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This article introduces two new problems related to trajectory outlier detection: (1) group trajectory outlier 
(GTO) detection and (2) deviation point detection for both individual and group of trajectory outliers. Five 
algorithms are proposed for the first problem by adapting DBSCAN, k  nearest neighbors (kNN), and  feature 
selection (FS). DBSCAN-GTO first applies DBSCAN to derive the micro clusters, which are considered as po-

tential candidates. A pruning strategy based on density computation measure is then suggested to find the 
group of trajectory outliers. kNN-GTO recursively derives the trajectory candidates from the individual tra-

jectory outliers and prunes them based on their density. The overall process is repeated for all individual 
trajectory outliers. FS-GTO considers the set of individual trajectory outliers as the set of all features, while 
the FS process is used to retrieve the group of trajectory outliers. The proposed algorithms are improved by 
incorporating ensemble learning and high-performance computing during the detection process. Moreover, 
we propose a general two-phase-based algorithm for detecting the deviation points, as well as a version for 
graphic processing units implementation using sliding windows. Experiments on a real trajectory dataset 
have been carried out to demonstrate the performance of the proposed approaches. The results show that 
they can efficiently identify useful patterns represented by group of trajectory outliers, deviation points, and 
that they outperform the baseline group detection algorithms.

CCS Concepts: • Information systems → Data mining; • Computing methodologies → Anomaly 
detection;

Additional Key Words and Phrases: Trajectory analysis, outlier detection, data mining, road traffic manage-

ment, smart city application

1 INTRODUCTION

Today’s road traffic in smart cities is being monitored by ubiquitous sensing technologies such as
cameras, embedded Global Positioning System (GPS) receivers, road sensors, and in-vehicle sen-
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(a) Individual Trajectory Outlier (b) Group Trajectory Outliers (ex-
ample1)

(c) Group Trajectory Outliers (ex-
ample2)

Fig. 1. Motivated example: trajectory and outliers.

sors [19]. These technologies enable to generate countless number of sequence points represented 
by trajectory databases, which are stored and analyzed using high-performance computing (HPC). 
These trajectory databases simulate various behaviors of different objects in several real-world ap-
plications such as intelligent transportation [2, 8, 34, 35, 47, 87], mobile traffic network [28, 36, 63], 
smart buildings and large indoor spaces [1, 18, 39], and climate change analysis [5, 16]. In the 
intelligent transportation domain, data analysts face myriad of trajectories derived by the mobil-
ity of people, cars, buses, and taxis. One of the problems dealt with by data analysis of trajectory 
databases is trajectory outlier detection, which represents the topic of this article. From the data 
mining perspective, outlier detection consists in separating unusual observations, objects, and/or 
points from the normal observations [13, 31, 62]. In the context of trajectory analysis, this translates 
into discovering trajectories or sub-trajectories that do not conform with the rest of trajectories in 
a database [52, 54, 88]. Current solutions only consider single view of outliers in a whole trajectory 
or a sub-trajectory. However, it is not only individual outliers that could be identified in real-world 
scenarios. Different types of patterns and useful features can be derived such as group of trajectory 
outliers, deviation point for both individual and group of trajectory outliers. We define the group 
of trajectory outliers by the set of individual outliers that are closer to each other, or proving some 
common features, and the deviation points by the set of points that causes anomalies. In this work, 
we explore new solutions to retrieve these patterns.

1.1 Motivating Example

Consider the three examples of taxi trajectories as illustrated in Figure 1. Each taxi trajectory starts 
from the source point and ends up at the destination point. Traditional trajectory outlier detec-
tion algorithms [26, 41, 50, 84] may detect the outlier illustrated in Figure 1(a) (represented with 
red color). Taxi 4 follows the normal trip from the source to the destination up to a given point, 
where it highly deviates from the trajectory followed by taxis (1, 2, and 3). Traditional trajectory 
outlier detection algorithms are not able to identify the groups of trajectory outliers presented in 
Figure 1(b) and 1(c). This is because they calculate the score of each individual trajectory and then 
rely on the fixed threshold (set by the user) to decide whether the trajectory is an outlier or not. 
They do not examine the different correlations between the individual trajectory outliers and do 
not consider the pattern represented by the group of trajectories as input during the detection 
process. In Figure 1(b), taxis (5 and 6) deviate from the normal trip at the same deviation point but 
follow different trajectories. However, in Figure 1(c), the two taxis deviate from the normal trip at 
the same deviation point and follow the same trajectory. Detecting these different types of out-
liers could help the city planners and local authorities to extract patterns and to discover relevant 
knowledge. For instance, detecting individual outliers and deviation points (the case of Figure 1(a),



which allows to determine individual taxi fraud), detecting frequently individual taxi fraud at the
same individual deviation point (IDP) with different time periods. This will help supporting the
city planners on taking appropriate measures and decisions such as putting surveillance cam-
eras at this point or reinforcing security there. Detecting group of trajectory outliers (Figure 1(b)
and 1(c)) allows the city planners to make fair decisions regarding the taxi outliers. Taxis which
deviate from the same deviation point but follow different trajectories have strong probabilities
that their aim is avoiding unpleasant circumstances on the main trajectory such as traffic jam,
rather than taxi fraud. However, group of taxis outliers at the same or different deviation point
with the same trajectory taking place in different time periods might be partners in the taxi fraud.
Notice both temporal and spatial information are required to retrieve the taxi frauds. The major
problem in the existing taxi fraud detection algorithms is the the detection of group of trajectory
outliers, and the deviation points identification on the spatio-temporal trajectory data.

1.2 Contribution

This article introduces two new problems related to trajectory outlier detection. The first problem
is Group Trajectory Outlier (GTO) detection, while the second is Deviation Point Detection (DPD)
for both individual and group of trajectory outliers. The main contributions of this work can be
summarized as follows.

(1) GTO: We introduce and formulate the GTO problem, for which we develop two algo-
rithms. The first is based on DBSCAN [24] (say DBSCAN-GTO) and the second is based on
kNN [61] (kNN-GTO). DBSCAN-GTO first applies DBSCAN to derive the micro clusters,
which are considered as potential candidates. A pruning strategy based on density compu-
tation measure is then suggested to find the group of trajectory outliers. kNN-GTO starts
recursively by deriving the trajectory candidates from the individual trajectory outliers,
and then it prunes these candidates using the density computation. The overall process
is repeated for all individual trajectory outliers. A new algorithm called FS-GTO is also
proposed, in which the set of individual trajectory outliers are considered as the set of all
features, and the feature selection (FS) process is adopted to identify the group of trajec-
tory outliers. Finally, two improvements of the above-mentioned solutions are proposed
by incorporating ensemble learning and HPC.

(2) DPD: We introduce and formulate this problem and then develop a general two-phase-
based algorithm. The first phase aims at identifying individual trajectory outliers based on
the distance of each point in each trajectory, while the second phase explores the individ-
ual trajectory outliers to derive the group of trajectory outliers by using the FS process.
Moreover, a Graphic Processing Units (GPU)-based version of the two-phase based al-
gorithm is incorporated with a sliding windows to boost the performance of the outlier
detection on large-scale trajectory point-spaces.

We investigate the performance of the proposed algorithms on different real trajectory
databases. The results confirm the scalability of the new approaches, and that they outperform
the baseline algorithms for group detection. They also show that the two-phase-based algorithm
is able to derive deviation points for both individual and group of trajectory outliers for 92% of
cases. Regarding the big trajectory databases, the results show that the proposed GPU-based so-
lutions outperform the baseline GPU solutions for detecting trajectory outliers.

