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Abstract 

 The crystal plasticity theory predicts that hardening on a particular slip system and its 

corresponding work-hardening rate will depend on the slip activity on both this slip system 

and all others. The exact form of this dependence is defined by the latent hardening 

description in form of the latent hardening matrix or the interaction matrix. It has been 

assumed that this matrix describes the relative strength of various dislocation interactions and 

is therefore the same for a wide range of alloys with the same lattice structure. Different 

methods have been used to estimate the values of the interaction matrix components: one is 

experimental and uses strain-path changes; another simulates the dislocations dynamics in a 

crystal directly at the microscale and estimates the strength of the forming locks. In this work, 

the influence of the interaction matrix (and thus latent hardening) on the development of 

plastic anisotropy is studied. An extruded AA6060 alloy is tested in uniaxial tension in 

different directions and the anisotropy of the alloy is found to evolve considerably throughout 

the deformation. A crystal plasticity model is used to simulate the experimental tests, and the 

use of different interaction matrices is evaluated. A noticeable influence on the predicted 

evolution of plastic anisotropy as well as the stress-strain field and slip inside the constituent 

grains is found. 
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1 Introduction 

The mechanisms of plastic deformation of metallic materials at the microscale can be 

described by the crystal plasticity theory. Metals and alloys are crystalline materials and 

deform plastically by slip on specific crystallographic planes and directions denoted slip 

systems. The kinematics of this type of plastic deformation was first described by Taylor in 

[1, 2]. The plastic deformation accumulating on the slip systems leads to an increase in the 

resolved shear stress, i.e. the material work-hardens. The work-hardening in a crystal is 

particularly complex, because the slip resistance increases not only on the active but also on 

the non-active slip systems. The work-hardening of each slip system is therefore divided into 

self and latent hardening. The influence of latent hardening on the plastic deformation of a 

single crystal was observed already in [2], where the slip systems were activated or remained 

inactive depending not only on the orientation of the crystal but also on its deformation 

history. The response of a polycrystal depends on the properties of the constituent crystals and 

will also be affected by latent hardening. Therefore, predicting the properties of a polycrystal 

depends, among other things, on a good prediction of the latent hardening. This problem has 

been approached in different ways. The basic assumption that all non-active systems harden 

similarly was used in phenomenological models [3-5], where the self and latent hardening 

were described using two independent components. A more complex approach within the 

phenomenological framework was used in [6].  

 In [7] Taylor proposed a relationship between the resolved shear stress on the slip 

systems and the dislocation density in the crystal. It was combined with an equation that 

described the evolution of the dislocation density in [8] and [9], formulated for global stress 

and strain in the material. Later in [10] it was modified by accounting for dislocation densities 

on different slip systems. In this model, the dislocations interact with each other and get 

pinned on each other, forming different types of dislocation locks [11]. Depending on the 

relative position of the slip systems, these locks are divided into coplanar, collinear, Hirth 

(normal), glissile and sessile (Lomer-Cottrel) types. The relative strength of these locks 

combined together with the self-hardening, constitutes an interaction matrix with 6 

independent components. This matrix in principle defines both the flow stress (i.e. the stress 

which is necessary to overcome the lock and to start the dislocation movement and plastic 

deformation) and the hardening rate – the stronger the lock, the more easily the dislocations 

get caught into it, contributing to the work-hardening. Teodosiu [10] used a very simple 

interaction matrix, based on the assumption that the self-hardening was negligible compared 



to latent hardening, which was the same on all slip systems (a similar approach was used in 

[12] for modelling the plastic behaviour of copper). 

The interaction between different slip systems and latent hardening were studied 

experimentally in [13, 14] and [15] on aluminium single crystals and in [16] on copper. The 

method used consisted in deforming the specimen in order to activate some specific slip 

systems, followed by a change in deformation path and then measuring the resistance on the 

other slip systems. The results were not very accurate or consistent with each other, probably 

due to the complexity of the experimental procedure. However, some general conclusions 

were made: the interaction matrix was reduced to 4 independent components, corresponding 

to different types of locks and these components were arranged from strongest to weakest. 

Coplanar, collinear and Hirth types were united under one value. These results were used in 

[17-20]. The model used in the latter treated the interaction matrix for flow stress and 

hardening differently. It was assumed that the flow stress is dominated by the averaged short-

range interactions between dislocations and the interaction matrix in the strength expression 

was reduced to either one common coefficient or two – for self and latent hardening.  

 A new approach, which uses advances in computational mechanics, has been used to 

find the values of the interaction matrix components. It uses dislocation dynamics 

simulations, where the dislocations in a deforming crystal are modelled explicitly as moving, 

interacting linear defects in the lattice. In [21-23] the components of the interaction matrix 

were obtained by this method. The results were not consistent with [13]: the collinear 

interactions were shown to be much stronger than other types and merging coplanar, collinear 

and Hirth type interactions into one matrix component was shown to be unreasonable. Though 

these results were obtained under some strict assumptions (small strains, elastic constants and 

other material parameters for pure copper) they provide a way to estimate the interaction 

matrix for any face centred-cubic (FCC) metal.  

