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Abstract 

The results from 3 years of comprehensive field investigations on first-year ice ridges in the Arctic are 

presented in this paper. The scopes of these investigations were to fill existing knowledge gaps on ice 

ridges, gain understanding on ridge characteristics and study internal properties of ice. The ability of 

developing reliable simulations and load predictions for ridge-structure interactions is the final 

principal purpose, but beyond the scope of this paper. The presented data comprise ridge geometry, ice 

block dimensions from ridge sails, ice structure in the ridge and values on the ridge porosity and the 

degree of consolidation. The total ridge thickness conformed to other ridges studied in the same 

regions. The consolidated layer thickness was on average 2-3 times the level ice thickness. Minimum 

33% and in average 90% of the ridge keel area was consolidated. The distribution of ice block sizes 

and block shapes within a ridge appears to be predictable. A new approach for deriving a possible 

ridging scenario and ridge age is presented. Different steps of the ridge building process were 

identified, which are in good agreement with earlier simulated ridging events. After formation of very 

thin lead ice between two floes deformation occurs through rafting and ridging until closure of the 

lead. Subsequently the adjacent level ice floe fractures proceeding ridge formation until ridging forces 

exceed driving forces. A time span of 10 days could be assessed for a possible ridge formation date, 

estimating the ridge age of the studied ridge located east of Edgeøya at 78° N to be 7 to 8 weeks. 

Key words: First-year ice ridge; Ice block size; Ridge formation; Ridge Porosity; Ice texture  
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1 Introduction 

A high potential for oil and gas resources in the Barents Sea attracts attention for future exploration. 

Beside the increase in petroleum activities and increased traffic due to petroleum activities, the 

Northern Sea Routes tend to get increasingly interesting for cargo ships. A trend to shrinkage of the 

arctic ice cap due to climate change will offer new prospects for shipping in the Northern Sea Routes. 

Yet harsh climate conditions and heavy sea ice features, such as sea ice ridges will persist as one of the 

major challenges that have to be mastered when operating in the Arctic. Even the Fram Strait, which is 

an outlet for sea ice from the arctic at high drift speeds, has future potential for more shipping 

activities (Smith and Stephenson, 2013). Sea ice ridges are frequently occurring ice phenomena. They 

form when two ice floes collide or shear and can create enormous piles of broken ice pieces. Freeze 

bonds between the ice blocks and refreezing of the part under the water surface turn sea ice ridges to 

robust ice features. First-year ridges, i.e. which are not older than one winter season, appear not only 

in high arctic regions, but also in more moderate climate conditions where human activities are 

prevalent. Sea ice ridges may be the main load scenario for the design of offshore-structures and ice-

going vessels. To be able to predict load scenarios from ridges, geometrical and physical parameters 

have to be known. Therefore researchers concerned with ice actions on offshore structures and ships 

have studied pressure ridges in different arctic regions. Different obstacles were met that create 

difficulties for ridge characterization. Ridges have high variations in properties and shapes (Timco and 

Burden, 1997) and change throughout the season (Leppäranta et al., 1995). The accessibility to ridges 

is usually restricted and rough field conditions make it difficult to perform detailed or long-term field 

studies.  

One approach to determine the strength and dimensions of pressure ridges is to study mechanical 

processes and energy balance of the ridge formation process. Ridge formation processes are difficult to 

observe in nature but several attempts were made to measure ridge-building forces in the 1990s. Based 

on the assumption that pack ice stresses of drifting ice floes are representative for ridge building 

forces, direct stress measurements showed stress levels varying from 24 kN·m-1 up to 1720 kN·m-1 

(e.g., Nikitin and Kolesov, (1993); Comfort et al., (1998); Richter-Menge and Elder, (1998)). 
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Analytical and numerical models have been used to study the ridge building process. Parmerter and 

Coon (1972) used a one-dimensional analytical model to simulate the ridge building of two ice sheets 

moving towards each other with a lead filled with rubble. The appearance of the resulting ridges is 

similar to actual measured ridge geometries. A discrete element model presented in Hopkins (1994, 