1.3 Outline

The remainder of the article is organized as follows. Section 2 reviews the main existing trajectory
and group outlier detection algorithms. Section 3 formulates the two problems (GTO and DPD).



Section 4 describes DBSCAN-GTO, kNN-GTO, FS-GTO, and the two improvements using ensemble 
learning and HPC. Section 6 presents the performance evaluation. Section 7 discusses the lessons 
learned and draws future directions of this work. Finally, Section 8 concludes the article.

2 RELATED WORK

2.1 Trajectory Outlier Detection

We split out the trajectory outlier detection algorithms into two categories: (1) offline methods that 
can only detect the trajectory outliers; and (2) online methods in which the sub-trajectory that 
causes the outlierness can be identified.

2.1.1 Offline Methods. Zhang et al. [81] proposed a  graph-based method for detecting multi 
levels of taxi trip outliers in a large scale urban traffic network. The method implements a con-
traction hierarchy based on the shortest path computation algorithm and a spatial join algorithm 
to snap, pickup, and drop-off locations. Kong et al. [38] proposed an adopted local outlier factor 
by considering the anomaly index score as a local reachability density. Zhu et al. [89, 90] proposed  
an approach that determines time-dependent outliers by using the common routes for each time 
interval. The trajectories’ database is divided into groups with the same source and destination 
points in the given time interval. The score of the representative trajectory of each group is 
determined by comparing its similarity with the most common roads using the edit distance. If a 
group’s score is below a predefined threshold, then all the trajectories of the group are considered 
as outliers. Zhang et al. [80] proposed the isolation-based anomalous trajectory algorithm, in 
which the “few and different” properties of anomalous trajectories are explored instead of using a 
distance or density measure. By exploring different locations or the same locations with different 
orders, anomalous trajectories are few in number and different from the majority of trajectories. 
The algorithm attempts to find a separate way for anomalous trajectories from the rest of “many 
and similar” trajectories by applying the adapted isolation Forest (iForest) [49].

Zhongjian et al. [51] proposed an approach in which the set of routes is grouped using the 
medoids algorithm [9]. The choice of medoids instead of k − means is justified by the difficulty 
of computing the mean trajectories. The set of the centers of the clusters are considered as rep-
resentative routes, while the scores of the new trajectories’ scores are computed based on the 
representative routes using edit distance between routes and trajectories. Trajectories with scores 
exceeding a similarity threshold are considered as outliers. In the work by Zhou et al. [86], the 
trajectory database was matched to identify whether each point in the trajectories database is a 
metered or unmetered point. The process starts by finding the trajectory outliers using a stochastic 
gradient model [25]. From the trajectory outliers, the fraud trajectories are identified by matching 
each point in the trajectory outlier with the taximeter database.

2.1.2 Online Methods. Chen et al. [12] automatically detected fraud implications of rapacious 
taxi drivers who take unnecessary detours during trips. This is by using an approach based on 
adaptive working window. Lee  et al. [41] dealt with the angular sub-trajectory outlier detection 
problem, i.e., when the direction of anomalous sub-trajectories differs from those of neighboring 
sub-trajectories. Each trajectory in the set of all trajectories was partitioned into different line 
segments noted t-partitions. The particularity of this algorithm consists in the computation of 
distances between two t-partitions, where the projection and the angular dimensions are incorpo-
rated. Yu et al. [76, 79] found sub-trajectories outliers during a time window using two strategies. 
The first one is based on the point-neighbors principle in which the sub-trajectory neighbor set for 
each sub-trajectory is calculated using the point neighbors set of every point in this sub-trajectory. 
The second is based on trajectory-neighbors principle that determines the sub-trajectory



neighbors set for each sub-trajectory. In Wu et al. [73], the set of historical trajectories was first
matched to the road network of the city according to the source and destination points. The
probabilistic learning model described by the maximum entropy inverse reinforcement [91] was
used to transform the mapped trajectories into historical action trajectories. The probability
of every sub-trajectory is computed based on the set of action historical trajectories. If the
probability value exceeds a defined threshold then the sub-trajectory is considered as outlier. Mao
et al. [53] used the local outlier factor algorithm to determine the fragment outliers, as well as
the local difference density (instead of the local reachability density). In this method, the set of
trajectory fragments is derived in fragments, and each fragment of a trajectory is composed by a
line segment of two consecutive points. This process repeats for all fragments in all trajectories.
Yu et al. [77] provided a new definition of the sub-trajectory outlier based on the concept of “slice
outlier.” Slices are obtained by connecting consecutive line segments having the same direction,
and a trajectory slice is considered slice outlier if the number of its neighbors is less than a given
threshold. The neighbors refer to the other trajectory slices within a small distance from it.

2.2 Group Outlier Detection

The generic problem of group outlier detection is not new, but only a few solutions have reported.
Some solutions employed statistical models to derive the group of outliers [46, 68, 75, 78]. Chala-
pathy et al. [11] considered the use of deep generative model to find out the group outliers. The
approach was applied on various image processing applications. The outlierness for each group in
the input data was estimated by group reference function using the standard backpropagation al-
gorithm. Liang et al. [75] considered the use of flexible genre model to find specific group outliers.
Gibbs sampling [27] was used for inference and the Monte Carlo approach for learning [10]. Das
et al. [15] considered the different correlation between the data outliers to detect pattern anoma-
lous by investigating Bayesian network anomaly detection [56, 14]. The correlation score between
the individual outliers was determined by the probability of possible outlier values in the training
data. Tang et al. [67] defined contextual outlier detection as small group of points that share similar-
ity, on some attributes, with a significantly larger reference group of data but deviates dramatically
on some other attributes. The authors proposed to maintain only the closure context outliers (to
avoid enumerating all contextual outliers). Furthermore, their approach retrieves only contextual
outliers with a statistical significance test greater than a given threshold. Li et al. [45] proposed as-
signing feature weights on each group outlier and computing chain rule entropy to determine cor-
relation between different feature groups. Parallel computing was used in [82] to deal with contex-
tual outlier detection in high and sparse dimensional spaces. Xiong et al. [74] proposed a solution
that detects two kinds of group anomalies: (1) a group of individual anomalous points; and (2) a set
of normal points but with abnormal distribution as a group. An application of this algorithm in so-
cial media analysis has been investigated in [78]. Other approaches gather group individual outliers
into similar clusters [15, 65, 67]. Each cluster is then considered as a group of outliers. Soleimani
et al. [65] proposed supervised learning approach that groups anomalous patterns when member-
ships are previously unknown. This approach was applied on topic documents modeling, and it is
able to discover irregular topic mixtures from a collection of documents. Sun et al. [66] proposed
abnormal group-based joint medical fraud approach. The abnormal group problem was converted
into the maximal clique enumeration problem [55] by considering the set of patients as the set of
vertices, while each edge indicates that the two connected patients are similar. Since the maximal
clique enumeration is NP-hard problem, different partitioning methods [23] have been investigated
to reduce the graph size, and every maximal clique was considered as abnormal group of patients.