 In [24] the strain-path change approach was used again to try to find the interaction 

matrix of an FCC material in the light of these new results. Copper specimens were subjected 

to strain-path change (from pure shear to uniaxial tension) and the obtained stress-strain data 

were used to calibrate a model similar to the one proposed by Teodosiu [10, 25] and a 

phenomenological model relying on local hardening.  

 The crystal plasticity models have been known and used in the modelling of single 

crystals and polycrystals for a long time, thus the latent hardening has been also studied and a 

large volume of experimental results has been accumulated. However, what the actual latent 

hardening matrix (or interaction matrix) for any given material is still remains an open 



question. The results obtained with different experimental and numerical procedures are quite 

different from each other. On the other hand, the obtained results are not tested on different 

kinds of loading conditions and materials. As stated above, the latent hardening is an 

important factor in the plastic deformation of a crystal and its influence should probably 

express itself in a variety of ways, not limited to the case of changing strain-paths.  

 In the present work, an experimental study is performed for an extruded aluminium 

alloy AA6060 in temper T4 with strong cube texture. Tensile tests are carried out in different 

material directions of the flat profile using cylindrical samples. The average true stress and the 

average true strain within the minimum cross-section are measured to failure. The 

experiments show that the anisotropy in flow stress and plastic flow is not constant but 

evolves considerably throughout the whole deformation process. To evaluate the influence of 

the interaction matrix (or latent hardening) on the predicted plastic anisotropy, these tests are 

modelled using the crystal plasticity finite element method (CP-FEM) with different 

interaction matrices and the predicted global response is compared to the experimental one. 

The local response at the level of the slip systems obtained in the CP-FEM simulations with 

different interaction matrices is also discussed.   

The article is organised as follows. The mechanical tests on the extruded aluminium 

alloy AA6060 in temper T4 are described in Section 2. A review of the adopted crystal 

plasticity models is given in Section 3, while the finite element modelling is described in 

Section 4. The procedure of the calibration of the crystal plasticity models is presented in 

Section 5 using corrected data from the mechanical tests. Section 6 presents the results from 

the experimental and numerical studies and discusses the findings. Conclusions are provided 

in Section 7. 

2 Experimental results 

2.1 Choice	of	the	material	and	its	microstructure	

The material, which was used as a model material, is the AA6060 aluminium alloy in 

T4 temper, delivered as an extruded flat profile with 10 mm thickness and 90 mm width. 

There are several reasons for choosing this alloy and heat treatment for this study. It is a 

recrystallized material with large equiaxed grains (see Figure 1), so that the influence of grain 

morphology on the material properties is small. The material is very ductile, so that the stress-

strain curve for strains up to 140% may be obtained. The T4 temper corresponds to heating 

the material at 540°C in salt bath for 15 min, followed by water quenching and storage at 



room temperature for prolonged time. This makes sure that Mg and Si, which are the primary 

alloying elements, are present in the alloy in form of solid solution and GP-zones/clusters, 

while precipitate particles are not formed during natural ageing. Depending on their size, the 

precipitates may act as a source for geometrically necessary dislocations during plastic 

deformation, in addition to the statistically stored dislocations [26], which cannot be described 

by the work-hardening rules adopted in this work.  

The chemical composition of the alloy is given in Table 1. The material was analysed 

in the scanning electron microscope using electron back-scattering diffraction (EBSD) and 

EDAX TSL OIM software to provide grain morphology and texture. The grain morphology 

and the Orientation Distribution Function (ODF) are presented in Figure 1 and Figure 2, 

respectively. The EBSD measurements were carried out in the plane defined by the extrusion 

and normal directions of the profile, using 10 µm steps on a square grid. The ODF was 

calculated from the pole figures in the EDAX TSL OIM software using a harmonic series 

expansion and triclinic sample symmetry [27]. The total number of measured orientations (or 

grains) in the sample is 2611. The main component of the texture is a strong cube texture with 

a minor Goss component. Both the texture and the grain morphology are typical for 

recrystallized alloys.  

2.2 Mechanical	tests	

The tensile specimens were obtained from the extruded flat profile at different angles 

   to the extrusion direction with 22.5° interval (i.e.,   equals 0°, 22.5°, 45°, 67.5° and 90°). 

Three specimens were tested for each direction, giving a total of 15 tests. The specimen 

geometry is shown in Figure 3. A rectangular coordinate system xyz  is defined such that the 

x -axis is in the transverse direction and the y -axis is in the longitudinal direction of the 

specimen, while the z -axis is always in the thickness direction of the extruded profile. Two 

laser gauges were measuring the diameters of the specimens in the width and thickness 

directions at high frequency during the tests, so the minimum diameters before and after 

necking are known with high accuracy. If we denote the measured diameters xD  and zD , and 

assume that the deformed cross section is elliptical in shape (which is a reasonable 

assumption for an orthotropic material), then we may find the current cross-section area as  
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The true (Cauchy) stress is found as  
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where F  is the measured tensile force. If we also assume plastic incompressibility, the 

logarithmic strains may be expressed as 
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where 0D  and 2
0 04A D  are the initial diameter and cross-section area of the specimen, 

respectively. The logarithmic strain is also used further in this work. The strain ratio is 

defined as  
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which equals unity for isotropic materials.  