1998) assumes that initially a thin first-year ice floe moves towards a thick ice floe which is separated 

by lead. In addition to estimation of the energy consumption during ridge building, four different 

stages of the ridge formation were described (Hopkins, 1998). At first vertical sail growth is followed 

by vertical keel growth until maximum ridge draft is reached. In a third stage the keel growth 

continues towards the lead and may create a rubble field whereas stage four represents further 

compression of the rubble field. Ridge building can stop at any of the stages. Very little information is 

published on how ridge formation mechanism proceeds in nature, but it could be useful for verification 

of models describing the ridge building process. Tuhkuri and Lensu (2002) suggest from a series of ice 

tank tests that ridging is initiated by finger-rafting and rafting forces increase linearly with 

displacement followed by increasing ridging forces until the maximum ridging force is reached at the 

point where ridge growth only continues laterally. 

Strub-Klein and Sudom (2012) established a database on all until then available ridge geometrical data 

from field investigations undertaken by different researchers. Different measurement techniques were 

summarized and their assets and drawbacks were discussed. Significant lacks of data were related to 

e.g. ice block dimensions, keel width and keel area as well as data on internal structure, physical and 

mechanical properties.  

The internal structure of ridges, e.g. degree of consolidation or macro porosity, is difficult to access, 

but important for the understanding of ice ridges. The consolidated layer of a ridge is of interest since 

it is one of the main load components during first-year ridge-structure interactions according to ISO 

19906 (2010). Considerable variations have been found so far (e.g. Timco and Burden, 1997, Høyland, 

2007, Strub-Klein and Sudom, 2012) due to natural irregularities, uncertainties from measurement 

techniques and the lack of definition of the upper and lower boundary of the consolidated part. Ridge 

porosity is another important parameter used to model thermal processes within ridges (e.g. Høyland, 
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2002) and also to describe properties of the ice rubble (e.g. Hopkins and Hibler, 1991). Amundrud et 

al. (2006) found that high keel porosity enhances deterioration of the ice ridge. The compactness of the 

ice rubble and thus the ridge macroporosity (Surkov, 2001) is highly influenced by ice block 

dimensions and shapes. Hopkins and Hibler (1991) and Tuhkuri and Polojärvi (2005) showed that ice 

block shapes further affect the mechanical behavior of ice rubble. Hopkins et al. (1991) presented the 

influence of block shape, size and angularity on the energy required for ridging.  

This paper provides comprehensive information on first-year sea ice ridges obtained from 3 years of 

field studies in arctic regions close to Svalbard. Information of first-year ridges especially from the 

Fram Strait and north-west of Svalbard is so far poor. The paper is composed of two parts: 

- For the first time ridge profiles from both along the ridge spine and perpendicular to the ridge 

spine are presented. Ridge data from field measurements covering knowledge gaps on e.g. 

ridge cross-sectional area, ridge consolidation and block dimensions are presented and 

evaluated with regard to the state of the art. (Sections 3, 5.1 to 5.3).  

- A recent approach is introduced for deriving a possible ridge formation scenario from the 

collected data in combination with climatic reanalysis data and widely recognized semi-

empirical models on ice growth and ice drift (Section 4, 5.4).  

2 Methods 

2.1 Field and laboratory tests 

Suitable ice ridge areas around Svalbard were identified at the start of the expedition through satellite 

images and reconnaissance flights performed by the Norwegian Coast Guard. The apparently largest 

ridges where selected within the chosen areas. The Norwegian Coast Guard vessel KV Svalbard was 

used for transport to ridge areas and the coast guard crew provided support for safety and manpower.  

In total 6 ice ridges were studied from 2011 to 2013. Ridge locations and surveying dates are given in 

Fig. 1 and Table 1.  

The procedure for ridge measurements was as follows:  
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- Transects were staked along and across the ridge with a 5 meter distance between measuring 

points along the spine and 2 meter distance across the ridge.  

- The surface topography of the ice was measured with a leveling telescope. The snow thickness on 

top of the ridge was measured by a yard stick. 

- The keel depth and keel structure were estimated by mechanical drilling with a 50 mm auger. 