2.3 Discussion

We conclude from this short literature review that there is no work that explores group outlier
detection for trajectory data. Existing solutions for trajectory only find individual outliers of whole
trajectory using offline processing, and the sub-trajectory outliers using online processing. Also
notice that the current group outlier detection algorithms find the group outliers from the set
of candidate groups, and not from the individual outliers. Moreover, most of the existing group
outlier detection algorithms are based on some well-known distributions. However, it is hard to
fit the data to such distributions in real scenarios. This article deals with the challenging problem
of GTO detection. It proposes several strategies based on clustering, neighborhood computation,
and FS to detect GTOs from individual trajectory outliers. It also propose algorithms to detect the
deviation point of the trajectories, both for individual and group outliers.

3 PROBLEM STATEMENT

Throughout the article, a trajectory is considered as a sequence of location points in space and
time. Some preliminary definitions are given in the following before introducing the GTO and
DPD problems.

Definition 1 (Trajectory Database). A trajectory database is defined as a set of raw trajectories
T = {T1,T2, . . . ,Tm }. Each raw trajectory,Ti , is a sequence of time-ordered points (p1, . . . ,pn ) that
might be obtained by localization techniques (e.g., GPS).

Definition 2 (Time Interval). The time period is split into several time intervals, and p (interval )
denotes the time interval to which the point p belongs.

Similar location points are aggregated into regions [20]. Let us denote by R a location region in
space.

Definition 3 (Mapped Trajectory Database). A mapped trajectory database is a set Λ =
{Λ1, . . . ,Λm }, in which each mapped trajectory Λi is a sequence of spatio-temporal regions,
(R1, . . . ,Rn ), obtained by mapping every point in Ti to the closest region Ri . The time interval
of Ri represents the time interval of the point pi , i.e., Ri (interval ) = pi (interval ).

Definition 4 (Trajectory Dissimilarity). The dissimilarity between any two trajectories,d (Λi ,Λj ),
is defined as the distance between them, which is the difference between the number of all regions
to the number of shared regions belonging to the same time interval between the two trajectories.
That is,

d (Λi ,Λj ) = n − |{(Rl ,R
′
l ) : Rl = R′l ∨ ∀l ∈ [1 . . .n]}|. (1)

The trajectory candidates are represented by the set of potential trajectories that belong to a
group of trajectory outliers. These trajectory candidates are retrieved from the individual trajec-
tory outliers and are formally defined as.

Definition 5 (Trajectory Candidates). The set of the top l individual trajectory outliers found by
a given trajectory outlier detection algorithm, denoted G+ = {Λ+1 ,Λ+2 . . .Λ+l }, is,

G+ = {Λ+i : ∀j ∈ Λ \ G+, ScoreA (Λi ) ≥ ScoreA (Λj )}. (2)

Note that ScoreA (Λi ) is the outlier score of the trajectory Λi using the outlier detection algorithm
A. The score depends on the algorithm used for identifying the individual trajectory outliers and
finding out the trajectory candidates. In the experimentation part, we use the local outlier factor
[6] to retrieve the trajectory candidates.

The area of the point and the density of a group of trajectories are important concepts in our 
analysis. Intuitively, the area of a point is defined by the sum of distances between this point and



the points of all trajectories with the same time timestamp. The density of the group is defined as
the number of shared regions between all the trajectories of the group.

Definition 6 (Point Area). We define the area of the point, pi , as:

PA (pi ) =

∑m
l=1 distance (pi ,pl )

m
. (3)

Note that the distance between two points is calculated using the Euclidean distance by considering
the spatio-temporal information (latitude, longitude, and interval) in the Euclidean space.

Definition 7 (Group Density). The density of the candidate GTOs, G, is,

Density (G) = |{R : ∀Λi ∈ G,R ∈ Λi }|. (4)

Definition 8 (GTO). A set of trajectories, G, is called a GTO iff,{
G ⊆ G+
Density (G) ≥ γ

(5)

Note that γ is the density threshold from the interval [1 . . .n].

Definition 9 (GTO Problem). The GTO problem aims to discover from the set of all individual
trajectory outliers the set of all groups of trajectory outliers, denoted by G∗.

Definition 10 (Individual Deviation Point). Consider Λi an individual trajectory outlier. Λi could
be divided into two sub-trajectories, Λ1x

i and Λxn
i . x is called IDP iff Λxn

i is sub-trajectory outlier,
and every point, y ∈ [1..x], is a normal sub-trajectory.

Definition 11 (Group Deviation Point (GDP)). Consider a group of trajectory outliers: G =
{Λx1,y1

1 (G),Λ
x2,y2

2 (G), . . . ,Λ |G|x |G|,y |G| (G)}. x is called GDP iff the point x is a starting point for
at least one trajectory in G, and x is highly ordering all remaining starting points in G.

Definition 12 (DPD Problem). It aims to discover from the set of all individual and group trajec-
tory outliers, all the IDP and GDP points.

The trivial solution for GTO and DPD problems is to consider all possible combinations between
the individual trajectory outliers, and then evaluates every subset separately using Definition 7.
The group of trajectory outliers are first derived, and all points for all individual and group of
trajectory outliers are scanned and checked if they are IDP and GDP points. This method evalu-
ates the candidate sets and save the potential groups of trajectory outliers. It then processes all
points for individual and group of trajectory outliers. This requires high computational and mem-

ory resources. The theoretical complexity of such an approach would be O (2 |G
+ | ) for identifying

GTOs, further to O (n × |G+ |) for determining IDP and GDP points. To address these issues, we
propose in the next sections different solutions to improve the detection of GTOs and deviation
points.

4 PROPOSED FRAMEWORK AND ALGORITHMS FOR GTO PROBLEM

This section first presents the overall framework proposed for the GTO problem. The framework
detects group of trajectory outliers with different methods based on machine learning, computa-
tional intelligence, and HPC. Several machine learning techniques are used including clustering,
FS, neighborhood computation, and ensemble learning. Computational intelligence and HPC boost
the runtime performance and enable dealing with big trajectory databases in a reasonable time.
As illustrated in Figure 2, the framework includes the following steps:



Fig. 2. General framework.

(1) Mapping: Trajectories usually provide noisy GPS data points, with possible errors at the order 
of several meters. This will negatively influence the final output of the trajectory outlier detection 
systems. In practice, a mapping step is used to project GPS data points of each trajectory onto 
the road network. Several approaches have been developed in this area [7, 29, 48].  Since we are  
interested in dealing with sparse trajectory databases, we are inspired by a probabilistic model 
represented by a Hidden Markov Model [29, 60].

The mapped trajectory database is consequently created in which every observed trajectory is 
assigned to the associated road segment.

(2) Processing: After constructing the mapped trajectory database, a processing step is performed 
to find out the group of trajectory outliers. We propose two approaches in this context: (1) first, de-
termine the individual trajectory outliers and then find out the group of trajectory outliers; and (2) 
derive directly the group of trajectory outliers from the mapped trajectory database. Furthermore, 
we suggest more sophisticated approaches by incorporating ensemble learning, computational in-
telligence, and HPC. In the remaining of this section, the use all these concepts in the proposed 
framework is explained.