The results from the tensile tests are presented in Figure 4 and Figure 5. Figure 4a) 

presents representative true stress-strain curves to failure, whereas the scatter between parallel 

tests is displayed in Figure 4b). These results clearly demonstrate the anisotropic work-

hardening of the AA6060 alloy. Figure 5a) presents the plastic flow in terms of the strain in 

the transverse direction of the tensile specimen as a function of the thickness strain. The 

thickness direction of the specimen always coincides with the thickness direction of the 

profile, while the width direction of the specimen is rotating and coincides with the width 

direction of the profile for the 0° orientation and with the extrusion direction for the 90° 

orientation. The strain ratio as function of tensile strain and tensile direction is plotted in 

Figure 5b). The anisotropy of the plastic flow is initially very strong but diminishes with 

tensile straining due to texture evolution. Since the results for the three specimens of each 

orientation are very close to each other, a representative curve for each orientation is shown 

and used further. 

3 Constitutive modelling  

3.1 Single	crystal	kinematics	and	kinetics	

 The finite deformation formulation is used. The total deformation of the crystal from 

the initial configuration 0  to the current configuration   is mapped by the deformation 

gradient tensor F , which may be multiplicatively decomposed into elastic and plastic parts 

[28]   



 e pF F F   (5) 

where pF  maps the transformation between the initial configuration 0  and the intermediate 

plastically deformed configuration  , and eF maps the transformation from   to  . Thus, 

pF  accounts for plastic slip and eF  accounts for elastic deformations and rigid body 

rotations. The slip systems in the initial and intermediate configurations are defined by 

vectors 0
m  and 0

n  — the slip direction and slip plane normal, respectively. These vectors 

are connected to the lattice and remain unchanged by pF , while eF  transforms them into 

current configuration vectors m  and n . Here   identifies the relevant slip system. The 

plastic velocity gradient in the intermediate configuration pL  is defined as  
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where   is the slip rate on slip system   and n  is the total number of slip systems (12 in the 

case of an FCC lattice). The elastic Green strain tensor eE  in the intermediate configuration is 

defined as  
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where eC  is the elastic right Cauchy-Green deformation tensor and I  is the unity tensor. The 

second Piola-Kirchhoff stress tensor S  in the intermediate configuration may be found from 

the Cauchy stress tensor σ  as 
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This stress is power conjugate with the elastic Green strain tensor eE  and may be found from 

the hyperelastic law 
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where S
elC  is the tensor of elastic moduli. In the case of orthotropic symmetry it is defined by 

three independent components, describing the elastic anisotropy of the crystal.  

 The stress acting on the slip systems and power conjugate with the slip rate   is the 

resolved shear stress  . It is found from the second Piola-Kirchhoff stress tensor as 

  0 0:e    C S m n   (10) 



3.2 Flow	and	hardening	rules	

 The flow rule used here is the well-known viscoplastic rule [29] which controls the 

activation of the slip systems 
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where 0  is the reference slip rate, m  is the slip rate sensitivity parameter and c
  is the slip 

resistance of slip system  .  

 The Teodosiu-type hardening models use the dislocation density as the hardening 

parameter. Then the hardening of slip system   is described by an equation proposed in [7] 

and [10]: 
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where a  is a dimensionless coefficient,   is the elastic shear modulus, b  is the length of the 

Burgers vector,   is the dislocation density on slip system  , and d  is the interaction 

matrix, showing the relative strength of interaction between the dislocations on slip systems 

  and  . The initial slip resistance 0  is assumed to be the same on all slip systems. The 

dislocation density   is assumed to have initially a negligibly small positive value. The 

dislocation density evolves according to [9, 10] 
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where K  is a dimensionless parameter that defines the accumulation of dislocations, cy  is the 

distance at which two dislocations with opposite Burgers vectors annihilate each other. g  is 

the interaction matrix, similar to d , but in this case the strength of dislocation interaction 

defines the accumulation of forest dislocations on slip system   depending on the dislocation 

density on system  . The total number of components in each of the interaction matrices g  

and d  matrix is 144. The number of independent components is 6, corresponding to 

different types of the slip systems mutual orientations. The interaction matrix g  is given 

explicitly in Table 2; the interaction matrix d  has an analogous structure. 



 The phenomenological models describe work-hardening on slip systems with some 

convenient function. The latent hardening description is usually simpler than in the Teodosiu-

type models and is limited to one matrix, connecting hardening rate with slip rate. As a typical 

example of the phenomenological model with this latent hardening description we consider 

the two-term Voce rule 
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where q  is the matrix of self-hardening and latent-hardening coefficients, and the 

accumulated slip   is defined by the evolution equation 
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The master hardening rate     is defined as 
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where k  and k  are material parameters. The initial slip resistance 0c
  is assumed equal for 

all slip systems.  