From the drilling resistance it was distinguished between hard ice, soft ice, slush and sections with 

no resistance. The two former categories were defined as ice and the two latter as a void. 

- The direction of ice block thickness was identified visually based on ice fabric and orientation of 

brine channels. Ice block sizes were determined with a measuring tape. Inclination angles of the 

block side with the largest area were roughly estimated with the means of an equal-sided right 

triangle for identifying 45°, implying measurement errors of +/- 10°C. A block lying horizontally 

on the ice was 0° inclination. 

- A sail width was defined as the widths where ice blocks were lying on the ice cover. The keel 

width was defined by the region between two fully refrozen ice covers with constant thickness. 

The keel width of R2-2013 could not readily be determined, because the keel probably merged 

with a not fully refrozen rubble field and the drillings were stopped without reaching level ice. 

- The sail angles for the ridges in 2013 were measured in field by holding a pole forward, exactly 

horizontal from the sail top. At the end of the rod was a line with a weight that met the ridge at its 

foot. The horizontal and vertical distances resulted in a sail inclination angle using trigonometric 

functions for right-angled triangles. The remaining sail angels and all keel angles where calculated 

in almost the same manner, but taking the sail height and sail width and the keel depth and keel 

widths respectively from the measured profiles.  

One cross-section was measured for each ridge from 2011 while for the ridges from 2012 and 2013 

both a profile along the spine and one or two cross-sections were measured. For the ice blocks from 

2011 and R1-2013 only thickness was available, whereas orientation and three dimensions of the 

blocks from all other ridges from 2012 and 2013 were determined. All measured ice blocks were from 

the ridge sails. Temperature profiles from the ridges and level ice were measured occasionally on 70 

mm-diameter ice cores. Further mechanical and physical properties and the microstructure of the 
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ridges determined from 200 mm-diameter cores along the cross-sections are reported in Bonath et al.  

(in review). A study of horizontal and vertical thin sections under cross-polarized light from each ice 

core enabled determination of the ice texture.  

2.2 Ridge Parameters 

The definition according to ISO 19906 (2010) for characteristic ridge dimensions is used and outlined 

in Fig. 2. For clarification, the snow and slush layer usually prevailing on top of ice ridges are not 

considered in the values given for sail height Hs and sail area As. The sail area extends vertically from 

the uppermost ice to the water level and the keel area extends from the water level down to the 

lowermost ice. The consolidated part is defined as the solid ice part within the ice ridge and extends 

from the ice surface or below the loose sail rubble down to the unconsolidated keel rubble within the 

maximum keel width WK. The lower boundary is defined as the first void below water level containing 

non-rigid material such as slush or seawater. Ice blocks are defined by the ice block thickness hbl , the 

smallest (d1) and largest (d2) dimensions from the surface area Abl and the inclination αbl. 

The internal structure of the ice ridges can be characterized by the macro porosity and the ice texture. 

The ice texture is characterized by crystal type and alignment of ice crystals. In the present study, ice 

is classified as columnar ice, granular ice or mixed ice (Richter-Menge and Cox, 1985). 

Macroporosity (described by e.g. Høyland, 2002) was determined for both sail area, keel rubble and 

keel area including the consolidated layer (CL), as defined in Fig. 2. The macroporosity can be defined 

as the ratio of volume of voids within a ridge to the total ridge volume, Eq.1, where VI is the ice 

volume, VV is the volume of the voids and V is the total volume. The volume of voids comprises non-

sea ice such as pores filled with air, water, snow or slush. The snow/slush layers on top of ridge sails 

are not accounted for in void volume.  

V

V

V

V VI
M 1    (1) 

For the vertical macroporosity distribution, the volume of voids to the total volume at each depth 

interval is considered for all the boreholes corresponding to the depth. When the chosen depth interval 

exceeds the keel depth for a borehole, this borehole is excluded from the calculations.  
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2.3 Ridge Age 

The method to re-construct the history of an ice ridge was described in detail by Petrich and Bonath 

(2014) and has been applied to ridge R2-2012. In this paper the drift track, age and formation process 

of ridge R3-2013 was analyzed.  