4.1 DBSCAN-GTO

This section presents the adaptation of the DBSCAN algorithm [24] for the GTO problem. The 
outputs of the DBSCAN algorithm are: (i) the set of clusters with different density (high density 
and low density); and (ii) the set of individual trajectory noises. The latter cannot form the group of 
trajectory outliers since they are considered as noises and are far from one other. Solutions to tra-
jectory clustering [42, 43] are able to derive clusters with different densities. However, they do not 
explore the micro clusters property for anomaly detection. This section presents a new approach 
for identifying group of trajectory outliers, called DBSCAN-GTO. It uses DBSCAN to search for 
clusters by checking the neighborhood of each trajectory. The neighborhoods of a trajectory Λi is 
defined as a subset of trajectories close to Lambdai . Two trajectories are close if their distance is 
less than a given threshold ϵ , while a trajectory Λi is called core trajectory if the size of its neigh-
borhoods exceeds a minimum number of trajectories MinPts. The core trajectories are determined, 
then the density-reachable trajectories are collected directly from the core trajectories. This may 
involve merging a few density-reachable clusters. The process terminates when no new trajecto-
ries can be added to any cluster. Algorithm 1 presents the pseudo-code of DBSCAN-GTO. Initially, 
the set of trajectories are grouped using DBSCAN. This generates several clusters with different 
sizes. Each micro cluster is considered as group of candidates. A micro cluster is the cluster of tra-
jectories that contains no more than μ trajectories, with μ is a user-defined threshold. The density 
of each group is determined using Def. 7. If the density exceeds a threshold γ , then the group is 
considered as outlier.



ALGORITHM 1: DBSCAN-GTO Algorithm

1: Input: Λ = {Λ1,Λ2 . . .Λn }: The set of all trajectories.

ϵ , MinPts: DBSCAN parameters.

μ: User threshold for micro clusters.

γ : density threshold.

2: Output: G∗: sets of all group trajectory outliers.

3: C← DBSCAN(Λ, ϵ , MinPts)

4: G∗ ← ∅
5: for each Ci ∈ C do

6: if |Ci | ≤ μ ∨ Density(Ci ) ≥ γ then

7: G∗ ← G∗ ∪Ci

8: end if

9: end for

10: return G∗

4.2 kNN-GTO

This section presents the adaptation of the kNN algorithm [61] for identifying the group of trajec-
tory outliers. The kNN of a trajectory Λi is defined as the k closest trajectories to λi . The following
proposition holds:

Proposition 1. Let us consider two trajectories Λ′, Λ′′, and G∗ (s ) is the group of trajectory outliers

at the iteration s such that Λ′ ∈ ⋃Λ∗
i
∈G∗ (s ) kNN(Λ∗i ) & Λ′′ �

⋃
Λ∗

i
∈G∗ (s ) kNN(Λ∗i ).

We have this implication: Λ′ � G∗ (s + 1) ⇒ Λ′′ � G∗ (s + 1).

Proof. Λ′ ∈ ⋃Λ∗
i
∈G∗ (s ) kNN(Λ∗i ) ∨ Λ′′ �

⋃
Λ∗

i
∈G∗ (s ) kNN(Λ∗i ) ⇒ Density (G∗ (s ) ∪ {λ′′}) ≤

Density (G∗ (s ) ∪ {λ′})... (1)
Λ′ � G∗ (s + 1) ⇒ Density (G∗ (s ) ∪ {λ′}) ≤ γ ... (2)
From (1) and (2) it yields Density (G∗ (s ) ∪ {λ′′}) ≤ γ ⇒ Λ′′ � G∗ (s + 1). �

From the above proposition, one may argue that if a trajectory belongs to the k nearest neighbors

(kNN) of at least one trajectory in the current group of trajectory outliers, and it if is not in the
group of trajectory outliers of the next iteration, then any trajectory that belongs to the kNNs

of at least one trajectory in the current group of trajectory outliers could not be in the group of
trajectory outliers of the next iteration. Consequently, it seems to be judicious to prune the search
into kNNs of the individual trajectory outliers.

In the following, we present an adapted kNN algorithm for the GTO ptoblem. The algorithm
considers as input the set of the top p individual trajectory outliers, G+ = {Λ+1 ,Λ+2 . . .Λ+p }, that

are ranked according to the kNN value, i.e., ∀i ≥ j, kNN(Λ+i ) ≥ kNN(Λ+j ). The process aims to

enumerate the sets of GTOs, G∗, by exploring a search tree of G+. It first adds the most outlier
trajectory, Λ+1 , to the group denoted G∗1 . It then generates all potential candidates from Λ+1 . A
trajectory t is a potential candidate from Λ+1 iff t ∈ G+ ∨ t ∈ kNN(Λ+1 ). The density ofG∗1 is updated
by adding the potential candidates (one by one) to G∗1 . Only the potential candidates respecting
the density threshold are saved, and all the remaining candidates are removed. Once the potential
candidate is added toG∗1 , it is removed fromG+. IfG∗1 contains less than two elements, it is removed
from G∗. The same process is recursively applied for all potential candidates added to G∗1 , and the
overall process is repeated for all trajectory outliers in G+. Algorithm 2 presents the pseudo-code
of kNN-GTO.



ALGORITHM 2: kNN-GTO Algorithm

1: Input: Λ = {Λ1,Λ2 . . .Λn }: The set of all trajectories.

A: trajectory outlier detection algorithm.

γ : density threshold.

2: Output: G∗: sets of all group trajectory outliers.

3: G+A ← A (Λ)

4: for each trajectory Λ+i ∈ G
+
A do

5: node ← Λ+i
6: for each trajectory t ∈ (kNN(node ) ∩ G+A ) do

7: if Density(G∗i ∪ {t}) ≥ γ then

8: G∗i ← G
∗
i ∪ {t}

9: G+A ← G
+
A \ {t}

10: {repeat lines from 5 to 8 for a trajectory t}

11: end if

12: end for

13: if |G∗i | = 1 then

14: G∗ ← G∗ \ {G∗i }
15: end if

16: end for

17: return G∗

4.3 FS-GTO

This section presents the use of FS approaches to identify the group of trajectory outliers, starting
by transforming the GTO problem to the FS problem. Consider a GTO problem represented by
< G+A ,G

∗ >. This could be fitted to the FS problem represented by the set of all features, F , and
the subset of selected features, F ∗, such as F = G+A , and F ∗ = G∗. In this approach, a FS technique
is considered. Every individual trajectory outlier is considered as one feature, and the aim is to
select the most relevant features from the whole individual trajectory outliers. The relevant set of
features is then considered as GTOs. The evaluation of the selected features (trajectories) F ∗ is de-

termined, whose aim is to maximize Quality (F ∗) − |F
∗ |
|F | . Note that Quality (F ∗) is calculated using

Def. 7. According to the recent work by Li et al. [44], FS algorithms have been categorized into 
three categories: (1) similarity based, (2) information theoretical based, and (3) statistical-based 
methods. Methods of the first category explore different heuristics such as information gain [37], 
minimum redundancy maximum relevance [59], and joint mutual information [30]. These algo-
rithms can only work on supervised learning, whereas the ground truth is not always available in 
our case. Methods of category (2) calculate different statistical measures such as low variance [64], 
T-score [17], and Chi-Square Score [85]. These algorithms can only work on discrete data, while 
a preprocessing step is required for numerical and continuous data. Methods of the category (3) 
investigate similarity computation to associate weight importance on each feature candidate, such 
as Laplacian score [32], SPEC [83], Fisher score [58], and trace ratio criterion [33]. These algo-
rithms proved excellent performance in both supervised and unsupervised scenarios, and they are 
easy to implement. We therefore opt for this category and particularly choose the SPEC algorithm, 
for which we propose an adaptation that enables to find a group of trajectory outliers. The process 
starts by applying the SPEC algorithm on the set of individual trajectory outliers. The output of 
this step is the descendant ranking of individual outliers in terms of the score feature relevance. 
Using the SPEC ranking vector of individual outliers, a search enumeration tree is generated by 
applying the Breadth First Search algorithm. If the quality of the current group candidate does



ALGORITHM 3: FS-GTO Algorithm

1: Input: Λ = {Λ1,Λ2 . . .Λn }: The set of all trajectories.

