
Received: 29 April 2021 Accepted: 11 June 2021

DOI: 10.1111/coin.12474

S P E C I A L I S S U E A R T I C L E

An ontology matching approach for semantic
modeling: A case study in smart cities

Youcef Djenouri1 Hiba Belhadi2 Karima Akli-Astouati2

Alberto Cano3 Jerry Chun-Wei Lin4

1Department of Mathematics and
Cybernetics, SINTEF Digital, Oslo,
Norway
2Department of Computer Science,
USTHB, Algiers, Algeria
3Department of Computer Science,
Virginia Commonwealth University,
Richmond, Virginia, USA
4Department of Computer Science,
Electrical Engineering and Mathematical
Sciences, Western Norway University of
Applied Sciences, Bergen, Norway

Correspondence
Jerry Chun-Wei Lin, Department of
Computer Science, Electrical Engineering
and Mathematical Sciences, Western
Norway University of Applied Sciences,
Bergen, Norway.
Email: jerrylin@ieee.org

Abstract
This paper investigates the semantic modeling of smart
cities and proposes two ontology matching frame-
works, called Clustering for Ontology Matching-based
Instances (COMI) and Pattern mining for Ontology
Matching-based Instances (POMI). The goal is to dis-
cover the relevant knowledge by investigating the cor-
relations among smart city data based on clustering
and pattern mining approaches. The COMI method first
groups the highly correlated ontologies of smart-city
data into similar clusters using the generic k-means
algorithm. The key idea of this method is that it clus-
ters the instances of each ontology and then matches
two ontologies by matching their clusters and the cor-
responding instances within the clusters. The POMI
method studies the correlations among the data proper-
ties and selects the most relevant properties for the ontol-
ogy matching process. To demonstrate the usefulness
and accuracy of the COMI and POMI frameworks, sev-
eral experiments on the DBpedia, Ontology Alignment
Evaluation Initiative, and NOAA ontology databases
were conducted. The results show that COMI and POMI
outperform the state-of-the-art ontology matching mod-
els regarding computational cost without losing the
quality during the matching process. Furthermore, these
results confirm the ability of COMI and POMI to deal

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.
© 2021 The Authors. Computational Intelligence published by Wiley Periodicals LLC.

Computational Intelligence. 2021;1–27. wileyonlinelibrary.com/journal/coin 1

https://orcid.org/0000-0001-9027-298X
https://orcid.org/0000-0001-8768-9709
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcoin.12474&domain=pdf&date_stamp=2021-07-15

2 DJENOURI et al.

with heterogeneous large-scale data in smart-city envi-
ronments.

K E Y W O R D S

clustering, ontology Matching, pattern mining, semantic modeling,
smart city

1 INTRODUCTION

Today’s World-Wide Web has billions of web pages, but the vast majority of them is readable by
human (in HTML format). As the result, machines cannot understand and process this infor-
mation, so much of the web’s potential goes untapped. To do this, the researchers created the
Semantic Web, where ontologies describe the semantics of data. When data is in the form of
ontologies, machines can better understand semantics and therefore locate and integrate data for
a wide variety of tasks. On the Semantic Web, data comes from many different ontologies, and
processing information through ontologies is not possible without knowing the semantic links
between them. Ontology matching is the process of finding the mappings between two ontolo-
gies represented in different domains. It can be applied to several real-world problems, such as
biomedical data,1 e-learning,2 and Natural Language Processing.3 Cities are rapidly growing as
they strive to accommodate more than 2.5 billion smart citizens by 2050. Understanding city
dynamics is crucial to harmonizing internal conflicting demands in housing, business, leisure,
mobility, energy, or ecology, as well as managing external shocks. Heterogeneous data in smart
cities is rapidly growing in volume and types, which makes ontology matching play an important
role in smart-city semantic modeling to improve city planning knowledge.

1.1 Motivation

Trivial methods for ontology comparison analyze the ontology instances by considering all the
characteristics of both ontologies. Thus, it takes the number of n × n′ × m × m′ comparisons to
find the alignment, where n and n′ are defined as the numbers of instances, and m and m′ cor-
respond to the numbers of the data properties of the first ontology and the second ontology,
respectively. Ontology matching is a polynomial problem since many instances and properties are
required to be considered for high-accuracy matching. For instance, if we consider a large-scale
dataset, such as DBpedia1 with 4,233,000 instances and 2795 different properties, 144 × 1018

comparisons are needed. This results in a very time-consuming matching process. The DBpedia
ontology and its number of properties are shown in Figure 1 to support this declaration of the
computational complexity using well-known ontology matching algorithms: Extended Inverse
Functional Property Suite (EIFPS)4 that is a semi-supervised learning approach. Shao et al.5
then introduced an iterative matching framework using a blocking technique to minimise the
number of comparison. For data properties of less than 10%, the runtime of both models was
less than 20 s, the results are obtained with an Intel i7 processor and 16 GB of main mem-
ory. However, these approaches have runtimes greater than 700 s, with data properties equal

1http://wiki.dbpedia.org/Datasets

DJENOURI et al. 3

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

R
un

tim
e(

s)

EIFPS
RiMOM

% Properties

F I G U R E 1 Runtime of extended inverse functional property suite and RiMOM using the DBpedia varying
from 1% to 100% the data properties

to 100%. More sophisticated solutions to ontology problems attempt to improve the matching
process by exploring the search space with the partitioning algorithms,6-10 high-performance
computing (HPC),11-13 and evolutionary computation approaches,14-17 among others. However,
the overall performance of the ontology matching still needs improvements in particular for
complex applications such as related to smart cities. Data mining aims at discovering the rele-
vant information, knowledge, and/or hidden patterns from large and big databases. Clustering18

and pattern mining19-21 are well-known data mining tasks that are aimed at partitioning the
whole data into similar groups to study the correlation among the different data features. Clus-
tering and pattern mining have been also applied to ontologies6-8 by considering description
logic to decompose ontology database into several modules that can be used to study the rela-
tionships between the relevant concepts of the given ontologies. However, the above approaches
cannot be straightforwardly applied to the matching problem among different ontologies since
they cannot extract the smallest modules from complex ontologies. Moreover, a higher com-
putational cost is required when the data is huge. Motivated by the success of clustering and
pattern mining in solving several complicated problems, such as information retrieval,22 traffic
transportation,23 and business intelligence,24 this paper presents a data-driven approach and out-
lines how these powerful data mining techniques can be explored to solve the problem of ontology
matching.

1.2 Contributions

To our best of our knowledge, this is the first study that explores the methods of clustering and
pattern mining to solve the ontology matching problem. Furthermore, a case study on smart-city

4 DJENOURI et al.

semantic modeling is shown to demonstrate an application of this work. The main contributions
can be summarized as follows:

1. We present a new framework, called Clustering for Ontology Matching-based Instances
(COMI), which adopts clustering techniques to decompose the set of instances of the given
ontologies. The framework can group the most relevant features into a cluster, which can be
used to greatly improve the matching problem of different ontologies. To speed up the com-
putation of the ontology matching, an improved k-means algorithm25 is proposed to deal with
clustering of the instances within the ontologies.

2. We present a new framework, called Pattern mining for Ontology Matching-based Instances
(POMI), which adopts the pattern mining techniques to study the different correlations among
the data properties. The designed framework obtains the most relevant features by exploiting
frequent pattern mining on both ontologies. To speed up the computation of the whole ontol-
ogy matching process, an improved SSFIM algorithm,26 with an efficient pruning strategy is
proposed to deal with pattern mining-based instances within the ontologies.

3. Extensive experiments were carried out to demonstrate the usefulness of the proposed
frameworks COMI and POMI. The results reveal that both COMI and POMI outperformed
the state-of-the-art ontology matching algorithms in terms of runtime while obtaining
high-quality solutions.

4. A case study on smart-city semantic modeling is shown to demonstrate the validity of COMI
and POMI in dealing with big and heterogeneous data in smart-city environments.

1.3 Outline

The rest of this paper is structured as follows. Section 2 discusses related works in the ontology
matching problem. Section 3.1 gives the formal definition used in the ontology matching problem.
Section 3 presents the COMI framework whereas Section 4 introduces the POMI framework.
A performance evaluation of the COMI and POMI frameworks is provided in Section 5. Finally,
Section 6 draws the conclusions and future work in the ontology matching problem.

2 RELATED WORK

Several approaches have been introduced in the last decade to solve the ontology matching
problem.14-16,27,28 Matching strategies based on instances are also appropriate for connecting
database records.29,30 Much research has explored methods for improving the efficiency of ontol-
ogy matching. Solutions regarding the ontology matching problem can be categorized into two
groups: (i) solutions based on the reduction of the search space by employing computational intel-
ligence, data mining, and machine learning methods;6-8 and (ii) solutions based on HPC while
parallel matching is established.11-13 This work focuses on the solutions based on the reduction
of a search space and approaches in this category are overviewed in the following section.