 In the numerical implementation of the single crystal plasticity model into the finite 

element method, one element may either represent a part of a grain (or possibly the whole 

grain) or it may represent many grains. In the latter case, the full-constraint Taylor method is 

used here to compute the element stresses. The full-constraint Taylor-type homogenisation 

assumes a constant deformation gradient throughout all the grains of a polycrystal, ignoring 

stress equilibrium, and the total stress is obtained as a simple average of the stresses in the 

grains: 
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where gσ  is the Cauchy stress in grain g , and gn  is the total number of grains. The grains are 

assumed to have equal volume.  

4 Finite element modelling 

 The uniaxial tensile test was modelled using the finite element method. In all 

simulations the solid linear eight node “brick” elements with selectively reduced integration 



were used. This type of finite elements is usually avoided in the context of crystal plasticity 

simulations. The main reason for this is that the actual grains or their representation with 

Voronoi tessellations are too complex to represent with a mesh consisting of regular 

hexahedra, so the grain volume and grain boundary shape will be only approximated, while 

the tetrahedral elements may represent them accurately. Still, as it was found in [30], the use 

of hexahedral elements in crystal plasticity simulations does not affect the global response of 

a modelled polycrystal. Considering the local response, the use of tetrahedral elements is 

necessary if the goal is to approximate a real polycrystal grain morphology as precisely as 

possible. On the other hand, if the goal is to model some representative polycrystal, e.g. 

consisting of equiaxed grains with similar volume, then the choice of element type is not as 

critical. The representation of grain boundaries in such models is usually rather simplified and 

abstract, and there is no evidence that the smooth grain boundary of tetrahedral mesh is 

substantially better than the jagged boundary of a hexahedral mesh in predicting the global 

stress-strain response. The hexahedral element also has an advantage of numerical efficiency. 

The linear tetrahedral elements give a noticeably stiff solution compared to quadratic 

tetrahedral or linear hexahedral [31], while the number of degrees of freedom for a linear 

hexahedral element is lower than for a quadratic tetrahedral (8 nodes against 10). In our case, 

the polycrystal was represented by cubic “grains” of equal volume, i.e. equal number of 

elements per grain.  

 The finite element program LS-DYNA was used for all simulations. The crystal 

plasticity material model was implemented as a user-material subroutine [32]. The subroutine 

utilizes an explicit integration scheme by Grujicic and Batchu [33]. Explicit integration of the 

momentum equations was used with mass scaling to reduce computation time.  

 The response of the material was studied by using a representative volume element 

(RVE) with periodic boundary conditions. In some cases the Taylor type homogenisation was 

used to reduce computation time. In this case, one element was used as an RVE and periodic 

boundary conditions were applied to its nodes. The tensile tests in different directions were 

simulated by rotating the texture around the z -axis (i.e. the thickness direction) by the 

appropriate angle. The texture was represented by a set of 1000 orientations, picked randomly 

from the total set of 2611 measured orientations. To ensure that this set represents the total 

texture well, several sets were picked in this way and ODFs were created for them. The 

difference in ODFs was insubstantial.  

 Several meshes with different number of elements representing each grain were tested. 

The corresponding stress-strain curves are shown in Figure 6, using parameters identified 



below and the interaction matrix of Fivel et al. [18]. If more than 1 element per grain is used, 

the gradients of the stress-strain fields inside the grains may be modelled. The higher mesh 

resolution allows for better compatibility of the neighbouring grain deformations, relaxing the 

resulting local stresses and reducing the global average stress. The difference between the 

global response of a mesh with 8000 elements and meshes with 27000 or 64000 elements is 

not very large, while the computation time is roughly proportional to the number of elements. 

In the following, the Taylor model was used only for the identification of the parameters of 

the different hardening rules due to its computational efficiency. A mesh with 8000 elements 

was used for all other simulations where each grain was represented by 8 elements, see Figure 

7.  

5 Parameter identification 

5.1 Stress	correction	after	necking	

The above described numerical setup provides the framework for uniaxial tension, 

where the only component of the stress tensor is the tensile stress. On the other hand, in the 

experiments the stress situation becomes complex after necking, with the triaxial stress field 

contributing to the true stress. To remove this influence and find the corrected stress, the 

following procedure was used. The specimen was modelled using the finite element method. 

The material was represented by a phenomenological plasticity model with anisotropic yield 

function [34] and isotropic hardening, described by a two-term Voce rule. The shape of the 

yield surface for the AA6060 material was found from the texture data using crystal plasticity 

and the full-constraint Taylor model [35]. The parameters in the Voce rule were determined 

through an optimization procedure using the LS-OPT software [36]. Simulation of the tension 

test was performed with different sets of parameters in the Voce rule. The true stress-strain 

curve was computed and compared with the experimental one. This was repeated until both 

curves were coinciding thus providing an optimum set of parameters for the Voce rule.  A 

detailed description of the procedure is given in [37].  

This procedure was used to find the corrected stress in the 90° orientation, which was 

taken as the reference direction. Let    denote the corrected stress at orientation    and let 

p
   be the corresponding logarithmic plastic strain. Since the 90° orientation is chosen as the 

reference direction, we will define the equivalent stress by 90eq   and the equivalent 



plastic strain by 90
p

eq   . The equivalent plastic strain for other orientations is defined from 

the incremental work relation 

   p p
eq eqdw d d        (18) 

where    and eq   are evaluated at the same level of specific plastic work pw .  