A: trajectory outlier detection algorithm.

γ : density threshold.

2: Output: G∗: sets of all group trajectory outliers.

3: G+A ← A (Λ)

4: Rankinд ← SPEC (G+A )

5: G∗ ← BFS (G+A ,γ ,Rankinд)

6: return G∗

not reach the criteria in Definition 7, a backtracking procedure is launched by taking the next
trajectory in the SPEC ranking vector. Algorithm 3 presents the pseudo-code of FS-GTO.

4.4 Improvement

In this part, extension of the proposed solutions by exploring ensemble learning and HPC is con-
sidered. This is for the purpose of increasing the accuracy and reducing the runtime.

4.4.1 Ensemble Learning. Each solution proposed in this work (including clustering, neighbor-
hood computation, and FS) returns potential groups of trajectory outliers with varied quality, i.e.,
some groups are useful while others are not. In order to improve the accuracy of this output, we
propose EL-GTO that is based on the use of ensemble learning [71, 92]. Three learners are first
launched, DBSCAN-GTO, kNN-GTO, and FS-GTO. The three sets GDBSCAN , Gk N N , and GF S are
then combined and merged to derive the final set of groups of trajectory outliers. The challenge in
this approach is the combination of the results of each learner, which should ensure accurate final
result, as well as the capability of capturing new relevant patterns. Some solutions select the best
learner and discard the results from the remaining learners. These solutions are not able to detect
outliers inside the output of the learners. Other solutions combine the trajectory outliers retrieved
from all the learners, which have the capability to capture more trajectory outliers but only inside
the outliers of the learners. In this work, we propose an efficient approach not only to detect the
outliers of the learners, but also to capture other relevant patterns that have not been identified
by the learners. The process of this approach is presented in the following:

(1) First, we suggest to determine the number of occurrences for each group of trajectory
outliers on the three learners and ranking them accordingly. The results will be the groups
that are highly frequent on the three learners. For instance, if there is two groups: the first
group {Λ1,Λ2,Λ4} appears twice, one onGDBSCAN , and another onGk N N , and the second
group {Λ1,Λ2,Λ3} appears only once on GF S , then the first group is better ranked than
the second one.

(2) Second, in case there are no redundancy among the outputs of the learners, the similarity
between the group of trajectory outliers of different learners are calculated. If the similar-
ity is less than γ , then the two group outliers of these learners are merged.

To summarize, in addition to accurately keeping the relevance of the GTOs of the three learn-
ers GDBSCAN , Gk N N , and GF S , the proposed ensemble learning method is able to capture more
relevant group of trajectory outliers that are not in the initial outputs of the learners.

4.4.2 HPC. In this section, we first propose a generic approach to implement the proposed
solutions on parallel architectures. An instantiation on GPU architecture of this generic approach
is then presented.



Fig. 3. GPU-GTO framework.

(a) Generic Approach. The following sequential steps are needed for running GTO solutions
on any parallel architecture. (i) Map partitioning: in which the map is divided into several grids,
whereby each grid contains a set of similar trajectories. This step is performed in Central Process-
ing Unit (CPU). (ii) Computing and storing the local results: in this step, each parallel node applies
one of the GTO solutions on every cluster and generates all GTOs from the grid that is assigned to
it. The set of all group outliers is built following the same logic used in the serial implementation
of the GTO solutions. Once the local GTOs are calculated, they will be sent to the CPU for further
processing. (iii) Merging the local results: the local group of trajectory outliers are merged into a
global one on the CPU. This can be done using a simple concatenation of all local results.
(b) GPU-GTO. The instantiation of the three steps defined above must be carefully designed to
fit the targeted hardware. The GPUs’ architecture has been gaining field during the last decade
as a powerful computing resource [21, 22, 69, 70, 72]. This hardware is composed of two hosts:
(i) the CPU and (ii) the GPU. The former contains the processors and the main memory. The latter 
is a multi-threading system that consists of multiple computing cores, where each core executes 
a block of threads. Threads of a block in the same core communicate with one another using a 
shared memory, whereas the communication between blocks relies on the global memory. The 
CPU/GPU communication is made possible by hardware buses. In the following, the adaptation of 
GTO for deployment on GPU architectures is denoted GPU-GTO. In GPU-GTO (see Figure 3), the 
map is first partitioned into k  grids {д1, . . . ,дk }  in the map partitioning step. The set of designed 
grids are then sent to the GPU. Each block of threads is mapped onto one grid, while the GTO 
solutions are applied on each block in parallel. If we consider the size of the shared memory of 
each block to be r , the fi rst r trajectories of the grid, дi , are allocated to the shared memory of the 
block, and the remaining trajectories of дi are allocated to the global memory of the GPU host. 
GPU-GTO defines a  local table, tablei ,  for storing the group of trajectory outliers of the grid дi . 
The local table of each grid is sent to CPU for further processing. In this context, CPU host merges 
the results to find the global group of trajectory outliers.

From a theoretical standpoint, GPU-GTO improves the GTO solutions by exploiting the 
massively threaded computing of GPUs while mining the grids of trajectories. GPU-GTO also 
minimizes the CPU/GPU communication by defining o nly t wo p oints o f C PU/GPU communi-
cation. The first one t akes p lace when the grids are l oaded into the GPU host, and the second 
one when the local tables are returned to the CPU. GPU-GTO also provides an efficient memory 
management by using different l evels o f m emories i ncluding g lobal a nd s hared memories. 
However, GPU-GTO may suffer f rom a  s ynchronization p roblem b etween t he G PU blocks. 
This takes place when the GPU blocks process grids with different number of trajectories. This 
issue degrades the performance of the GPU-based implementation of the GTO solutions. In real 
scenarios, different number of t rajectories per grid may b e obtained. This depends on the way 
the trajectories are placed into the map. The more the sizes of the grids are different, the higher 
the synchronization cost of the GPU-based implementation will be. A solution to minimize the



number of thread divergence (TD) is proposed in the following. The number of TD should first
be determined. In the proposed GPU-based solution, every grid contains different number of
trajectories. To identify the group of trajectory outliers on GPU, each thread compares trajectories
to the grid it is mapped with. Consequently, TD may be caused by two reasons: First, each thread
handles different number of trajectories. In this case, there are threads that finish before others.
Second, the comparison process of a given thread is stopped when it does not find the trajectory
outliers in the grid it is mapped with. These two parameters affect the number of TDs, which can
be computed according to the number of comparisons by the different threads using Equation (6).

TD =max {max {|t (r∗w )+i | − |t (r∗w )+j |}/(i, j, r ) ∈ [1 . . .w]3}, (6)

where |t (r∗k )+i | is the size of the (r ∗ k ) + ith trajectory that is assigned to the ith thread and

allocated to the r th grid. Note that k is the number of grids.
Furthermore, TD can be computed according to the distribution of trajectories in the grids. The

following two cases can be distinguished:

Irregular distribution of trajectories: This takes place when the grids are highly different in
size. TD can be approximated in this case to,

lim
k→+∞

TD (m) =m − 1, (7)

where ism the maximal number of trajectories.