2.1 Traditional techniques

An instance matching approach, named VMI, was developed by Wang et al.31 For each instance,
it builds two distinct vectors, such as the vector name and the virtual document vector. The VMI

DJENOURI et al. 5

method reduces the number of similarity measurements by using multiple indexing and candi-
date selection and operates effectively only in large cases with a limited number of data properties.
The best results are obtained when users specify all the corresponding data properties and
methods of retrieving the values. Thus, their approach is based on a generic instance matching
algorithm, whereas some processes are applied to particular domains; that is to say, a simple string
comparison of names and data characteristics is utilized for obtaining comprehensive instance
information. In the 2009 OAEI competition for small ontology datasets, VMI obtained success-
ful matching. However, with increasing instances, its quality decreases. Li et al.32 developed an
approach that is based on the hypothesis that, two entities of the same real-world object may
be matched when they are related to previously matched entities. This technique incorporates
multiple lexical matches using a new voting aggregation process and only uses the structural
information and the correspondences observed to locate the additional information, which can
then primarily be broken down into two stages:

1. Identification of highly accurate seminal correspondences by lexical information.
2. The derivation of additional matching outcomes based on the semantic matching of the

previous stage with a structural matching strategy.

Based on the findings of the 2010 OAEI study, this method obtains a reasonable accuracy
for certain medium and small ontology databases. Hu et al.5 presented RiMOM at the OAEI
competitions in 2013 and 2016. It introduces an iterative matching framework in which the dis-
tinctive information is centered on a blocking technique for minimizing the number of pairs of
candidates. As a key to the index of the instances, it uses predicates, and its distinctive object.
Moreover, a weighted, exponential similarity averaging method is used to ensure that the instance
matching fits with the high precision. The new blocking approach decreases the computational
cost significantly without losing precision and recall. RiMOM achieves 99% accuracy in small
and medium ontology datasets. Alam et al.33 developed an expansion of MERGILO, a method
to reconcile knowledge graphs extracted from the text by graph alignment and word similarity.
Compared with the generic approaches, the results of the extended MERGILO show significant
improvement. Rosaci34 found that ontology matching can be used to link various smart agents.
The ontology of an agent simulates the actions of an agent, and, if an agent proposes, then any
agent in the group will know the relation between itself and another agent. Rosaci35 then used
the hierarchical model to identify semantic associations between web data. The semantic connec-
tions represented by metadata are discussed in the context of a collection of network entities. The
usefulness of this approach has been demonstrated in well-known web user recommendation sys-
tems. The interlinking issue was first addressed as problems of duplication or record linkage by
the database community, where Elmagarmid et al.36 based their research on several methods to
tackle the problems of heterogeneity in ontology matching and proposed a method of handling a
set in organized property-segmented documents.

2.2 Data mining-driven solutions

Linked open data (LOD) is data that is structured and interconnected with each other, so that it
becomes more useful by semantic queries. To address the matching problem in LOD by using rules
taken from the association rule mining technique, Niu et al.4 developed the EIFPS technique,
which is considered to be a semi-supervised learning approach. A limited number of current

6 DJENOURI et al.

matches owl:sameAs are used as seeds and the related rules as criteria for optimizing precision
are considered. The authors presented a graphic metric that measures the likelihood and law of
Dempster while integrating confidence values. The theory makes it possible to combine instances
from different datasets and to arrive at a degree of belief that takes into account all the available
instances. The degrees of belief may or may not have the mathematical properties of probabilities;
they differ depends on the degree of correlation between the two data sets. Then, by presenting
the power of resource homogeneity for the e-learning context, Sergio et al.2 presented the LOM
framework. To expand and improve the available tools for online learning semantically, the use
of the initial associative classifier for ontology matching was then developed and investigated.
This model uses a feature-based similarity function that needs historical knowledge as the train-
ing set. This method was evaluated and verified at the 2014 OAEI ontology database competition.
The results for several larger ontology databases showed 90% precision. Ochieng et al.37 pre-
sented an approach that splits an ontological graph into many partitions. Cluster-based similarity
aggregation (CSA)38 is a system integrating varied factors (i.e., five measures, a string-similarity
calculation, and a WordNet-based similarity measure) to derive the alignment of ontology con-
cepts. Algergawy et al.39 then proposed a large-scale ontology matching clustering approach. The
main concept is to divide the schema graph by using context-driven structural node similarities
into clusters. The Vector Space Model is also defined after the partitioning of each ontology to
discover similar clusters and generate the same concepts. In the context of smart-city semantic
modeling, several ontology matching based solutions have been proposed. Bellini et al.40 intro-
duced a system for the management of large-volume data from a range of sources that considers
both static and dynamic data in smart cities. Qui et al.41 developed a semantic graph-based
method by incorporating semantic graph structure information and context information that can
be used to identify the nontaxonomic relationships in smart-city environments. A unified con-
solidated and live view for heterogeneous city data sources was given by Le et al.42 It addresses
billions of historical and current records together to accumulate and enrich millions of triples for
linking to a graph in real-time per hour. Qui et al.43 proposed a graph method for semanticizing
knowledge accurately from heterogeneous information on smart cities. Smart-city data are first
computed with the word co-occurrence as a result of similarities. A semantic graph is then con-
structed based on the similarities between the smart-city data. A community detection algorithm
is finally used to divide the smart-city data into different communities where each community
acts as a concept.

2.3 Tools

Several works regarding review and analytics have been studied and analyzed for finding
the ontology matching solutions that are discussed and studied here. Through analyzing the
state-of-the-art matching issues, Shaviako et al.27 evaluated the matching problem solutions.
Assessments and application analyses were provided using the competitive OAEIontology
databases competition 2. Abubakar et al.29 studied the current ontological situation rather
than popular conceptual matching with specific considerations of ontological instance-based
matching. To estimate relative effectiveness and performance, Nentwig et al.30 then investi-
gated the comparative evaluations of link discovery (DL) frameworks. Mohammadi et al .44

presented statistical methods to compare two or more alignment systems in terms of efficiency.

2http://oaei.ontologymatching.org

DJENOURI et al. 7

The statistical procedures were then discussed45 to show comparisons between the two align-
ment systems. First, the database community considered interconnections as problems with
duplication or record linkage. Elmagarmid et al.36 aimed various techniques at resolving the het-
erogeneity issues of ontology matching and proposed the solution of a series of structured property
segmented record data. The classification of the ontology-based models was also incorporated
into the methods of character-based similarity metrics, phonetic similarity metrics, token-based
similitude metrics, and numeric similarity metrics. There are certain detection methods for dupli-
cated records, and duplicated detection tools have been developed. Otero et al.28 addressed a
variety of approaches and their functional applications in real-life, involving more than 50 ontol-
ogy matching systems. Heflin et al.46 gave an overview of the ontology relationships of ontology
instances. They also summed up some matching instance algorithms, such as the scalable entity
co-reference systems and manual and automated blocking key selection. They also introduced
the generic algorithms that use logical reasoning based on string matching. Moreover, two exten-
sive evaluations were made of the ontology matching systems: (1) ASMOV,47 N2R,48 RiMOM,49

CODI,50 PARIS,51 EPWNG,52 SiGma,53 and MA54 were evaluated and verified on the OAEI
(Person1, Person2, and Restaurant) benchmark; and (2) EdJoin,55 DisNGram,56 PPJoin+,57 and
FastJoin58 were then compared to the large scale databases, RKB and SWAT.

2.4 Discussion

Table 1 illustrates the benefits and drawbacks of the current ontology matching approaches.
In particular, the current works regarding ontology matching have good results on small-scale
databases (i.e., many small and medium instances) and lower-dimensional data (instances with
a small or medium data properties) in terms of runtime and the solution quality. However, the
current approaches have several limitations, and two key of them being inability to deal with
large-scale and high-dimensional data. In this work, we present two data mining-based frame-
works to address both these limitations for exploring clustering and pattern mining regarding
ontology matching.

3 COMI: CLUSTERING FOR ONTOLOGY MATCHING

3.1 Ontology matching problem

Definition 1. Consider the set of l ontologies = {1, … ,l}, each ontologyi shows the set of
mi instances such that  i = { i

1, … , i
mi
}, and ni properties or attributes  = { i

1, … , i
ni
}. The

purpose and problem statement of the ontology matching problem by instances is to determine
the common properties among ontologies, that is, to determine the function  such that:

(i,j) =

||||||||
⎧⎪⎨⎪⎩

⋃
l≤mi,s≤mj

ij(Ii
l , Ij

s)
⎫⎪⎬⎪⎭
|||||||| , (1)

The Equation (1) refers to the union of all the common instances between two ontologies,
where two instances are similar to a set of data properties (see Equation (2)).

8 DJENOURI et al.

T A B L E 1 Classification of ontology matching approaches and their limitations

Strategy Models and Algorithms Limitations

Traditional VMI31

RiMOM5 Unable to deal with large-scale data.

MERGILO33

Li et al.32 Matching based on prior results, which decreases

CILIOS34 the overall accuracy performance.

Rosaci35

Elmagarmid et al.36 Unable to deal with a high number of data properties.