To find the corrected stress   in other directions, the Bridgman correction [38] was 

used, viz.  
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where a  is the minimum radius and R  is the radius of curvature of the neck. The geometry of 

the neck was estimated by the relation proposed by Le Roy et al. [39], i.e.  
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where p
u  is the logarithmic plastic strain at the start of necking at orientation   and k  is a 

parameter. This parameter was found for the 90° direction by fitting the corrected stress-strain 

curve found from Equation (19) to the equivalent stress-strain curve found from the 

optimization procedure described above. The obtained value of 0.45k   was then used for all 

other orientations, while p
u  was found directly from the directional tensile tests. The 

corrected stress-strain curves are presented in Figure 8.   

5.2 Parameters	of	crystal	plasticity	model	

 The second stage of the study was to identify the parameters of the crystal plasticity 

model. The parameters 0 ,  , m  and b  in Equations (11)–(13) may be found in [10] and 

[19]. However, of principal interest here are the components of the interaction matrices d  

and g  in addition to the parameter a . They were taken from different sources and may be 

divided into three categories. The first one proposed in [10] and [12] assumes that the latent 

hardening is dominating and equal for all dislocation locks. It was used in simulations of Cu 

behaviour but the same kind of arguments may be applied to Al as another FCC metal. The 

second one is the four-component interaction matrix g  in Equation (13) for the dislocation 

density evolution following the conclusions of Franciosi [13]. They are also usually 

normalized, so that the coefficient 5 1d  . In both above approaches the interaction matrix in 

Equation (12) is reduced to one or two components (for self and latent hardening). In the third 



category, both interaction matrices have six independent components. The values of the used 

matrices with corresponding references are given in Table 3 and Table 4. In the case of two-

term Voce hardening, the self-hardening is assumed equal to unity, while the latent hardening 

term ,q    is equal to 1.4, following the conclusions in [14]. This value is most widely 

used in the literature.   

 The remaining parameters are the work-hardening parameters K  and cy , or k  and k  

( 1,2k  ) in the case of the two-term Voce rule, which have to be fitted to the experimental 

data. This was done using the optimization program LS-OPT. As described previously, it fits 

the output of LS-DYNA (e.g. in form of a stress-strain curve) to a target curve (in this case 

the experimental equivalent stress-strain curve in the 90° direction) by varying chosen 

parameters of the LS-DYNA simulations (in this case K  and cy  or k  and k ). After 

calculating the mean squared error between the simulated and target curves it adjusts the 

parameters in such a way that the error is reduced at the next iteration. During this procedure 

LS-DYNA simulations are run many times, so the numerical model needs to be rather 

efficient, if the optimization process is to be finished in reasonable time. Therefore, the full-

constraint Taylor model was used. The use of this homogenisation procedure against others, 

like the relaxed-constraint Taylor model and the viscoplastic self-consistent model is 

discussed in [40, 41].  

 The initial slip resistance 0 is assumed to be equal for all the models. It was found 

through the aforementioned fitting procedure, where 0  was the only variable, using the two-

term Voce work-hardening rule – it is the most computationally efficient model – and used for 

all models. For this material 0 27 MPa  . 

 The results of the optimization procedure are presented in Table 5 and Table 6. One 

may notice that for the interaction matrices with similar structure (i.e. the 6 or 4 component 

matrix) the K  and cy  parameters are also similar. The stress-strain curves obtained with 

different matrices, compared to the experimental target curve are presented in Figure 9. By 

varying just two parameters, it was possible to fit the crystal plasticity models to the 

experimental target curve, with only small discrepancies between the models with different 

matrices. This provides a common reference point for their comparison. Then uniaxial tension 

in different material directions was simulated, using these work-hardening parameters and the 

8000 element mesh described above. 



6 Results and discussion 

 To represent the in-plane anisotropy of the material, the flow stress ratio / eq   is 

plotted against the orientation angle   for given values of the equivalent plastic strain eq . It 

is recalled that 90eq   and further that the stresses are evaluated at the same value of the 

specific plastic work p pw d    . The experimental results are shown in Figure 10 for 

different amounts of plastic work. The plastic anisotropy of the material obviously evolves 

considerably from the point of yielding to fracture (which happens at strain around 100% for 

the 45° orientation). The general trend is that the flow stress ratio exhibits a maximum at 0° 

and a minimum at 22.5° at the early stages of deformation which changes into a maximum at 

45° and a minimum at 0° at large deformations. One possible reason for the shift from 

maximum to minimum at 0° could be high initial values of the dislocation density on the slip 

systems activated when loading is in this direction.  

The evolution of the anisotropy in plastic flow may be evaluated from Figure 5a), 

displaying the logarithmic strain x  in the width direction of the specimen against the 

logarithmic strain z  in the thickness direction of the extruded profile, or in Figure 5b) 

presenting the strain ratio yr  as function of tensile strain and tensile direction. It is seen that 

yr  differs between the different orientations at small strains, while at larger strains yr  tends to 

approximately unity for all orientations. This type of behaviour may be expected from a 

ductile polycrystal. The slip in the constituent grains has to be kinematically compatible with 

the extension of the specimen, which leads to grain rotations. The flow of the polycrystal is a 

combination of the material flow in the constituent grains, so these rotations lead to its 

evolution. In addition, the rotations change the resolved shear stress on the slip systems, so 

that new systems may activate, or the old ones may deactivate. 