Regular distribution of trajectories: This takes place when there is a slight difference between
the size of grids in terms of trajectories. Let us consider r1 the variation between grids. This yields,

lim
m→+∞

TD (m) = r1. (8)

A solution that minimizes TD is proposed in the following, which also improves the assignment
of the grids on different blocks. The assignment of the grids is performed according to the number
of trajectories in each grid, and the grids of i trajectories are assigned to the ith block. The number
of blocs then is equal to the number of trajectories. The divergence between threads of the same
grid is minimized this way, as the threads of each block have the same number of grids. However,
the load balancing between blocks is not taken into account if many grids have the same number
of trajectories. In fact, some blocks handle much more grids than the others. This degrades the
performance of the GTO detection process on GPU. To deal with this problem, we propose to
capture the grids that reduce the load balancing and to sort theme according to the number of tra-
jectories. Every grid is then assigned to one thread, while the ith grid is handled by the ith thread.
This way, all blocks have the same number of grids, which ensures load balancing between blocks.

5 DPD

5.1 Two-phase Approach

Motivated by the fact that a GTO is composed of individual sub-trajectory outliers, we propose
in the following a two-phase approach that includes, (1) determining individual deviation and
(2) determining GTOs and GDP.

(1) Determining IDP: The process starts by computing the area of every point in the whole
set of trajectories Λ using the point area measure (see Definition 6). This allows deriving
the IDP, if it exists, for each trajectory. From the IDP, the process continues determining
the individual trajectory outlier. The area of every point that is highly ordered to the IDP
is checked. If it is below a threshold, say μ, then this point is added to the individual
trajectory outlier. This process is repeated until a normal point is found (a point with area



(a) First Phase (b) Second Phase

Fig. 4. Two-phase approach Illustration.

value is greater than μ). The whole process is repeated until all points of all trajectories
are scanned.

(2) Determining GTOs and GDP: After determining the IDP, the next step is to derive the
GTOs. A FS technique is used, in which every individual trajectory outlier is considered as
one feature. The aim here is to select the most relevant features from the whole individual
trajectory outliers. The relevant set of features is then considered as GTOs. The evaluation
of the selected features is computed using the group density measure (see Definition 7),
which should be maximized. A depth first strategy is used for this purpose, which starts
with the empty node ∅ that may contain any trajectory, to the full node that contains
all individual trajectory outliers. The GDP is finally obtained, which is the last IDP of all
trajectories in each GTO.

Algorithm 4 presents the pseudo-code of the two-phase-based approach for solving the multi-
view trajectory outlier detection problem. The input consists of the trajectory database Λ, the
point area, and the group density thresholds. The output comprises the sets IDP, ITO, GDP, and
GTO. The algorithm starts by computing the area of every point in the trajectory database (lines 4
throughout 8). It then constructs the sets, IDP and ITO, using the μ threshold (lines 13 throughout
30). The depth-first search is then applied to each ITO j to determine the best features (GTOs) with
the GDP (line 33 throughout 47). The algorithm uses the following pre-defined methods:

(1) AddElementToList(L, e): Adds an element e to the end of the list L.
(2) AddElementstoList(L, E): Adds all elements in E to the end of the list L.
(3) CreateList(L, e): Creates a new list (L) and assign an element e as the head of this list.
(4) x← RemoveFirstElement(L): Assigns to, x , the first element of the list, L, before removing

it.
(5) SaveBest(L)): Returns the current best element in the list, L, with respect to the DG

formula.
(6) LastPoint(L): Returns the last point of the list L.

Figure 4 illustrates the Two-Phase algorithm on the set of trajectories shown in Figure 4(a). The 
first phase aims to identify the individual trajectory outliers, as well as the IDPs. We assume the 
trajectories {a, b, and c} are individual trajectory outliers and deviate from the whole trajectories 
marked by black color. The second phase aims to identify the group of trajectory outliers, and the 
GDPs. Therefore, an enumeration tree is generated in which the root is an empty set, where the 
nodes of the ith  level of the tree contains potential groups with i trajectories. The score of every



ALGORITHM 4: Two-phase-based algorithm

1: Input:
Λ = {Λ1, Λ2 . . . , Λm }: The trajectory database.
μ : The point area threshold.
γ : The group density threshold.

2: Output:
I DP , GDP , GT O .

3: {First Phase: Determine individual deviation point}
4: for i=1 to m do
5: for j=1 to n do
6: di j ← PA (pi j ) {See Def. 6}
7: end for
8: end for
9: I DP ← ∅

10: IT O ← ∅
11: f laд ← f alse
12: c ← 1
13: for i=1 to m do
14: for j=1 to n do
15: if di j ≤ μ then
16: if flag=false then
17: AddElementT oList (I DP [i], pi j )
18: I DP ← I DP ∪ pi j

19: Cr eateList (IT Oc [i], pi j )
20: f laд ← true
21: else
22: AddElementT oList (IT Oc [i], pi j )
23: end if
24: else
25: f laд ← f alse
26: IT O ← IT O ∪ IT Oc [i]
27: c ← c + 1
28: end if
29: end for
30: end for
31: {Second Phase: Determine group trajectory outliers, and group of deviation point}
32: Open ← ∅
33: for i=1 to m do
34: if I DP [i] � ∅ then
35: for j=1 to c do
36: AddElementT oList (Open, IT O j [i])
37: end for
38: end if
39: end for
40: while Open � ∅ do
41: node ← RemoveF ir st Element (Open)
42: DG (node ) {See Def. 7}
43: AddElementsT oList (Open, GP N (node ))

{With respect to Def. 8}
44: Best ← SaveBest (Open)
45: end while
46: GT O ← Best
47: GDP ← Last Point (I DP )
48: return (I DP, GDP, GT O )

node is evaluated, and the best group is derived. At each level, the potential GDPs are saved as
described by Algorithm 4.

The complexity of Algorithm 4 depends on the number of trajectories,m, the number of points,
n, and the number of the individual trajectory outliers generated in the first stage, c . The cost is
the sum of costs for the first and the second phases. In the first phase, the area computation re-
quiresm2 × n operations, while the construction of the individual trajectory outliers is performed
in m operations. The total cost of this stage is then (m2 × n) +m. The FS in the second phase is
performed on the c individual trajectory outliers, which generates (2c − 1) nodes, and c opera-
tions is needed to evaluate every node. The total cost of this phase is c × 2c − c . The total cost of



Fig. 5. GSW-TP illustration.

the two-phase algorithm is of complexity O (m2 × n + c × 2c ). From this analysis, we conclude that 
the two-phase algorithm is quadratic on the number of trajectories, polynomial on the number of 
points, and exponential on the number of individual trajectory outliers. The overall performance 
of this algorithm is then hugely affected by the number of t rajectories. In the next section, we 
propose a GPU-based sliding windows algorithm for boosting the performance of the two-phase 
algorithm.