Data mining EIFPS4

LOM2 Use an old matching mechanism.

CSA37

Algergawy et al.39 High time consumption due to:

Xue et al.59 1. The similarity graph mechanism;

Xue et al.60 2. Combination of different measures.

Abbreviations: CSA, Cluster-based similarity aggregation; EIFPS, Extended Inverse Functional Property Suite.

F I G U R E 2 Ontology matching-based instance

ij(Ii
l , Ij

s) = {p|p ∈ Ii
l ∧ p ∈ Ij

s}. (2)

The naive approach of the ontology matching problem is to scan all values of the instances
among the ontologies and make comparisons. The process of matching determines the outcome of
the alignment. Each matching may lead to different alignment instances. Each result of alignment
is then evaluated and compared to the alignment of reference. The reference alignment is an
alignment proposed by a user or expert in the particular domain. The alignment of references
includes all the common ontology instances.

For instance, Figure 2 presents a simple example for ontology matching by instances. Consider
two ontologies in the running example, such as 1 and 2. The first step aims at extracting the set
of instances 1

m1
and 2

m2
and grouping them into several subsets. The matching process is then

performed to derive an alignment among the ontologies. The reference alignment represents the
set of the common instances among two ontologies. Thus, the optimal matching between 1 and
2 is, for example, i1 = i′12, i3 = i′15, and i10 = i′26.

DJENOURI et al. 9

F I G U R E 3 COMI: Clustering for ontology matching-based instances

In the ontology matching problem by instances, the most important issue is to find the maxi-
mum real-world across two large-scale ontologies. Consider m1 and m2 as the number of instances
of two ontologies. If the size of the instances is very large, for example, more than 10 million,
then it requires high computational cost (e.g., GeoNames 3 dataset with more than 10 million
geographical names). To handle the large-scale ontology data, we present the clustering-based
method to find the highly correlated subsets for ontology matching by instances.

3.2 Principle

The aim of COMI is splitting the whole set of instances of each ontology into several dependent
clusters. Each cluster then contains highly correlated instances to be processed later. Next, as
explained in Figure 3, COMI explores the instances of the clusters to find the common features. It
mainly includes the clustering and matching processes. In the clustering process, the instance set
is divided into several collections of subinstances (clusters) using data mining techniques. This
step is considered to be preprocessing. The set of instances is then grouped into different clus-
ters with a small number of instances. Each cluster of instances shares the maximum number of
common properties; thus, the instances of a cluster are highly correlated. During the matching
process, COMI explores the instances of the clusters to find the alignments. Instead of performing
the alignment operation between the instances of ontologies one by one, the alignment is estab-
lished between the instances of the two ontologies and their representative clusters. Algorithm 1
presents the COMI pseudo-code. The set of instances  is considered as input, and the best align-
ment as . The set of clusters is represented by , and the set of centroids is stated as g. The first
step is to randomly initialize the centroids using the function InitializeCenters(). The first loop is
performed from lines 6 to 17, which scans all the set of instances I. The function instance(e, g1)
calculates the distance between the instance and the first centroid g1. Consider e = {(Name, Joe),
(age, 26), and (type, man)} and the centroid is set as g1 = (26, man, USA),instance(e, g1) to calculate
the intersection of values, which is set to 2. The loop from lines 9 to 13 finds the smallest distance

3http://www.geonames.org/about.html

10 DJENOURI et al.

Algorithm 1. COMI: Clustering for Ontology Matching

Input :  i = { i
1,

i
2...

i
ni
}: the set of n instances of the ontology i.

Output: : Alignment set.
********** centroid initialization **********
InitializeCenters(gi)
for each instance e ∈  i do

dis ←instance(e,gi
1) ⊳ See Equation (3)

r ← 1
for j=2 to k do ⊳ Search the minimal distance between the instance and all centroid

d ← instance(e,gi
j) ⊳ See Equation (3)

if d < dis then
dis ← d
r ← j

end if
end for
AddElement(e,ci

r) ⊳ Add the instance in the appropriate cluster
end for
repeat ⊳ Update centroids centers

change ← false
gi

new ← UpdateCenter (g,i)
if gi != gi

new then
change ← true

end if
until change == false
******** 

i(ni × ki): Matrix of distances between  i and gi ********
for i = 1 to n do

for j=1 to k do
MICi[i, j] ← instance (i

ij, gj) ⊳ i
ij is the ith instance of the i

j cluster
end for

end for
return 

i

********** Matching Process **********
list ← ∅
for p = 1 to ki do ⊳ Finding the similar clusters

min ←centroid (gi
p, gj

1) ⊳ See Equation (4)
indice ← 1
for q = 2 to kj do

d ←centroid(gi
p, gj

q) ⊳ See Equation (4)
if d < min then

min ← d
r ← j

end if
end for
list ← list ∪ AddClusters (ci

p, cj
r)

end for
 ← ∅
for each (p, q) ∈ list do ⊳ Finding the similar instances in the similar clusters

min ← ni × nj ⊳ Initialize minimum distance
for each instance (e1, e2) ∈ (i

p,
j
q) do

d ← matching (e1, e2) ⊳ See Equation (5)
if d ≤ min then

min ← d
p,q ← (e1, e2)

end if
end for
 ←  ∪ p,q

end for
return 

DJENOURI et al. 11

between the instance e and all the centroids in g, where it conserves the range r. Line 16 affects
the instance e to the list of cluster r, which represents the minimum distance using the function
AddElement(). From lines 18 to 24, the centers are updated and kept in the set g′. If gnew is equal
to the previous center in g, then the clustering process is then terminated; otherwise, the same
process is repeated until gnew and g become the same. The final clustering results are then kept
in a matrix structure, which is called . Each element [i][j] is the distance between the
centroid gj and the ith instance of the jth cluster, denoted as i

j (lines 25–29). From lines 35 to 45,
the algorithm scans the set of centroids Gi, Gj of the two ontologies Oi and Oj, and the minimum
distance between two centroids with the function centroid(gi

l1
, gj

l2
) is determined. The minimum

distance is selected and the two clusters are added to the list of the alignment clusters list using
the function AddClusters(). From lines 48 to 58, the algorithm scans the whole instances of the
two aligned clusters. Here, p and q are represented as the two selected clusters, and the loop from
lines 50 to 56 scans all the instances e1 and e2 for both clusters p and q, and the minimum distance
can be computed using the formula instance. For the set of aligned , the alignment results of the
clusters p and q are then added and denoted as p,q. This process is repeated for all the clusters
in list. Next, the decomposition and matching steps are described in detail.

3.3 Decomposition

The ontology matching problem usually deals with a large number of instances, which is a non-
trivial task, especially when the ontology is large scale. Thus, it is necessary to decompose the
huge data into a small number of clusters that reduce the difficultly of the matching process
(Algorithm 1). In this section, we investigate the partitioning-based approach and utilize the
k-means25 algorithm for the matching problem. The distance and the centroid computation are
defined below.

Definition 2 (distance between instances). We note pi
jl as the value of the property  i

j in the
instance  i

l of the ontology i. The distance instance between two instances  i
l1

and  i
l2

is then
defined as

instance( i
l1
,

j
l2
) = ni −

(||||||
ni⋃

j=1
pi

jl1
∩ pi

jl2

||||||
)
. (3)

To compute the centroids, we consider the set of instances of the cluster s =
{(s)

1 ,
(s)
2 , … ,

(s)|Gs|}. The aim is to find a gravity center of this set that is also an instance. Inspired
by the centroid formula developed in prior work,61 we compute the centroid 𝜇s. The frequency
of each value is calculated for all the instances of the cluster Gs. The values of instances in
Gs are sorted according to their frequency, and only the ni frequent value is assigned to 𝜇s as
𝜇s = {j|j ∈ ni}, where ni denotes the set of the ni frequent items of the cluster Gs. k-means is a
well-known partitioning-based clustering algorithm. It defines k clusters and divides the set of
instances of each ontology into k subsets by considering the correlation between the instances
of the same cluster. The k-means process starts by initializing k clusters. The k instances from
the given ontologies can be randomly selected. Then, it scans each instance from the whole set,
calculates the distance between this instance and all the centroids, and assigns it to the cluster
with the nearest centroid. After all the instances are examined, the centroid of each cluster is
then updated. This process is repeated until the cluster centroid becomes stable.

12 DJENOURI et al.

3.4 Matching process

This step benefits from the clustering step by defining a new matching strategy instead of comput-
ing the similarity between two pairs of instances of the given ontologies. The similarity measures
between the centroids of the clusters and the instances are then determined. Two distances are
defined: the first distance aims at determining the similarity between two centroids in different
ontologies while the second represents the distance between two instances in different ontologies
(Algorithm 1). The principal idea of the matching process is to find two highly correlated clus-
ters among ontologies by considering the minimum distances of them. After that, the instances
among the clusters are check to attempt to find the rough instances. Consider gi

l1
and gj

l2
as two

centroids of the input ontologies.