 The flow stress ratios / eq   obtained with crystal plasticity and different interaction 

matrices are compared to the experimental data in Figure 11 to Figure 16. The yield stress 

anisotropy (which in the current approach was assumed to be only texture dependent), i.e. 

flow stress ratio measured at 0.2% plastic strain, is practically the same for all models (see 

Figure 11), but the flow stress ratios start to diverge already at 1% equivalent plastic strain. 

The general trend in all the CP models is similar to the experimental one, with a minimum at 

the 22.5° orientation at smaller strains and a maximum at 45° for larger strains. An important 

difference between simulations and experiments is that the predictions, which are based on 



the assumption of equal initial slip resistance and the measured crystallographic texture, 

generally give a lower flow stress ratio at the 0° direction than observed in the experiments. 

The minimum at 22.5° disappears completely from the experimental curves, but remains, 

though reduced, in the CP models. The maximum at 45 ° is quite overestimated by the 

interaction matrices after Gérard et al. [24] and Devincre et al. [23]. The simple latent 

hardening matrix of the two-term Voce law gives the same basic trend as the dislocation 

density based models.    

 The strain ratio yr  obtained for the different interaction matrices is compared to the 

experimental data in Figure 17. The variation between the responses for different models here 

is noticeable, but lower than the variation of the flow stress ratio. The CP models fit quite well 

with the experimental results both with respect to the initial value of the strain ratio and its 

evolution. The largest discrepancy between simulations and experiments occurs at the 0° and 

45° orientations.  

 The results may be explained using the crystal plasticity theory for the constituent 

crystals of the specimen. For the most part of the aggregate the crystals undergo extension in 

one direction, which for most orientations may be provided by slip on one or two particular 

slip systems. The other deformations, namely the accommodation of deformation between 

different grains, have much smaller magnitude and are provided by slip of lesser magnitude 

on three other systems. Therefore, most of the time, the majority of slip activity is dependent 

only on the orientation of the crystals. This gives the resulting general trends in both stress 

anisotropy and strain ratio evolution which are similar for all models. On the other hand, 

many grains after some deformation will orient in such a way that several different slip 

systems may become active (the stress in these grains will reach the vertex of the crystal’s 

polyhedral yield surface). Then, what system will get activated and what will not, depends on 

the evolved slip resistances of the slip systems and therefore on the latent hardening of the 

crystal. The slip systems that provide the accommodation of deformation of different grains 

may also be not unique to the crystal orientation, and will as well depend on the latent 

hardening description. Different slip systems activated will give variation in grain rotations 

and consequently strains and stresses. Therefore the models with different latent hardening 

matrices demonstrate some noticeable differences in plastic behaviour on the polycrystal 

level. 

 The differences on single crystal level are much more substantial. In the case of the 6-

component interaction matrix, and especially the matrix of Gérard et al., the maximum local 



von Mises stress, at any deformation, was more than twice as high as the global stress, while 

for the two-term Voce model and the 4-component matrix this difference was around 50%. 

The high local stresses are a result of the structure of the work-hardening rule. For the two-

term Voce rule and the 4-component matrix the slip resistance of a slip system is calculated 

by averaging the internal variable (dislocation density or master hardening rate) on all other 

slip systems by lumping them all into the latent hardening category and assigning the same 

weight: the d  matrix for the 4-component matrix models includes either one or two 

independent components and q  for the two-term Voce rule includes two – for latent and 

self-hardening. On the other hand, in the 6-component models the influence of the slip 

systems on each other is much more complex, because the same 6-component matrix is used 

both for the dislocation density and the slip resistance calculations ( d  and g  for them are 

assumed to be the same). In addition, for all three 6-component models considered, the 

proportion between the largest and the smallest component of the interaction matrix is from 

around 10 for the matrix of Devincre et al. to 1400 for the matrix of Gérard et al. This creates 

a situation where for some orientations the crystal has to slip on a certain set of slip systems 

(by geometrical constraint), but this set, through the interaction matrix, is hardening much 

faster than the same slip system sets in other grains for the same material. This leads to some 

peculiar behaviour, when similar responses of a polycrystal are provided by very dissimilar 

local plastic response. A particularly interesting question would be to prove experimentally 

which type of latent hardening is closer to the physical reality. 

  To test the validity of the hypothesis that the initial dislocation density may skew the 

stress anisotropy out of the texture defined pattern, simulations were performed with 

increased initial density on the slip system A2 for the matrices of Devincre et al. and Gérard 

et al. The 4-component matrix models were not used, because in these cases, the different 

initial dislocation densities on different slip system do not play a significant role in the 

anisotropy of the plastic flow for the already discussed reason of “averaging”. The results are 

presented on Figure 12 to Figure 15. The system A2 was chosen based on some preliminary 

simple simulations with the full-constraint Taylor model. The initial dislocation density on 

system A2 was set to 8 23 10 mm . The results show that indeed the initial dislocation density 

may increase the stress ratio in the 0° direction towards the experimental values. The 

interaction matrix though still controls the anisotropy development: the new stress ratios 

mirror the general trends of the models without the initial dislocation density, e.g. the 



overshoot at 45° is still present. Therefore the hypothesis that the initial dislocation density 

affects the anisotropy is physically plausible.  