5.2 GSW-TP: GPU-based Sliding Windows for Two-Phase-Based Algorithm

The aim of this approach is to improve the overall performance of the two-phase-based algorithm 
proposed in the previous section using a sliding window approach, as well as the GPU architec-
ture. Figure 5 illustrates how the proposed approach benefits from the GPU threaded to improve 
the runtime performance of the two-phase algorithm. The trajectory database is first divided into 
k sliding windows, where k is the number of the GPU-blocks used in the mining process. This step 
is performed sequentially on CPU host. The k sliding windows are then sent to the GPU global 
memory using to the CPU/GPU communication channels. Each sliding window, SWi , is transmit-
ted to the shared memory of the bloc, bi , where the threads of the block, bi , are mapped to the 
trajectories of, SWi . Therefore, the jth  thread in bi , say thi j  , determines the local individual tra-
jectory outliers on the trajectory Λj (lines 4 throughout 30 of Algorithm 4). If the trajectory Λj ’s 
ending point area on the sliding window SWi−1, and  Λj ’s starting point area on the sliding window 
SWi are less than μ, then the part of the individual trajectory outlier Λj on SWi−1 is concatenated 
with the part of Λj on SWi . In this case, the average point will be the average of both parts of 
Λj . Afterwards, the threads of each block compute the local average points for every individual 
trajectory outliers. Each block finds the local GTO at every sliding window and sends the local 
results to the GPU host global memory. A global GTO will be a local trajectory outlier that max-
imizes a function described in Definition 9. Once the individual trajectory outliers, the group of 
trajectory outliers, and the deviation points are determined, they will be sent to the global memory 
of the CPU host. The GSW-TP improves the sequential version of the two-phase based algorithm 
by exploiting the massively threaded computing of GPUs while determining both individual and 
global trajectory outliers. GSW-TP also minimizes the CPU/GPU communication and reduces it 
to two points. The first one takes at the beginning place when the trajectory database is loaded 
into the GPU, while the second when the individual and the global trajectory outliers are returned 
to the host memory. Moreover, GSW-TP minimizes TD, which is a typical problem in GPU-based



computing. TD only takes place when the threads of different blocks process different number of
individual trajectory outliers, which needs several GPU synchronization points. A strategy that
minimizes the number of TD is proposed in the following. The number of TD is first determined
similarly to GPU-GTO (using Equations (7) and (8)). The previous strategy developed in GPU-GTO
divides the grids on all blocks and minimizes the TD between threads while respecting the load
balancing between blocks. However, if the size of blocks is too large, then any two threads of the
same block cannot be allocated to the same block. The first thread handles the grid of size lenдht ,
and the second handles the one of size lenдht + x , This creates additional TD due the difference in
the size of the grids. To deal with this problem, we propose to fix the size of blocks according to the
statistical analysis of the grids. Similarly the previous strategy, the ith element of the grid’s vector
determines the number of the ith grid’s trajectories. The median of this vector is proportional to
the size of each block. The same process used in GPU-GTO is then repeated. To determine the

median of a given vector of l elements, this vector is first sorted and then l
2 is considered as the

median value.

6 PERFORMANCE EVALUATION

Intensive experiments have been carried out to evaluate the proposed algorithms on different tra-
jectory databases in four steps. (1) Serial implementation of the GTO solutions are compared with
the state-of-the art group outlier detection algorithms using standard trajectory databases. (2) The
ability of the GPD solution (two-phase-based algorithm) to detect deviation points is investigated
in several scenarios. (3) The scalability of the GPU-based solutions is investigated on big trajectory
databases and compared with the existing GPU-based outlier detection solutions. (4) A case study
of the proposed framework on intelligent transportation is illustrated.

In all experiments, the time period of each interval was set to 5 minutes. A 64 − bit computer
was used for the serial implementation, which features a core i7 processor running Windows 10
and 16GB of RAM. GPU-based implementations were carried out on a CPU host coupled with a
GPU device. The CPU host was a 64 − bit quad-core Intel Xeon E5520, with 2.27GHz clock. The
GPU device was a 1.15GHz Nvidia Tesla C2075 with 448 CUDA cores (14 multiprocessors with
32 cores each), 2.8GB of global memory, and 49.15KB of shared memory. Both the CPU and GPU
were used in single precision. The evaluation procedure of the returned outliers’ quality represents
a common problem of outlier detection techniques, in particular for new applications such as GTOs
and DPD in which a ground truth is not defined or does not exist. Due to the lack of ground truth
in trajectory datasets, we injected synthetic GTOs as follow:

Injecting individual trajectory outliers: Individual trajectory outliers were generated by
adding noise several times with a certain probability p ∼ U (0.8, 1.0) and a given threshold μ.

Injecting GTOs: From the individual trajectory outliers, noise was added few times with a certain
probability p ∼ U (0.0, 1.0) and a given μ.

In both cases, each point pil in the trajectory Λi was changed as,

pil =

{
pil + n ∼ N (0, 1) if p ≥ μ,
pil otherwise.

(9)

For both individual and group trajectory outliers, the starting noise points are considered as
individual and group deviation points. In the following, the evaluation of the GTOs is performed
using Fmeasure, and ROCAUC, which are common measures for the evaluation of the outlier
detection methods.



Table 1. Best Parameters of the Proposed Solutions

DBSCAN-GTO kNN-GTO FS-GTO Two-Phase
Data (User Threshold) (k) (Tree Depth) (μ)
Intelligent Transportation 4 6 6 0.8
Climate Change 6 5 6 0.6
Environment 6 5 7 0.5

6.1 Data Description

The following datasets have been used.

Intelligent Transportation: database from the ECML PKDD 2015 competition1 has been used. It
contains 7, 733 real trajectories retrieved from 01/07/2013 to 30/06/2014 of 442 taxis in the city of
Porto, Portugal. Further information about this trajectory database can be found in [57].

Climate Change: Atlantic hurricanes track dataset has been used [40], which contains latitude,
longitude, maximum sustained surface wind, and minimum sea-level pressure of hurricane trajec-
tories in USA at 6 hourly intervals for the period from 1851 to 2018. This includes 52, 775 hurricane
trajectories.

Environment: Starkey Project’s dataset 2 has been used. It includes animal movement data illus-
trated by the radio-telemetry locations of elk, deer, and cattle, collected from 1989 to 1999. The
locations has been recorded at 30-minute intervals. With 100 trajectories, and more than 40,000
different points. This dataset is considered sparse.

Big Databases: Two big trajectory databases have also been used: (i) taxi 13 − 1 containing
1.89 million trajectories, and (ii) taxi 13 − 2 containing 3.69 million trajectories. Both databases
were generated from the taxis of Shanghai during the period from 01/10/2013 to 31/12/2013 [52].

6.2 Serial GTO Performance

The aim of the first part of this experiment is to tune parameters related to the different solutions
proposed in this article. Several tests have been carried out by varying the user threshold from 1
to 10 for DBSCAN, the number of neighborhood from 1 to 10 for kNN, the tree depth from 1 to
10 for FS, the population size from 10 to 100 for computational intelligence improvement, and the
Point Area threshold from 0.1 to 1.0 for the two-phase-based algorithm. The results show that for
trajectory databases (intelligent transportation, climate change, or environment), the accuracy of
DBSCAN and kNN increases up to reaching the optimum point and then starts decreasing. The ac-
curacy of the other solutions (FS, computational intelligence, and the two-phase-based algorithm)
also goes up with the increase of the overspending parameters until reaching the optimum val-
ues then stabilizes. Table 1 summarizes the best parameters’ values of the proposed solutions for
different trajectory databases, which are used in the remaining of the article.

The second part of the experiment aims to compare the proposed solutions with the state-of-
the art algorithms in terms of accuracy and processing time. To the best of our knowledge, this
is the first work that explores GTO detection, i.e., there is no relevant candidate dealing with
GTO to compare with. Therefore, comparing the proposed solutions with some generic group
outlier detection algorithms is the only option we have. For this purpose, four baseline algorithms
have been adapted to trajectory data including DGM [11], WATCH [45], ATD [65], and AGJFD

1http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html.
2https://www.fs.fed.us/pnw/starkey/introduction.shtml.

http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
https://www.fs.fed.us/pnw/starkey/introduction.shtml


Intelligent Transportation

Fig. 6. Accuracy on intelligent transportation dataset.