Definition 3 (distance between centroids). g, and g′ are considered to be two centroids of two
different ontologies. The distance matching between the two centroids g and g′ is defined as

centroid(g, g′) = |g| + |g′| − |g ∩ g′|. (4)

It should be noted that |g|, |g′|, and |g ∩ g′| are the number of properties of the centroids g and
g′ and their intersection, respectively.

Definition 4 (matching instances). We define the distance matching between two instances  i
l1

and 
j
l2

as the sum of distances between each instance and its centroid and the distance between
the two centroids of these instances as

matching( i
l1
,

j
l2
) = 1(gi, gj) +2( i

l1
, gi) +2( j

l2
, gj), (5)

where 1 is centroid and 2 is instance.

The complexity of COMI depends on the number of instances n, the number of properties
m, the number of clusters k, and the number of matchings r. The decomposition step needs
O(n × m × k). This process is performed only once for each ontology whatever the number of
matchings to be used. Only similar clusters are used during the matching process. This requires
O(n×m

k
). The total cost of COMI for perform r matching is O(n × m × k + r × n×m

k
), which is

significantly lower than the baseline solutions that require O(n × m × r).

4 POMI: PATTERN MINING FOR ONTOLOGY MATCHING

4.1 Principle

POMI, as shown in Figure 4, investigates the correlation between data properties of the ontologi-
cal systems to obtain the best characteristics for a matching process. It extracts the most relevant
data properties that cover as many instances as possible from the pattern mining process.62 FIM
refers to the extraction from the transactions database of the relevant itemsets that accomplish
the minimum support limit (minsup). In the designed three phases model (mining, pruning, and
selection), we follow a classical pattern mining method to efficiently discover the best features
of the ontologies. The pruning process is a significant difference between the previous min-
ing strategies and our pattern-mining-based model. Existing strategies list all the patterns that

DJENOURI et al. 13

F I G U R E 4 POMI: Pattern mining for ontology matching-based instances

exceed minimum support constraints, while our approach considers other measures by discover-
ing a subset of relevant patterns that cover a maximum of transactions in the database (i.e., the
instances in the study). The algorithm is presented in the pseudo-code given in Algorithm 2. The
mining step is performed from lines 4 to 18, and the pruning strategy runs from lines 21 to 38.
The selection and the matching processes are detailed in lines 33–56.

4.2 Pattern discovery

In the pattern-mining field, the fundamental algorithms that were presented, such as Apriori,62

DIC,63 or FPGrowth,64 require a huge amount of time cost and memory usage to discover the set
of frequent itemsets regarding the predefined minimum support threshold. SSFIM26 was recently
presented to discover frequent itemsets within one single pass, and it is an insensitive algorithm
for the minimum support threshold. The experimental results showed that the SSFIM has a bet-
ter performance compared to the state-of-the-art pattern mining algorithms. Thus, in this study,
SSFIM is utilized in the designed model to discover the frequent literals (labeled as S) from the
set of the instances I. Two main steps are taken for SSFIM: generation and extraction. In the gen-
eration stage, beginning with I1, we refer to Pattern(I1) in all possible literal combinations of this
instance. The outcome is applied to H by generating Pattern(I1) for each pattern. In the hash table
H, the frequency of each pattern is initiated one by one. Then, I2 for each pattern in Pattern(I2) is
generated in the second instance. If the pattern is available at H, then its frequency must increase
by one or a new entry with a fixed frequency of 1 will be made. This is repeated until I is processed
for all the instances. The second step discovers the frequent patterns (i.e., frequent literals in the

14 DJENOURI et al.

Algorithm 2. POMI: Pattern mining for Ontology Matching

1: Input :  i = { i
1,

i
2...

i
ni}: the set of n instances of the ontology i.

2: Output: : Alignment set.
3: **********mining step************
4: for each instance e ∈ Ii do ⊳ Extract the frequent itemsets using only a singlepass.
5: Fi

e ← Itemset(e)
6: for each element i ∈ Fi

e do
7: if i ∈ Hi then
8: Freqi++
9: else

10: AddH(i,1)
11: end if
12: end for
13: end for
14: Si ← ∅
15: for each element h ∈ Hi do ⊳ Prove if the itemsets are insensitive to the minimum support value.
16: if Support(h) > 𝜎 then
17: Si ∪ h
18: end if
19: end for
20: **********pruning step************
21: sol ← InitialSol(Si)
22: Si,∗ ← Si

23: iter ← 0.
24: while Pruningmax(Si) < m and iter < IMAX do ⊳ Select the smallest itemsets that cover the largest

number of instances.
25: neighbors ← ComputeNeighbors(sol).
26: best ← BestNeighbors(neighbors).
27: if Pruningmax(best) > Si,∗ then
28: Si,∗ ← best.
29: end if
30: iter ← iter + 1.
31: end while
32: **********selection step************
33: 𝑆𝑃 𝑖 ← ∅
34: for each property p ∈ Pi do
35: if Probability(p, Si) > 𝜇 then ⊳ A threshold is used to select the appropriate data properties.
36: 𝑆𝑃 𝑖 ∪ p
37: end if
38: end for
39: **********matching step************
40: for each instance j ∈ Ii do
41: Pi ← SetProperties(j)
42: for each instance l ∈ Ij do
43: Pi ← SetProperties(l)
44: L ← ∅
45: for each property p ∈ Pi do
46: for each property p′ ∈ Pj do
47: if Value(p, p′) then ⊳ Comparison of the two instances i and j by taking in

consideration the selected set of
48: L ∪ {p, p′} ⊳ properties <Pi, Ii> for the ith ontology, and <Pj, Ij> for the jth ontology

respectively.
49: end if
50: end for
51: end for
52: if L !=∅ then
53:  ∪ ({IDi, IDj}∪L)
54: end if
55: end for
56: end for
57: return 

DJENOURI et al. 15

study) from the H hash table. The support for each t pattern is determined (see Equation (6)). If
the frequency of t is no less than minsup, then t is considered as the frequent literal and is put
into the set of S, which is the set of frequent literals.

Support(t) =
h(t).freq|I| . (6)

4.3 Pruning

The limitation of generic pattern mining is that a large number of frequent patterns are dis-
covered, which results in inefficiency while handling situations with many ontologies. It is a
time-consuming and a nontrivial task to analyze a huge number of the discovered patterns. To
overcome this limitation, a new strategy is presented to well filter the mined frequent patterns
in the mining progress; thus, a small number of meaningful and significant patterns can be dis-
covered to well explain and illustrate the ontology database. Here, we use a novel idea, called
Coverage, in the designed pruning strategy, which results in keeping fewer and more repre-
sentable patterns based on the Minimum Description Length principle65 to cover the largest
number of instances from an ontology (Algorithm 2). The number of frequent patterns can be sig-
nificantly reduced. The discovered patterns in the developed model are different to the maximal66

or closed67 frequent patterns. More detailed explanations for the proposed solutions are given
below.

Definition 5. Let S = {S1, S2, … , Sr} be the set of the discovered frequent patterns in the mining
progress. The coverage pruning problem is defined by maximizing Pruningmax as

Pruningmax ∶ S → ℜ
S′ → Pruningmax(S′).

(7)

Definition 6. The Pruningmax is defined as a function that can be used to cover the maximum
number of records from the given ontology database. Let (Si) denote the set of instances covered
by a pattern Si. The purpose of the coverage pruning function is to return a subset S′ ⊂ S that
maximizes the coverage value and can be defined as

Pruningmax ∶ S → ℜ+

S′ → |⋃Si∈S′ (Si)|. (8)

Definition 7. Finding the minimum subset S∗ ⊂ S is an optimal solution to the coverage pruning
problem in an ontology that includes m instances. Here, S∗ covers all the records and is then
defined as follows:

⎧⎪⎨⎪⎩
Pruningmax(S∗) = m
∀S′ ⊂ S,
Pruningmax(S′) = Pruningmax(S∗) ⇒ |S′| ≥ |S∗|. (9)

As a frequent set of S patterns can be selected from 2r subsets of possible S subset, to find
the optimal subset that meets the limitations of coverage pruning is an NP-complete problem.
A thorough search would, therefore, be extremely time-consuming or even impractical if the S

16 DJENOURI et al.

cardinality is large. To tackle this problem, the greedy search approach can be combined with
neighboring search to reduce the search space and to provide a reasonable solution rather than
an optimal solution globally. We were inspired by the work of Hosseini et al.,68 where the greedy
algorithm is used to list the search tree and perform local searches on each generated node. The set
of frequent patterns S, a maximum number of iterations, and the number instances in the given
ontology are first considered, and the output result is the set of patterns as S∗. The first progress
is created by randomly selecting frequent patterns from S. The solution is then placed in an S∗

variable that is the best solution for now. Then, an iterative process is performed to improve the
current solution so that a better solution can be obtained. This progress is repeated until S∗ is less
than m in the number of instances covering the patterns or the iteration number is less than the
maximum number of iterations. To improve the current solution, the neighborhood neighbors of
the solution is determined. All the solutions are produced that can be accomplished by adding
another frequent pattern to the current solution. The best solution among those solutions is
denoted as best, and if it is better than the best solution S∗ at the current stage, then the variable
S∗ is set as best based on the pruning function. It should be noted that if the two solutions, such as
sol1 and sol2, hold the condition as Pruningmax(sol1) ≤ Pruningmax(sol2) and |sol1| ≤ |sol2|, then
sol1 is considered to be a better solution than that of the sol2. The reason for this is that the number
of patterns should be minimized. A greedy model is first presented to obtain a set of the small-
est number of frequent patterns that maximize the number of events covered by the patterns. It
should be noted that that other pruning functions can be used for other requirements.

