodel22 and Xtext grammar on top of it. When a user is defining a model of our DSL, the Xtext editor

uses the Ecore definitions to check for erroneous values or concept instances and highlights incorrectly defined values.

– Correctness: The term correctness concerns whether appropriate elements, as well as the correct relation between them,

are provided, i.e., any unexpected interactions are prevented. Ecore alongside the Xtext framework allow for checking of

the validity of each DSL model class instance and attribute value types thus ensuring the correct elements and relations

are chosen by the users.

• Maintainability : This characteristic refers to the degree to which it is easy to maintain a DSL. A DSL needs to be easy to modify

or introduce new concepts. Modularity falls under this characteristic as well. The DSL was designed based on the separation

of concerns principle. This makes it easily understandable and maintainable.

– Modifiability: This characteristic refers to the DSL’s ability to incorporate new functionality by as little modification as

possible. The modular approach of our DSL makes it easier to add new sub-vocabularies (which is also part of our future

work) that can be used to describe Big data workflows with more details.

– Low coupling: This means how discrete the elements of the DSL are. At this stage, each element of the DSL plays an

integral part in describing a workflow. Therefore, the change in each element will have an impact on other elements.

• Productivity : This is mainly related to the number of resources required by a user to achieve specific goals. Productivity can be

improved using our DSL because of two main reasons. First, the DSL incorporates high-level concepts of Big Data workflows.

Hence, designing a workflow using the DSL is simplified and can be done quickly. Second, the language provides automatic

generation of template workflow code and configurations. This saves a lot of time compared to when the process is done

manually from the ground up.

• Extensibility : This characteristic expresses the degree to which a language has mechanisms for users to add new features. The

language we have presented currently has a low degree of extensibility since it does not provide users a means (e.g., separate

packages in the Ecore model) to extend the language with new functionalities.

• Compatibility : This characteristic measures degrees to which a DSL is compatible with the domain and development process.

Our DSL was developed iteratively and modified to cover concepts relevant in the domain.

• Expressiveness: Expressiveness is defined as the degree to which a problem-solving strategy can naturally be mapped into

a DSL program. The DSL was developed after a thorough domain analysis in which each concept has mapped to its

corresponding metamodels to represent only core elements and does not cover complex structures such as cyclic workflows.

The sub-characteristics of the expressiveness are as follows:

22 http://www.eclipse.org/modeling/emft/search/concepts/subtopic.html.
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– Mind to program mapping: Concepts are designed appropriately and named so that they are intuitive in order to

accommodate problem-solving tasks for the domain.

– Uniqueness: Because of its simplicity, our DSL provides one and only one good way to express every concept of interest.

– Orthogonality: Each construct in our Big Data workflow DSL is used to represent exactly one distinct concept in the

domain.

– Correspondence to important domain concepts: DSL constructs correspond to important domain concepts and the

language does not include trivial domain concepts. Our DSL only includes highly relevant and non-trivial Big Data

workflow concepts.

– Conflicting elements: This refers to the absence of conflicts between the DSL elements. Our DSL concepts have no conflicts

as each element serves a unique purpose for data workflows specification.

– Right abstraction level: This refers to whether the DSL is at the correct abstraction level that it is not more complex or

detailed than necessary. Our DSL provides only the most important elements of the domain at the moment. A few more

elements are planned to be added to enhance the functionality — for example, concepts for aspects of data transmission

and resource requirements.

• Reusability : This characteristic refers to how a language construct can be used in more than one language. The grammar

specification of our DSL can be imported and reused in the Eclipse environment. Furthermore, the language is conceptualized

so that some elements can be reused in the workflow definition. For example, a workflow step from one workflow can be

copied and used as part of another workflow.

• Integrability : This characteristic measures how a DSL can be integrated with other languages and modeling tools. The DSL that

we have provided can be exported as a plug-in within the Eclipse environment. Integrability of a DSL is largely dependent on

the technical space in which it was defined. As shown in [40], the modelware technical space, which is the one used for defining

our DSL, provides a high level of integrability both within the technical space and across technical spaces. Furthermore, the

Eclipse modeling environment provides integrations with other languages and frameworks such as Javascript,23 which increases

the integrability of our DSL. Finally, as demonstrated in [40], the EMF framework provides automated migration of models

through the Edapt framework.24 Therefore, we conclude that the DSL has a high degree of integrability.

8. Conclusions

In this article, we described a Big Data workflow approach that allows specification of Big Data workflows at a high level

of abstraction and enables separation of design- and run-time aspects while maintaining scalable workflow execution. Scalable

workflow execution entails parallel data processing that requires workflow fragments to run separately on different computing

resources. In the future, we plan to implement comprehensive provenance support. Another limitation to be addressed is the use

of a centralized message-oriented communication, which could become a bottleneck for large-scale execution and is a single point

failure. Decentralized communication media, Web services, or distributed file systems can potentially be used to address this issue.

The DSL that is used in this work is limited to expressing core workflow structures. Thus, the experiments on scalable workflow

execution can be performed using an extended DSL, e.g., including infrastructure requirements or with different workflow (sub-)

structures. Finally, a visual language for workflow definition, composition, and run-time monitoring would be essential to support

domain-experts’ participation in workflow design.
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