 Another difference between different latent hardening descriptions is how they behave 

in different methods of homogenisation. Namely in this work the full-constraint Taylor model 

and the CP-FEM were used. Using simple hardening rules in the crystal plasticity model, like 

the two-terms Voce rule, the full-constraint Taylor model gives rather accurate predictions of 

the global stress when compared to CP-FEM simulations [42]. However, when adopting the 

Teodosiu-type crystal plasticity model, the difference between the full-constraint Taylor 

model and even the simplest CP-FEM simulation with one linear element representing one 

grain becomes much more substantial, see Figure 6. As a result, the obtained values of  K  

and cy  are not very accurate. A calibration of the material parameters using CP-FEM is 

possible but the increase of the computation time is large: the simulation with an 8000 

element mesh took 40 times as much computer time as a simulation with the full-constraint 

Taylor model. In principle, the annihilation distance cy  is a physical parameter, defined 

mainly by the solid solution concentration in the alloy and independent of the interaction 

matrix. The values of cy  found form calibrations with different interaction matrices (Table 5) 

are mostly quite similar, but not the same. The consequence is that the hardening properties of 

the single crystals in the performed simulations may differ. This adds another complication in 

the use of the dislocation density based CP models. Nevertheless, the main point of this work 

still stands. When the single crystal simulation was run with different values of K  and cy  but 

the same interaction matrix, the slip system activation pattern was the same. The activation of 

slip systems, and therefore the evolution of plastic anisotropy, is controlled by the interaction 

matrix within a broad range of K  and cy  .   

7 Conclusions 

 The AA6060 material in T4 temper was used to study the evolution of plastic 

anisotropy at large strains. To this end, uniaxial tensile tests in different material directions 

were performed with a test set-up that allowed obtaining the average true stress and the 

average true strain in the minimum cross-section of the sample at very high strains and until 

fracture. To investigate the influence of the interaction matrix on the predicted evolution of 

plastic anisotropy, these tensile tests were simulated with the CP-FEM, using hardening 



models with different latent hardening descriptions found in the literature, and the results 

were compared to the experimental data.  

The examined material demonstrated a continuous evolution of the anisotropy in flow 

stress and strain ratio that depended on the tensile direction. The CP-FEM models, using 

different latent hardening descriptions, all captured the general trends of this evolution quite 

well. On the other hand, different latent hardening matrices lead to noticeable discrepancies 

between the produced results, especially in the predicted evolution of the flow stress 

anisotropy. The discrepancies become even bigger if the local response of the constituent 

grains is concerned. The latent hardening description was also shown to be important if 

variations in the initial dislocation density are to be considered. While this type of tensile tests 

could hardly be used to find the values of the interaction matrix, it could well be used to 

assess the validity of the values found by other methods.   
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8 Tables 

 

Table 1: Chemical composition of the alloy in wt%. 

 

Fe Si Mg Mn Cr Cu Zn Ti 

0.193 0.422 0.468 0.015 0.000 0.002 0.005 0.008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2: Interaction matrix for FCC crystals as defined by Franciosi [15].  

 

 A2 A3 A6 B2 B4 B5 C1 C3 C5 D1 D4 D6 

A2 0g  1g  1g  3g  4g  4g  2g  4g  5g  2g  5g  4g  

A3  0g  1g  4g  2g  5g  4g  3g  4g  5g  2g  4g  

A6   0g  5g  5g  2g  5g  4g  2g  4g  4g  3g  

B2    0g  1g  1g  2g  5g  4g  2g  4g  5g  

B4     0g  1g  5g  2g  4g  4g  3g  4g  

B5      0g  4g  4g  3g  5g  4g  2g  

C1       0g  1g  1g  3g  4g  4g  

C3        0g  1g  4g  2g  5g  

C5         0g  4g  5g  2g  

D1          0g  1g  1g  

D4           0g  1g  

D6            0g  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: Interaction matrix for strength, Equation (11). 

 

Parameter sets a  0d  1d  2d  3d  4d  5d  

Teodosiu et al. (1991) [10] 1 0.42 0.52 0.52 0.52 0.52 0.52 

Delaire et al (2000) [12] 1 0.52 0.72 0.72 0.72 0.72 0.72 

Tabourot et al. (1997) [17] 0.3 1 1 1 1 1 1 

Fivel et al. (1998) [18] 0.3 1 1 1 1 1 1 

Dumoulin et al. (2000) [19] 1 0.3 0.07 0.07 0.07 0.07 0.07 

Tabourot et al. (2001) [20] 1 0.16 0.11 0.11 0.11 0.11 0.11 

Madec et al. (2003) [22] 1 0.084 0.084 0.051 1.265 0.075 0.084 

Devincre et al. (2008) [23] 1 0.122 0.122 0.07 0.625 0.137 0.122 

Gérard et al. (2012) [24] 0.38 0.025 0.01 0.04 14.3 0.6 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4: Interaction matrix for dislocation density evolution, Equation (13). 