4.4 Selection

The set of SP is properly selected according to the pruning strategy and the mined frequent lit-
erals S. Let P(i, S) denote the probability of the ith property appearing in the set of S frequent
literals. A threshold is set in a range of [0, 1] that is used to find the data properties properly. If the
probability value for each property is higher than 𝜇, then it is added to the SP set (Algorithm2).

Definition 8. Consider the data property of p and S, which is the set of frequent literals
discovered by the pruning step. The p is obtained for matching progress if it satisfies the condition

P(p, S) > 𝜇, (10)

where P(p, S) is the probability of the property p in the frequent literals S and 𝜇 is the interesting-
ness degree threshold.

4.5 Matching process

The instances of fundamental ontology are compared to the instances of the second ontology
after the selection of the correct data properties. The fundamental ontology of BO in this part is
matched with the second ontology of O. Moreover, < P, I > is then considered to be the set of
data properties of P and the instances of the fundamental ontology of I. Furthermore, < P′, I′ >
is considered to be the set of data properties of ′P and the instances of the second ontology of
I′. For this situation, P and P′ are then considered to be two sets and are respectively obtained
from the described feature selection models. For iterative matching, the entire set of instances
for the fundamental ontology of I is then determined and compared to the set of instances in the

DJENOURI et al. 17

second ontology of I′. Those two instances are then compared by determining each value of the
ith instance from BO for all the jth instance values from O.

The complexity of POMI depends to the number of instances n, the number of properties m,
the number of selected properties m′, and the number of matchings r. The pattern mining step
needs O(n × m). This process is performed only once for each ontology, whatever the number
of matchings to be used. During the matching process, only the selected properties are used. It
should be noted that m′ <<< m . This requires O(n × m′). The total cost of POMI to perform r
matching is O(n × m + r × n × m′), which is significantly lower than the baseline solutions which
require O(n × m × r).

5 PERFORMANCE EVALUATION

Extensive experiments were conducted on well-known ontology databases to validate the useful-
ness of proposed COMI and POMI frameworks. The experiments were carried out on a desktop
with an Intel i7 processor and 16 GB of main memory. Java language was used for all the imple-
mented algorithms. The experiments employed three well-known ontology databases that are
often used in the ontology matching community (Regarding the tests, each experiment is assigned
to the same dataset for all systems). Details are described below.

1. DBpedia4 is a superficial cross-domain ontology, it was created manually based on Wikipedia.
We extract structured content from the information created in Wikipedia. This structured
information is available on the World Wide Web. The ontology currently covers 2795 data
properties and 4,233,000 instances.

2. The information (i.e., number of instances and data properties) of Ontology Alignment
Evaluation Initiative (OAEI)5 databases is shown in Table 2. OAEI is an international ini-
tiative. The increasing number of methods available for the matching ontologies has arisen
to this company for the evaluation of these methods. Among the objectives of OAEI, it is
to assess the strengths and weaknesses of alignment systems, compare the performance of
techniques, and improve assessment techniques to help improve the work on the matching
ontologies.

3. The Smart City Use case6 contains more than 400,000 sensing objects allocated around the
world. It also has varied aspects for the data distribution. Moreover, it has more than 8.5 billion
sensor records in the dataset.

5.1 Performance on DBpedia

Two baseline algorithms, EIFPS4 and RiMOM,5 were considered in this experiment. The quality
of the matching process of the ontology was evaluated using the F-measure, which is used to
define the output of the matching process A and a reference alignment R as

F − measure(A,R) =
(2 × Precision × Recall

Precision + Recall

)
× 100. (11)

4http://wiki.dbpedia.org/Datasets
5http://oaei.ontologymatching.org
6http://www.noaa.org/

18 DJENOURI et al.

T A B L E 2 Ontology alignment evaluation initiative databases description

Ontology Name Number of instances Number of data properties

OntoA_dis 29,645 11

OntoB_dis 15,556 11

OntoA_rec 15,556 11

OntoB_dis 1708 11

Onto_a_id 1330 5

Onto_b_id 2649 4

Onto_a_sim 173 5

Onto_b_sim 172 5

onto101 57 46

onto104 56 46

onto202 57 46

onto230 47 49

IIMB000 12,333 13

IIMB104 12,338 13

person11 500 14

person12 500 12

person21 600 14

person22 400 12

The precision was computed as |R∩A||A| , and the recall was computed as |R∩A||R| . It should be noted
that the ground-truth represented by the best alignment was annotated by domain experts, which
is a human-being procedure.

5.1.1 Runtime performance

The first set of experiments was performed to compare the runtime of COMI with state-of-the-art
approaches under varied clusters. COMI|X|, where |X| is the number of the clusters, was used
in the COMI approach. The runtime computed in this experiment was the runtime of the whole
COMI process including the decomposition and matching steps. Figure 5 shows the runtime
of the five approaches (COMI2, COMI5, COMI10, EIFPS, and RiMOM), where the percentages
of instances varied from 25% to 100%. When the number of matchings increased from 1000
to 100,000, COMI outperformed the two other approaches. Moreover, the runtime of COMI
remained stable, while the baseline approaches required additional computing time for a large
number of instances and many matchings. Thus, the two compared approaches (EIFPS and
RiMOM) needed more than 600 s for handling the 100,000 matchings in the whole DBpedia
ontology database, and the designed COMI10 (COMI with 10 clusters) required only 54 s. These
results are explained by the fact that our approach only considers highly correlated instances in
the matching process by developing an efficient strategy to explore the information provided in
each cluster of instances. The results also show that by increasing the number of clusters from 2

DJENOURI et al. 19

1000 10000 100000

Matchings

0

20

40

60

80

100

120

140

160

180

200
ru

nt
im

e(
s)

COMI2
COMI5
COMI10
EIFPS
RiMOM

1000 10000 100000

Matchings

0

100

200

300

400

500

600

700

800

ru
nt

im
e(

s)

COMI2
COMI5
COMI10
EIFPS
RiMOM

= 25% = 50%

1000 10000 100000

Matchings

0

100

200

300

400

500

600

700

800

900

ru
nt

im
e(

s)

COMI2
COMI5
COMI10
EIFPS
RiMOM

1000 10000 100000

Matchings

0

100

200

300

400

500

600

700

800

900

ru
nt

im
e(

s)
COMI2
COMI5
COMI10
EIFPS
RiMOM

= 75% = 100%

F I G U R E 5 A comparison of the clustering for ontology matching-based instances, extended inverse
functional property suite, and RiMOM computational costs using DBpedia varying from 25% to 100% and the
number of matchings varying from 1000 to 100,000

to 10, a slight difference in terms of execution time could be obtained. The clustering process was
only adopted in the preprocessing step.

5.1.2 Solution quality

A second set of experiments was performed to compare the quality of the solutions by COMI
with the state-of-the-art EIFPS and the RiMOM algorithms using the DBPedia ontology database.
Figure 6 shows the results of the five approaches (COMI2, COMI5, COMI10, EIFPS, and RiMOM),
where the percentages of the instances and the properties varied from 25% to 100%, respectively.
The results reveal that the COMI10, EIFPS, and RiMOM approaches had a similar quality, while
COMI5 and COMI2 provided less quality compared to the first ones. Thus, if more clusters are
generated, then the designed COMI can achieve better results; for example, 10 clusters for DBPe-
dia data. Moreover, COMI10 had better performance than the EIFPS and RiMOM algorithms

20 DJENOURI et al.

25 50 75 100

% Properties

0

20

40

60

80

100

fm
ea

su
re

COMI2
COMI5
COMI10
EIFPS
RiMOM

25 50 75 100

% Properties

0

20

40

60

80

100

fm
ea

su
re

COMI2
COMI5
COMI10
EIFPS
RiMOM

= 25% = 50%

25 50 75 100

% Properties

0

20

40

60

80

100

fm
ea

su
re

COMI2
COMI5
COMI10
EIFPS
RiMOM

25 50 75 100

% Properties

0

20

40

60

80

100

120
fm

ea
su

re
COMI2
COMI5
COMI10
EIFPS
RiMOM

= 75% = 100%

F I G U R E 6 The compared results of clustering for ontology matching-based instances, extended inverse
functional property suite, and RIMOM’s F-measure performance with DBpedia by varying the percentage of
instances and the percentage of properties from 25% to 100%

under large- and high-dimensional ontology data. For instance, when the percentage of proper-
ties and instances was set to 25%, the F-measure of EIFPS and RiMOM, respectively, were 81%
and 82%, while COMI10 did not reach 80%. However, for 100% of data, the F-measure of COMI
was 93%, while the F-measure of the two other approaches was around 60%. We explain this
issue by the fact that the clustering quality with k = 10 was better than k = 2, and k = 5. More
similar clusters sharing a high number of properties were obtained with k = 10, instead of more
heterogeneous clusters with different properties that were determined by exploring two and five
clusters. Only 2, 5, and 10 clusters were studied in this experiment because the clustering quality
was reduced when setting the number of clusters above 10.