Climate Change

Fig. 7. Accuracy on climate change dataset.

[66]. Figures 6–9 show the accuracy and the runtime of the proposed solutions (DBSCAN-GTO,
kNN-GTO, FS-GTO, EL-GTO, and the two-phase-based algorithm) in comparison with the above-
mentioned baseline algorithms. The figures show that solutions based on FS and ensemble learn-
ing methods outperform the baseline algorithms in terms of accuracy (this holds for trajectory
databases). However, solutions based on neighborhood computation, DBSCAN, and the two-phase
algorithms show lower performance. The results also reveal that solutions demonstrating high ac-
curacy needs higher run time, which represents the main obstacle when dealing with big data
trajectory. The parallel solutions that proposed to deal with this problem are evaluated in the
following.

The last part of this experiment is to show the performance of the two-phase algorithm for
identifying both individual and group deviation points. To the best of our knowledge, there is no
work that explores DPD. We use Equation (9) to calculate the ability of the two-phase algorithm
for identifying starting noise points of trajectories. Figure 10 presents the error rate (%) of the
two-phase algorithm using different number of individual and group deviation points, with differ-
ent trajectory databases. The results show that the error rate slightly increases with the rise in the
number of deviation points for all trajectory databases, and that the rate for the intelligent trans-
portation is the highest. They also reveal that the two-phase algorithm has the ability to identify
the individual and group deviation points for more than 67%, even for complex data.



Environment

Fig. 8. Accuracy on environment dataset.

Fig. 9. Runtime: the proposed solutions vs. state-of-the art group detection.

Fig. 10. Error rate (%) of the two-phase approach for detecting individual and group deviation points.

6.3 Performance of Parallel Solutions

Several experiments have been carried out on GPU architecture using big trajectory databases. 
The results reported in Figures 11 and 12 show that the speed rises with the increase of number 
of blocks and the number of threads per bloc, more considerably for ensemble learning and com-
putation intelligence based solutions. This performance is justified by the partitioning strategy 
for mapping the trajectories on GPU blocks that takes advantage of the massively GPU threaded.
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Fig. 11. Speed of the GPU-based GTO solutions taxi 13-1 dataset.

Figure 13 compares the proposed GPU solution that uses the ensemble learning (GPU-GTO), the
two-phase-based (GSW-TP), with the baseline GPU-based outlier detection algorithms (SolvingSet
[3], SolvingSet+ [4], and MoNavGPU [81]) on big trajectory databases. The figure shows that the
proposed solutions outperform the baseline approaches. The runtime of the proposed solutions
does not exceed 300seconds to deal with the whole trajectory taxi 13 − 2 database, while the other
solutions need 500 seconds for processing such trajectory database. These results can be explained
by: (i) the use of intelligent mapping between trajectories and the GPU blocks, (2) the parallelism of
ensemble learning approach, and (3) the efficient exploration of the trajectory space by the genetic
operators.

6.4 Case Study on Intelligent Transportation

The last experiment aims at demonstrating the usefulness of the proposed framework in a real-
world scenario. The taxi trajectory service of Porto3 is used. Figure 14(a) presents the number
of trajectory outliers with different number of trajectory sizes and different area point threshold
values of the GSW-TP. The figure shows that the number of individual trajectory outliers increases
as the number of trajectories goes up. The number of trajectory outliers increases from 35 for 700
trajectories to reaches 72 for 7,000 trajectories. However, when the area point threshold (density)

3http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html.

http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
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taxi 13-2

Fig. 12. Speed of the GPU-based GTO solutions for taxi 13-2 dataset.

taxi 13-1 taxi 13-2

Fig. 13. The proposed GPU-based solutions vs. state-of-the art GPU-based outlier detection.

increases, the number of individual trajectory outliers decreases. Figure 14(b) shows the results of 
both individual and group trajectory outliers by applying the two-phase algorithm on the same 
trajectory database. From this figure, we remark that the two-phase algorithm i s able to detect 
GTOs (marked by red color) against normal trajectories (marked by black color). These GTOs 
represent different taxi trips. One of the reason that these taxis deviate from the normal trajectory 
is the high traffic jam of Porto city in peak hours.



(a) Number Of Individual Outliers

(b) Map of Individual Outliers

Fig. 14. Case study of real taxi trajectory database.

7 DISCUSSION AND FUTURE DIRECTIONS

The first finding in this work is that the proposed framework identifies new patterns represented by
group of trajectory outliers. This is different from previous trajectory outlier detection approaches,
which are only able to derive individual trajectory outliers. The second finding is that the com-
bination of several concepts (from different fields) improves the overall performance in detecting
group of trajectory outliers (for both quality and runtime). This includes exploring the micro clus-
ters, nearest neighbors, feature of the individual trajectory outliers, ensemble learning, genetic
operators, and HPC. The proposed GTO solutions are examples of the application of outlier detec-
tion algorithms to the context of trajectory outliers. The literature calls for this type of research,
particularly for urban analysis and smart city applications where a large number of trajectories are
present in the daily life. However, porting a data mining and machine learning approach to any
specific application domain always requires methodological refinement and adaptation [47, 65].

While this work is the first milestone in the context of GTO detection, much investigation is
still required before reaching advanced solutions that could be exploited by city planners. A deep
progress in all directions is recommended including, (i) techniques for GTO: more sophisticated
techniques should be developed for the GTO problem. For instance, other traditional outlier de-
tection techniques may be adopted such as Local Outlier Factor [6]. This is by developing and in-
troducing new concepts of density, local reachability density for GTO problem. (ii) Visualization:
new visualization techniques should be developed for GTO providing city planners with tools that
enable visualizing and interpreting GTOs. (iii) GTO applications: investigating and targeting new



applications of GTO, such as climate change analysis. In this case, a typical example is finding a
group of hurricane trajectories that deviates from the normal hurricane trajectories. This allows
to identify and explore other cities that could be affected by the Hurricanes. The last hurricanes
observed in the United States during the period 2018–2019 could be a real sketch of this study.

8 CONCLUSION

The problem of GTO detection has been introduced in this article. Three algorithms (DBSCAN-
GTO, kNN-GTO, and FS-GTO) have been proposed and investigated from a set of individual tra-
jectory outliers. In DBSCAN-GTO, the candidate trajectories are first determined using the DB-
SCAN algorithm. The density computation is then calculated for each candidate trajectory to find
the group of trajectory outliers. The process in kNN-GTO starts recursively by determining the
potential candidates from the individual trajectory outliers and pruning them using density com-
putation. This repeats for all individual trajectory outliers, and then a set of GTOs is determined
in which outliers in every group share some common points. FS-GTO considers the GTO problem
as a FS problem, while the set of individual trajectory outliers are viewed as the set of all features,
and the FS process is applied to identify the group of trajectory outliers. Furthermore, three im-
provements for these algorithms have been suggested by using ensemble learning, computational
intelligence, and HPC. All the proposed approaches have been tested on real trajectory databases.
The results reveal the usefulness of exploring computational intelligence and HPC in identifying
GTOs, and the superiority of the proposed approaches over the baseline group detection. The re-
sults also show that the GPU-parallel approach outperforms the existing HPC approaches when
dealing with big trajectory databases.
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