Ice drift was estimated by a rule-of-thumb saying that sea ice moves proportional with the surface 

winds by factor 0.02 and 45° to the right of the wind direction (Colony and Thorndike, 1980). Free-

drift approximation is realistic for ice fields with ice concentration lower than 80% (Leppäranta, 

2011). It has to be kept in mind that local ice concentration can change rapidly to higher ice 

compactness. Thus limitations with free-drift approximations are the neglect of internal stresses and 

time varying ocean currents. The drift trajectory was iterated by wind data extracted from two 

reanalysis products: the National Centers for Environmental Prediction Climate Forecast System 

Version 2 (NCEP CFSV2, Kalnay et al., 1996), and the European Centre for Medium-Range Weather 

Forecasts (ECMWF) ERA-Interim (Dee et al., 2011). Reanalyzes for both air temperature and surface 

winds were produced every 6 hours from a T62 grid (NCEP) and a 0.5° x 0.5° grid (ERA-Interim) 

respectively. 

The difference of block thickness and level ice thickness determines the ice growth since ridge 

formation, assuming that the surrounding level ice has resulted from undisturbed growth of the 

original level ice. From that the ridge age was ‘back-calculated’ by means of empirical equations for 

ice growth of sea ice based on Freezing Degree Days (FDD). Freezing Degree Days are defined in Eq. 

2.  

  dtTTFDD wa )(    (2) 

Where Ta is air temperature and Tw is the freezing temperature of water, which was assumed to be -1.8 

°C for saline water. FDD are expressed in °C·days. Four different empirical FDD models shown in Eq. 

3 to Eq. 6 were used and compared in this paper for doing ice growth calculations, where H (cm) is the 

ice thickness. 

FDDHH 8502   (Zubov, 1945)  (3) 
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FDDHH 7.61.52   (Anderson, 1961)  (4) 

505.02FDDH   (Kovacs, 1996)  (5) 

FDDHH 3.6222   (Petrich and Eicken, 2010) (6) 

3 Results 

3.1 Field Measurements 

3.1.1 Field observations from 2011 

Two pressure ridges were surveyed at different locations in 2011. Ridge R1-2011 was located north of 

Svalbard in the Woodfjorden, in landfast ice (Fig.1; Table 1). Wet snow and slush covered the ice. The 

average snow thickness was 0.39 m, whereof the highest snow accumulations could be found at the 

sides of the ridge sail. The ridge was surrounded by level ice and ridge length did not exceed 30 m, 

Fig. 3a. The ridge cross-section shown in Fig. 3b appeared almost symmetrical and both sail and keel 

were triangular. The level ice thickness was 0.37 m on both sides of the ridge, i.e. the ridge formed 

from ice floes of equal thickness. The mean block thickness was 0.26 m. The consolidated layer could 

not be determined by drilling as the ice was generally very soft. Furthermore, the slush layer present 

on top of the ridge made it difficult to estimate whether slush or soft ice came up from the drill hole.  

Ridge R2-2011 was located between Spitsbergen and Hopen Island. Weather conditions were slightly 

colder than for R1-2011. As shown in Fig. 4 the ridge length was not well defined since the ridge was 

a part of a network of deformations. A branched network was characteristic for the ice in the area. The 

average thickness of the level ice was 0.8 m which equaled the average sail block thickness.  

3.1.2 Field observations from 2012 

Only one ridge could be measured completely during 2012 due to very rough weather conditions. The 

work on ridge R1-2012 had to be stopped after bad weather approached. Air temperatures during both 

the R1-2012 and R2-2012 campaigns where mainly -20° or colder, but became milder during the day 

of measuring, up to -10°C. Overall the ice was very cold and brittle. The ridge was located in Fram 

Strait on an ice floe with size 200 m by 200 m. Several ridges where on the same floe. The spine of the 
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measured ridge R2-2012 was almost straight with a length of 25 m. Fig. 5 shows that the two transects 

perpendicular to the spine agreed well in shape, but transect B had a lower sail (by 0.6 m) and a deeper 

keel (by 3.4 m). The sail consisted of several big ice blocks with an average ice thickness of 0.87 m. 