It can be concluded from these results that COMI achieved the best results in terms of runtime
compared to the existing ontology matching algorithms, particularly for large ontologies like the
DBPedia database. Moreover, this issue does not degrade the quality of the solution if the appro-
priate number of clusters is chosen. The quality of the matching between the POMI framework
and baseline algorithms (i.e., EIFPS and RiMOM) conducted on the OEAI ontology database is

DJENOURI et al. 21

T A B L E 3 The compared results recall, precision, and F-measure of Pattern mining for Ontology
Matching-based Instances (POMI), Extended Inverse Functional Property Suite (EIFPS), and RiMOM using
DBpedia varying from 20% to 100% of instances (%I) and data properties (%P) from 20% to 100%

POMI EIFPS RiMOM

% I %P Rec. Prec. F-meas. Rec. Prec. F-meas. Rec. Prec. F-meas.

20 20 0.97 0.95 0.96 0.97 0.94 0.95 0.98 0.95 0.96

50 0.97 0.95 0.96 0.92 0.92 0.92 0.95 0.93 0.94

80 0.97 0.95 0.96 0.90 0.91 0.90 0.93 0.92 0.92

100 0.97 0.95 0.96 0.88 0.90 0.89 0.89 0.90 0.89

50 20 0.96 0.94 0.95 0.93 0.92 0.92 0.95 0.92 0.93

50 0.96 0.94 0.95 0.89 0.87 0.88 0.91 0.89 0.90

80 0.96 0.94 0.95 0.87 0.84 0.85 0.89 0.86 0.87

100 0.96 0.94 0.95 0.85 0.82 0.83 0.87 0.83 0.85

80 20 0.95 0.92 0.93 0.90 0.89 0.89 0.91 0.90 0.90

50 0.95 0.92 0.93 0.88 0.86 0.87 0.89 0.88 0.88

80 0.95 0.92 0.93 0.82 0.80 0.81 0.83 0.81 0.82

100 0.95 0.92 0.93 0.78 0.75 0.76 0.80 0.79 0.79

100 20 0.94 0.90 0.92 0.85 0.82 0.83 0.87 0.86 0.86

50 0.94 0.90 0.92 0.83 0.81 0.82 0.84 0.82 0.83

80 0.94 0.90 0.92 0.78 0.75 0.76 0.80 0.77 0.78

100 0.94 0.90 0.92 0.74 0.70 0.72 0.73 0.72 0.72

compared in Table 3. The POMI framework exceeded the other two algorithms on quality (recall,
precision, and F-measure) in all the cases by changing the percentage of the data properties and
the percentage of instances from 20% to 100% in all the cases except in the first case that included
20% of databases and instances. This also shows that the increase in data properties and the num-
ber of instances did not affect POMI quality. Thus, the POMI quality was up to 92%, while the
EIFS quality and the RiMOM quality were below 70% and 72%, respectively. These results were
achieved by the pattern mining techniques that obtained the most relevant data properties of
ontologies.

5.2 Performance on OAEI

In this experiment, the scalability of the COMI and POMI frameworks were evaluated. Several
criteria, such as the quality of the solutions, the computational cost (i.e., runtime), and memory
usage, were evaluated on the OAEI ontology databases. Standard Java API was used in the exper-
iments to show the memory usage of the compared algorithms. Results in Table 4 present the
F-measure, CPU time, and memory usage of POMI and COMI under various ontology databases
and strategies (i.e., exhaustively enumerates all possible matching of the two ontologies). As
shown, POMI achieved the best results compared to the other two strategies in terms of F-measure
for 15 and 18 cases. The quality of POMI in all the cases was up to 92%, while the quality of the

22 DJENOURI et al.

T A B L E 4 A comparison of the F-measure, CPU (sec.), and memory usage (MB) of the three approaches
(Exhaustive, clustering for ontology matching-based instances [COMI], and Pattern mining for Ontology
Matching-based Instances [POMI])

Exhaustive COMI POMI

CPU CPU CPU
Data F-meas. Time Mem. F-meas. Time Mem. F-meas. Time Mem.

Dis1 0.76 3.25 115 0.84 2.12 95 0.93 2.61 102

Dis2 0.77 4.26 158 0.88 3.91 112 0.95 3.99 115

Rec1 0.79 5.21 136 0.93 4.96 118 0.97 4.99 119

Rec2 0.75 7.12 159 0.91 6.02 124 0.96 6.15 126

ID1 0.79 6.15 171 0.92 6.36 105 0.98 6.21 101

ID2 0.80 10.23 166 0.91 9.12 99 0.95 9.02 103

Sim1 0.74 12.98 147 0.91 10.12 113 0.95 9.85 117

Sim2 0.72 14.13 151 0.90 10.18 88 0.94 11.02 92

O101 0.74 11.02 110 0.92 11.00 101 0.93 10.02 97

O104 0.73 14.15 187 0.94 12.25 102 0.92 13.02 95

O202 0.81 18.69 84 0.92 17.65 111 0.93 14.23 88

O230 0.82 19.36 82 0.95 21.02 78 0.92 18.26 67

B000 0.89 8.26 83 0.95 9.26 87 0.95 10.29 93

B104 0.81 12.25 112 0.96 4.12 92 0.95 5.26 89

P11 0.83 5.26 129 0.97 4.26 81 1.0 3.77 85

P12 0.85 12.25 127 0.97 10.25 83 1.0 9.36 81

P21 0.84 11.29 124 0.98 12.03 80 1.0 8.76 78

P22 0.87 15.23 119 0.99 12.36 75 1.0 13.62 77

COMI and exhaustive was less than 84% and 72%. These results were achieved with the knowledge
discovered by POMI, which allowed the dimensional space of ontology databases to be reduced
better. The results also showed that the memory usage and runtime performance of both COMI
and POMI converged to the same values. The exhaustive approach, however, achieved the worst
results of both measures, which can be attributed to the fact that the exhaustive strategy listed all
the combinations without increasing the search process. The other two strategies enhanced the
exploration of solution space by using the clusters and the relevant discovered patterns.

5.3 Case study on smart-city semantic modeling

The last set of experiments aimed to show the ability of COMI and POMI algorithms to deal with
semantic modeling in smart-city environments. While plenty of proposals have been made related
to smart-cities data, the semantic modeling from these data is an open research problem in the
smart-city community. In this study, we deal with this challenging issue by applying the ontol-
ogy matching process on the smart-city data described in http://www.noaa.org/. Table 5 shows

DJENOURI et al. 23

T A B L E 5 A comparison of F-measure and CPU of pattern mining for ontology matching-based instances
(POMI), clustering for ontology matching-based instances (COMI), and the RiMOM using the smart-city data by
varying both the percentage of instances (%I) and the percentage of the data properties (%P) from 20% to 100%

POMI COMI RiMOM

% I %P F-measure CPU (s) F-measure CPU (s) F-measure CPU (s)

20 20 0.97 0.95 0.96 0.97 0.94 0.95

50 0.97 0.95 0.96 0.92 0.92 0.92

80 0.97 0.95 0.96 0.90 0.91 0.90

100 0.97 0.95 0.96 0.88 0.90 0.89

50 20 0.96 0.94 0.95 0.93 0.92 0.92

50 0.96 0.94 0.95 0.89 0.87 0.88

80 0.96 0.94 0.95 0.87 0.84 0.85

100 0.96 0.94 0.95 0.85 0.82 0.83

80 20 0.95 0.92 0.93 0.90 0.89 0.89

50 0.95 0.92 0.93 0.88 0.86 0.87

80 0.95 0.92 0.93 0.82 0.80 0.81

100 0.95 0.92 0.93 0.78 0.75 0.76

100 20 0.94 0.90 0.92 0.85 0.82 0.83

50 0.94 0.90 0.92 0.83 0.81 0.82

80 0.94 0.90 0.92 0.78 0.75 0.76

100 0.94 0.90 0.92 0.74 0.70 0.72

the results of the three approaches (POMI, COMI, and RiMOM), where the percentages of the
instances and the properties varied from 20% to 100%. The results revealed that the COMI and
POMI outperformed RiMOM in terms of runtime and solution quality. These results confirm
again the usefulness of COMI and POMI for solving the ontology matching problem and their
ability to deal with heterogeneous large-scale data. From our extensive experiments dealing with
smart-city data, some perspectives remain to be studied:

1. Outlier Detection: Many outliers were found in the experiments. These outliers reduced the
overall performance of the ontology matching process. It would be beneficial to remove them
in the preprocessing step. One solution is to apply the existing outlier detection algorithms,
such as the local outlier factor and k nearest neighbors. A local reachability distance between
properties and instances should be developed to adapt these algorithms for an ontology.