 

Parameter sets 0g  1g  2g  3g  4g  5g  

Teodosiu et al. (1991) [10] 0 1 1 1 1 1 

Delaire et al (2000) [12] 0 1 1 1 1 1 

Tabourot et al. (1997) [17] 0.2 0.3 0.3 0.3 0.4 1 

Fivel et al. (1998) [18] 0.01 0.4 0.4 0.4 0.75 1 

Dumoulin et al. (2000) [19] 0.2 0.8 0.8 0.8 0.8 1 

Tabourot et al. (2001) [20] 0.96 0.96 0.96 0.96 0.96 1 

Madec et al. (2003) [22] 0.084 0.084 0.051 1.265 0.075 0.084 

Devincre et al. (2008) [23] 0.122 0.122 0.07 0.625 0.137 0.122 

Gérard et al. (2012) [24] 0.025 0.01 0.04 14.3 0.6 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5: Calibration results for the hardening model with different interaction matrices. 

 

Parameter sets K  [mm]cy  

Teodosiu et al. (1991) [10] 27.755 66.516 10  

Delaire et al (2000) [12] 31.767 66.578 10  

Tabourot et al. (1997) [17] 7.833 51.038 10  

Fivel et al. (1998) [18] 8.827 51.044 10  

Dumoulin et al. (2000) [19] 12.756 69.090 10  

Tabourot et al. (2001) [20] 17.824 66.226 10  

Madec et al. (2003) [22] 3.606 66.000 10  

Devincre et al. (2008) [23] 6.014 65.139 10  

Gérard et al. (2012) [24] 5.933 65.244 10  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 6: Calibration results for the two-term Voce hardening model. 

0c
 , MPa 1 , MPa 1 , MPa 2 , MPa 2 , MPa 

27.00 24.85 183.81 29.17 40.95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 Figures 

 

 

 

Figure 1: Grain morphology of the AA6060 alloy. 



 

 

Figure 2: Orientation Distribution Function (ODF) for the AA6060 alloy 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 3: Uniaxial tensile test specimen geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

      a) 

 

      b) 

Figure 4: True stress y  versus logarithmic strain y  curves for specimens with different 

orientations  : a) representative curves, b) curves from all three specimens of each 

orientation with a 50 MPa shift between the orientations. 
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      a) 

 

      b) 

Figure 5: a) Logarithmic width strain x  versus logarithmic thickness strain z  for the 

specimens in different directions and b) the strain ratio yr  versus longitudinal logarithmic 

strain y .  
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Figure 6: Stress-strain curves from FE models with different mesh resolution. 
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Figure 7: FE mesh with 8000 elements representing 1000 grains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 8: Flow stress (or corrected stress) versus equivalent strain for samples in different 

directions, where the flow stress 90  at orientation 90    equals the equivalent stress eq .    
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Figure 9: Calibration of the crystal plasticity model with different interaction matrices using 

the equivalent stress-strain curve in the 90° direction. 
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Figure 10: Flow stress ratio / eq   from the experiment versus specimen orientation  . The 

stress ratio is taken at equal values of plastic work for all directions, corresponding to the 

plastic strain in the reference direction, given in the legend.  
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Figure 11: Flow stress ratio / eq   at incipient yielding (0.2% plastic strain) versus 

specimen orientation   from the experimental tests and simulations. 
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a) 

 

b) 

Figure 12: Flow stress ratio / eq   against sample orientation   for different interaction 

matrices at specific plastic work corresponding to 1 % plastic strain in the 90° direction. In  a) 

the initial dislocation density is equal for all slip systems, in b) it is increased for the A2 slip 

system.  
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a) 

 

b) 

Figure 13: Flow stress ratio / eq   against sample orientation   for different interaction 

matrices at specific plastic work corresponding to 10 % plastic strain in the 90° direction. In  

a) the initial dislocation density is equal for all slip systems, in b) it is increased for the A2 

slip system.  
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a) 

 

b) 

Figure 14: Flow stress ratio / eq   against sample orientation   for different interaction 
matrices at specific plastic work corresponding to 20 % plastic strain in the 90° direction. In  

a) the initial dislocation density is equal for all slip systems, in b) it is increased for the A2 

slip system.  
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a) 

 

b) 

 

Figure 15: Flow stress ratio / eq   against sample orientation   for different interaction 
matrices at specific plastic work corresponding to 30 % plastic strain in the 90° direction. In  

a) the initial dislocation density is equal for all slip systems, in b) it is increased for the A2 

slip system.  
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Figure 16: Flow stress ratio / eq   against sample orientation   for different interaction 

matrices at specific plastic work corresponding to 50 % plastic strain in the 90° direction. 
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Figure 17: Logarithmic width strain x  versus logarithmic thickness strain z  for different 

specimen orientations   from experiments and simulations with different interaction 

matrices. The slope of the curves represents the strain ratio yr . 
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