3.1.3 Field observations from 2013 

The ridges in 2013 were all investigated east of Edgeøya in the end of April. The weather was 

consistently mild during this time, with air temperatures -5°C. This allowed for detailed investigation 

of ridge parameters for each ridge. Ridge R1-2013 had an S-curved ridge sail with a length of 100 m 

(Fig. 6b). The width of the triangular ridge sail reached a maximum of 14 m, with slope angles of 22° 

above the horizontal. The ridge keel was asymmetric, wide (32 m), and not particularly deep 

(maximum 3.4 m) compared to the sail, giving an Hk to Hs ratio as low as 1.5. The same ratio was 

recurring for all sail tops along the spine in Fig. 7a, which indicates some regularity throughout the 

ridge. The ridge was covered by a 0.3 m thick layer of snow at time of surveying, where most snow 

was located between 22 m and 38 m width of transect B in Fig. 7b. The average ice block thickness 

was 0.48 m and the thickness of the surrounding level ice was 0.7 m.  

The shape of ridge R2-2013 was asymmetric with the sail top and maximum keel depth offset 10 m. 

Two transects were surveyed across the 65 m long ridge. Both transect gave similar results for shape, 

dimensions and consolidation. The whole ridge is covered by a 0.3 m snow layer. Wet snow was 

found on sail positions wider than 18 m, Fig. 8b. Transect B contained a wet layer in ice at 1 m depth 

that was apparent in ice cores taken at position 22 m to 28 m but appeared to have been missed during 

profile measurements. The consolidated layer thickness from 20 m to 32 m width was most probably 

caused by the missed wet layer, Fig. 8b. The level ice thickness on one side of R2-2013 was 0.6 m 

whereas it merged with a rubble-field on the other side. The block thickness was on average 0.4 m.  

The shape of R3-2013, shown in Fig. 9, was similar to those observed in the case of the ridge R2-

2013, Fig. 8. However, the ratio between the keel width and the sail width was higher for the ridge R3-

2013, which resulted from a steep and narrow sail compared to a wide ridge keel. The offset between 

sail and keel maxima was 16 m. The ridge length exceeded the surveyed 120 m as can be seen from 

the aerial photo, Fig. 6. The average snow thickness was 0.2 m. More ridges and rubble fields were on 

the same floe as R3-2013.  
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Ice temperature profiles (Fig.10) measured in 2013 show consistently lower temperatures within the 

ridges compared to the surrounding level ice. For R1-2013 the temperature profile is measured 

throughout the keel depth. The uppermost point of each profile represents the air temperature, which 

was in most cases higher than measured ice temperatures during daytime (at time of measurement), 

but lower during the previous nights.  

3.2 Macroporosity and consolidation 

The average macroporosity was 13 % for ridge sails and 23 % for ridge keel rubble. Differences 

between ridges were large, ranging from 0 to 30 % and less than 1 up to 51 % for sails and keels, 

respectively. The ridge sails with zero porosity concerning the ridges from 2011 and 2012 consisted of 

only few ice blocks that either lay almost horizontally one top of each other with very few gaps or 

only one layer of ice blocks made up the sail. The ridge keel from R1-2013 was very flat with only 

small gaps between blocks which resulted in less than 1% of macroporosity. 

The average consolidated layer thickness presented in Table 4 exceeded 1 m for all ridges. The 

consolidated layer was in general thicker along the spine of the ridges than along the perpendicular 

transects. The standard deviations of all profiles were between 0.5 and 1 times the consolidated layer 

thickness, thus a high variability for consolidated layer thickness within a ridge can be expected. The 

range between the maximum and minimum values of the consolidated layer thickness exceeded 

several meters for each evaluated profile. The consolidated layer was between 1.1 and 3.0 times 

thicker than the surrounding level ice. 