2. Crowdsourcing: Ontology matching solutions could identify different alignments from the
same data. The problem is how to decide which alignments are useful for the city planners.
A crowdsourcing approach may be applied to improve the usefulness of the detected align-
ment, where different ontology matching approaches should work together to identify the
best alignments delivered to city planners. Agents represented by approaches and programs
could find locally the alignments and send them to the city planners. Then, the city planners
could use crowd-sourcing environments to find the best alignment for the smart city semantic
modeling.

24 DJENOURI et al.

3. Missing of ground truth: Missing of the ground truth is a common problem in evaluating
ontology matching algorithms, in particular, for real scenarios, such as smart-city seman-
tic modeling. As challenges for future research regarding the quality assessment of ontology
matching results, the following issues and research questions remain to be addressed:

• Defining useful, publicly available benchmark smart-city data for semantic modeling prob-
lems is beneficial for analyzing the ontology matching algorithms.

• It would be very useful to identify the meaningful criteria for an internal evaluation
of ontology matching. One way to address this challenging issue is to provide unified
ranking-function scores to rank the alignments. These functions should be independent of
the whole process for identifying the best alignments.

6 CONCLUSIONS

This paper presented two new frameworks, called COMI and POMI, which are cluster-based and
pattern mining-based approaches, to solve the ontology matching problem. COMI utilizes the
clustering method to solve the matching problem among the ontologies, and it mainly consists
of two steps. The first step aims at grouping the highly correlated instances of each ontology into
similar clusters using the k-means approach. This is a preprocessing step and is only performed
once. Then, the extracted knowledge is then used to find the matching between the instances
within the ontologies. POMI selects the most frequent data properties that describe the overall
instances of that ontology and explore different correlations between data properties. To evaluate
the performance of COMI and POMI, several experiments were carried out on the DBpedia and
OEAI ontology databases. The experimental results showed that COMI is much faster than the
baseline EIFPS and RiMOM algorithms, and POMI gives good quality compared to EIFPS and
RiMOM. Furthermore, a case study on smart-city semantic modeling was given, demonstrating
the ability of COMI and POMI to deal with heterogeneous large-scale smart-city data. In our
future work, other data mining techniques, such as more pruning strategies69,70 and high-utility
pattern mining,19,71 could be used for extracting more relevant knowledge for helping the ontol-
ogy matching process. Using emergent HPC, such as GPU,72-74 to handle the very large-scale
ontology databases will also be considered as an extension of this in future works. In addition,
using the clustering in other semantic modeling such the integration of existing databases and
building of shareable databases are the further research topics in the future.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in DBpedia at
http://wiki.dbpedia.org/Datasets, OAEI at http://oaei.ontologymatching.org, Smart City Use case
at http://www.noaa.org/.

ORCID
Alberto Cano https://orcid.org/0000-0001-9027-298X
Jerry Chun-Wei Lin https://orcid.org/0000-0001-8768-9709

REFERENCES
1. Smith B, Ashburner M, Rosse C, et al. The OBO Foundry: coordinated evolution of ontologies to support

biomedical data integration. Nat Biotechnol. 2007;25(11):1251.

https://orcid.org/0000-0001-9027-298X
https://orcid.org/0000-0001-9027-298X
https://orcid.org/0000-0001-8768-9709
https://orcid.org/0000-0001-8768-9709

DJENOURI et al. 25

2. Cerón-Figueroa S, López-Yáñez I, Alhalabi W, et al. Instance-based ontology matching for e-learning material
using an associative pattern classifier. Comput Hum Behav. 2017;69:218-225.

3. Iwata T, Kanagawa M, Hirao T, Fukumizu K. Unsupervised group matching with application to cross-lingual
topic matching without alignment information. Data Min Knowl Disc. 2017;31(2):350-370.

4. Niu X, Rong S, Wang H, Yu Y. An effective rule miner for instance matching in a web of data. Paper presented
at: Proceedings of the ACM International Conference on Information and Knowledge Management. Maui,
HI, USA; 2012:10851-094.

5. Shao C, Hu L-M, Li Juan- Z, Wang Z-C, Chung T, Xia J-B. RiMOM-IM: a novel iterative framework for instance
matching. J Comput Sci Technol. 2016;31(1):185-197.

6. Del Vescovo C, Parsia B, Sattler U, Schneider T. The modular structure of an ontology: Atomic decomposition.
Joint Conf Artif Intell. 2011;22(3):2232.

7. Grau BC, Horrocks I, Kazakov Y, Sattler U. Modular reuse of ontologies: theory and practice. J Artif Intell Res.
2008;31:273-318.

8. Grau BC, Parsia B, Sirin E, Kalyanpur A. Modularity and web ontologies. Proceedings KR-2006. Menlo Park,
California, USA: AAAI Press; 2006:198-209.

9. Belhadi H, Akli-Astouati K, Djenouri Y, Chun-Wei LJ. Exploring pattern mining for solving the ontology
matching problem. Paper presented at: Proceedings of the European Conference on Advances in Databases
and Information Systems. Bled, Slovenia; 2019:85-93.

10. Belhadi H, Akli-Astouati K, Djenouri Y, Chun-Wei LJ. Data mining-based approach for ontology matching
problem. Appl Intell. 2020;50(4):1204-1221.

11. Amin MB, Batool R, Khan WA, Lee S, Huh E-N. SPHeRe. J Supercomput. 2014;68(1):274-301.
12. Thayasivam U, Doshi P. Speeding up batch alignment of large ontologies using MapReduce. Paper presented

at: Proceedings of the IEEE International Conference on Semantic Computing. Irvine, CA, USA; 2013:110-113.
13. Ochieng P, Kyanda S. A statistically-based ontology matching tool. Distrib Parallel Databases.

2018;36(1):195-217.
14. Xue X, Pan J-S. An overview on evolutionary algorithm based ontology matching. J Inf Hiding Multimed Signal

Process. 2018;9:75-88.
15. Acampora G, Loia V, Salerno S, Vitiello A. A hybrid evolutionary approach for solving the ontology alignment

problem. Int J Intell Syst. 2012;27(3):189-216.
16. Xue X, Liu J. Collaborative ontology matching based on compact interactive evolutionary algorithm.

Knowl-Based Syst. 2017;137:94-103.
17. Belhadi H, Akli-Astouati K, Djenouri Y, Chun-Wei LJ, Wu JMT. GFSOM: genetic feature selection for ontol-

ogy matching. Paper presented at: Proceedings of the International Conference on Genetic and Evolutionary
Computing. Changzhou, China; 2018:655-660.

18. Carpineto C, Osiński S, Romano G, Weiss D. A survey of web clustering engines. ACM Comput Surv (CSUR).
2009;41(3):17.

19. Djenouri Y, Djenouri D, Chun-Wei LJ, Belhadi A. Frequent itemset mining in big data with effective single
scan algorithms. IEEE Access. 2018;6:68013-68026.

20. Belhadi A, Djenouri Y, Lin J, Zhang C, Cano A. Exploring pattern mining algorithms for hashtag retrieval
problem. IEEE Access. 2020;8:10569-10583.

21. Belhadi A, Djenouri Y, Lin J, Cano A. A general-purpose distributed pattern mining system. Appl Intell.
2020;50:2647-2662.

22. Djenouri Y, Belhadi A, Fournier-Viger P, Chun-Wei LJ. Fast and effective cluster-based information retrieval
using frequent closed itemsets. Inf Sci. 2018;453:154-167.

23. Djenouri Y, Zimek A. Outlier detection in urban traffic data. Paper presented at: Proceedings of the Interna-
tional Conference on Web Intelligence, Mining and Semantics. Novi Sad, Serbia; 2018:1-12.

24. Djenouri Y, Belhadi A, Fournier-Viger P. Extracting useful knowledge from event logs: a frequent itemset
mining approach. Knowl-Based Syst. 2018;139:132-148.

25. MacQueen J. Some methods for classification and analysis of multivariate observations. Berkeley Symp Math
Stat Probab. 1967;1(14):281-297.

26. Djenouri Y, Comuzzi M, Djenouri D. SS-FIM: single scan for frequent itemsets mining in transactional
databases. Paper presented at: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Jeju, Korea; 2017:644-654.

26 DJENOURI et al.

27. Shvaiko P, Euzenat J. Ontology matching: state of the art and future challenges. IEEE Trans Knowl Data Eng.
2013;25(1):158-176.

28. Otero-Cerdeira L, Rodríguez-Martínez FJ, Gómez-Rodríguez A. Ontology matching: a literature review. Expert
Syst Appl. 2015;42(2):949-971.

29. Abubakar M, Hamdan H, Mustapha N, Aris TNM. Instance-based ontology matching: a literature review.
Paper presented at: Proceedings of the International Conference on Soft Computing and Data Mining. Johor,
Malaysia; 2018:455-469.

30. Nentwig M, Hartung M, Ngonga NA-C, Rahm E. A survey of current link discovery frameworks. Semantic
Web. 2017;8(3):419-436.

31. Li J, Wang Z, Zhang X, Tang J. Large scale instance matching via multiple indexes and candidate selection.
Knowl-Based Syst. 2013;50:112-120.

32. Wang Z, Li J, Zhao Y, Setchi R, Tang J. A unified approach to matching semantic data on the web. Knowl-Based
Syst. 2013;39:173-184.

33. Alam M, Recupero DR, Mongiovi M, Gangemi A, Ristoski P. Event-based knowledge reconciliation using
frame embeddings and frame similarity. Knowl-Based Syst. 2017;135:192-203.

34. Rosaci D. CILIOS: connectionist inductive learning and inter-ontology similarities for recommending infor-
mation agents. Inf Syst. 2007;32(6):793-825.

35. Rosaci D. Finding semantic associations in hierarchically structured groups of web data. Form Asp Comput.
2015;27(5-6):867-884.

36. Elmagarmid AK, Ipeirotis PG, Verykios VS. Duplicate record detection: a survey. IEEE Trans Knowl Data Eng.
2007;19(1):1-16.

37. Ochieng P, Kyanda S. A K-way spectral partitioning of an ontology for ontology matching. Distrib Parallel
Databases. 2018;36:643-673.

38. Tran Q-V, Ichise R, Ho B-Q. Cluster-based similarity aggregation for ontology matching. Ontol Matching.
2011;814:142-147.

39. Algergawy A, Massmann S, Rahm E. A clustering-based approach for large-scale ontology matching. Paper
presented at: Proceedings of the East European Conference on Advances in Databases and Information
Systems. Vienna, Austria; 2011:415-428.

40. Bellini P, Benigni M, Billero R, Nesi P, Rauch N. Km4City ontology building vs data harvesting and cleaning
for smart-city services. J Vis Lang Comput. 2014;25(6):827-839.

41. Qiu J, Chai Y, Liu Y, Gu Z, Li S, Tian Z. Automatic non-taxonomic relation extraction from big data in smart
city. IEEE Access. 2018;6:74854-74864.

42. Le-Phuoc D, Quoc HNM, Quoc HN, Nhat TT, HM. The graph of things: a step towards the live knowledge
graph of connected things. J Web Semant. 2016;37:25-35.

43. Qiu J, Chai Y, Tian Z, Du X, Guizani M. Automatic concept extraction based on semantic graphs from big data
in smart city. IEEE Trans Comput Soc Syst. 2019;7(1):225-233.

44. Mohammadi M, Hofman W, Tan Y-H. A comparative study of ontology matching systems via inferential
statistics. IEEE Trans Knowl Data Eng. 2019;31(4):615-628.

45. Mohammadi M, Atashin AA, Hofman W, Tan Y. Comparison of ontology alignment systems across single
matching task via the McNemar test. ACM Trans Knowl Discov Data. 2018;12(4):51.

46. Heflin J, Song D. Ontology instance linking: towards interlinked knowledge graphs. Paper presented at:
Proceedings of the AAAI Conference on Artificial Intelligence. Phoenix, Arizona USA; 2016:4163-4169.

47. Jean-Mary YR, Shironoshita EP, Kabuka MR. Ontology matching with semantic verification. Web Semant Sci
Serv Agents World Wide Web. 2009;7(3):235-251.

48. Saïs F, Pernelle N, Rousset MC. Combining a logical and a numerical method for data reconciliation. J Data
Semant. 2009;XII:66-94.

49. Wang Z, Zhang X, Hou L, et al. RiMOM results for OAEI 2010. Ontol Matching. 2010;689:195-202.
50. Noessner J, Niepert M, Meilicke C, Stuckenschmidt H. Leveraging terminological structure for object reconcil-

iation. Paper presented at: Proceedings of the Extended Semantic Web Conference. Heraklion, Crete, Greece;
2010:334-348.

51. Suchanek FM, Abiteboul S, Senellart P. Paris: probabilistic alignment of relations, instances, and schema. Proc
VLDB Endow. 2011;5(3):157-168.

52. Song D, Heflin J. Domain-independent entity coreference for linking ontology instances. J Data Inf Qual.
2013;4(2):7.

DJENOURI et al. 27

53. Lacoste-Julien S, Palla K, Davies A, Kasneci G, Graepel T, Ghahramani Z. Sigma: Simple greedy match-
ing for aligning large knowledge bases. Paper presented at: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. Chicago, USA; 2013:572-580.

54. Xue X, Wang Y. Using memetic algorithm for instance coreference resolution. IEEE Trans Knowl Data Eng.
2016;28(2):580-591.

55. Xiao C, Wang W, Lin X. Ed-join: an efficient algorithm for similarity joins with edit distance constraints. Proc
VLDB Endow. 2008;1(1):933-944.

56. Song D, Heflin J. Automatically generating data linkages using a domain-independent candidate selection
approach. Paper presented at: Proceedings of the International Semantic Web Conference. Bonn, Germany;
2011:649-664.

57. Xiao C, Wang W, Lin X, Yu JX, Wang G. Efficient similarity joins for near-duplicate detection. ACM Trans
Database Syst. 2011;36(3):15.

58. Wang J, Li G, Feng J. Extending string similarity join to tolerant fuzzy token matching. ACM Trans Database
Syst. 2014;39(1):7.

59. Xue X, Liu J. A compact hybrid evolutionary algorithm for large scale instance matching in linked open data
cloud. Int J Artif Intell Tools. 2017;26(04):1750013.

60. Xue X, Chen J, Chen J, Chen D. Using compact coevolutionary algorithm for matching biomedical ontologies.
Comput Intell Neurosci. 2018;2018:2309587.

61. Djenouri Y, Djamel D, Djenoouri Z. Data-mining-based decomposition for solving MAXSAT problem: towards
a new approach. IEEE Intell Syst. 2017;32(4):48-58.

62. Agrawal R, Imieliński T, Swami A. Mining association rules between sets of items in large databases. ACM
SIGMOD Rec. 1993;22(2):207-216.

63. Brin S, Motwani R, Ullman JD, Tsur S. Dynamic itemset counting and implication rules for market basket
data. ACM SIGMOD Rec. 1997;26(2):255-264.

64. Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation. ACM SIGMOD Rec.
2000;29(2):1-12.

65. Barron A, Rissanen J, Yu B. The minimum description length principle in coding and modeling. IEEE Trans
Inf Theory. 1998;44(6):2743-2760.

66. Gouda K, Zaki MJ. Efficiently mining maximal frequent itemsets. Paper presented at: Proceedings of the
International Conference on Data Mining. San Jose, CA, USA; 2001:163-170.

67. Pei J, Han J, Mao R. Closet: an efficient algorithm for mining frequent closed itemsets. Paper presented at:
Proceedings of the ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.
Boston Massachusetts, USA; Vol 4, 2000:21-30.

68. Hosseini S, Kalam S, Barker K, Ramirez-Marquez JE. Scheduling multi-component maintenance with a
greedy heuristic local search algorithm. Soft Comput. 2020;24(1):351-366.

69. Djenouri Y, Drias H, Bendjoudi A. Pruning irrelevant association rules using knowledge mining. Int J Business
Intell Data Mining. 2014;9(2):112-144.

70. Djenouri Y, Chun-Wei LJ, Nørvåg K, Ramampiaro H. Highly efficient pattern mining based on transaction
decomposition. Paper presented at: Proceedings of the IEEE International Conference on Data Engineering.
Macao, China; 2019:1646-1649.

71. Chun-Wei LJ, Shao Y, Fournier-Viger P, Djenouri Y, Guo X. Maintenance algorithm for high average-utility
itemsets with transaction deletion. Appl Intell. 2018;48(10):3691-3706.

72. Mittal S, Vetter JS. A survey of CPU-GPU heterogeneous computing techniques. ACM Comput Surv (CSUR).
2015;47(4):69.

73. Cano A. A survey on graphic processing unit computing for large-scale data mining. Wiley Interdiscip Rev Data
Mining Knowl Discov. 2018;8(1):e1232.

74. Djenouri Y, Djenouri D, Belhadi A, Fournier-Viger P, Chun-Wei LJ, Bendjoudi A. Exploiting GPU parallelism
in improving bees swarm optimization for mining big transactional databases. Inf Sci. 2019;496:326-342.

How to cite this article: Djenouri Y, Belhadi H, Akli-Astouati K, Cano A, Lin JC-W.
An ontology matching approach for semantic modeling: A case study in smart cities.
Computational Intelligence. 2021;1–27. https://doi.org/10.1111/coin.12474

https://doi.org/10.1111/coin.12474
https://doi.org/10.1111/coin.12474
https://doi.org/10.1111/coin.12474