 

3.3 Ice block dimensions 

The ice block dimensions of in total 142 blocks from the ridge sails measured in 2012 and 2013 are 

summarized in Table 5. The histograms in Fig. 11 show one predominant ice block thickness, i.e. the 

modal block thickness for each ridge, which was 0.85 m for R2-2012. The modal block thicknesses for 

the ridges measured in 2013 were 0.45 m, 0.40 m and 0.25 m for R1-2013 to R3-2013 respectively, 

which nearly coincide with the average block thicknesses given in Table 5. The average block surface 

areas had no specific coherence with ice block thickness. The average ratio of block lengths d2 and d1 
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was 1.5. Average block inclination was with 50° much higher for the thinner blocks in 2013 than for 

the thick ice blocks with an average angle of 14° from the ridge measured in 2012. 

4 Ridge Formation 

4.1 Ice structure and ridge formation process 

Ice cores with 20 cm diameter were taken in regular intervals along the measured cross-section B of 

R3-2013. Thin sections from the cores were studied for visualizing the internal structure of the ridge 

on a wider scale and to enable reconstruction of ridge formation process. Thin sections provided data 

related to thickness of the level ice at time of ridge formation and at time of field measurements, as 

well as block thickness and ridge internal structure, see Fig. 12. The ridge R3-2013 in Fig. 9 consisted 

of an over 120m long, irregularly spine (Fig. 6d), which is typical for compression ridges, Tucker et al.  

(1984). The geometry of the ridge cross-section was asymmetrical with a large ice block accumulation 

at keel widths exceeding 22 m and an offset between sail and keel maxima of 16 m. At width 0 m, the 

level ice was found to be 0.67 m thick. A thin section composite from level ice is shown in Fig. 12c 

(i). The upper 0.26 m of the level ice core resembled the fabric of ice blocks from the ridge sail, which 

was on average 0.26 m. This upper layer was found in all ice samples taken between 0 m and 16 m 

along the transect B, which indicates that the blocks originated from that floe and that this ice layer 

had not changed since ridge formation. From 25 m to 55 m in transect B the upper 0.50 to 0.60 m 

consisted of multiple rafted ice with ice layers being from 0.02 to 0.06 m thick , Fig. 12c (v). This was 

presumable a consequence of rafting, where a lead covered with a very thin ice layer started to close 

due to two converging ice sheets. Solely crushed ice was found close to the ridge sail (between 8 m 

and 16m) below the upper 0.26 m of the ice, below the r idge sail (between 16 m and 24 m) and below 

the rafted ice layer (until 42 m), Fig. 12c (iii). Crushed ice designates a refrozen ice mass, containing 

small ice fragments of different sizes and shapes, similar to mixed Type IIIA ice described by Richter-

Menge and Cox (1985). The proposed ridge formation process is sketched in Fig. 12a to Fig. 12c. 

Firstly a 0.02 to 0.06 m thin ice cover formed in an open lead, Fig. 12a. The lead ice started with 

multiple rafting which was likely followed by ridging after being pushed by the ice floes. After the 
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lead ice is depleted, the ridge driving forces are strong enough that deformation continues with the 

adjacent 0.26 m thick ice floe, Fig. 12b. Fragments of thin ice in the keel indicate that crushed mixed 

ice within the keel could have been the lead ice. Else penetration of the level ice into the probably 

weaker pile of lead ice initiated the crushing of the ice in the keel. Intact ice blocks according to the 

thickness of the level ice sheet were found in both the ridge sail and the ridge keel.  

 

4.2 Ice drift 

Free drift theory was applied in order to assess how much the investigated ice may have moved during 

the ice growth period (Section 2.3). The drift paths generated from the NCEP and ERA-Interim wind 

data (Fig. 15) are almost congruent except for a time period in the beginning of February, where the 

NCEP drift track proceeds further north, close to Franz Josef Land, Fig. 13a and Fig. 13b.  

Since free drift approximation is best applicable for single pieces of ice rather than for areas with 

packed ice, the plausibility of the drift path was verified with help of both ice charts from the 

Norwegian Meteorological Institute and daily quiver plots for ice drift, provided by the French 

Research Institute for Exploration of the Sea (CERSAT/IFREMER). Ice conditions along the drift path 

developed from open drift ice (40% to 90% ice concentration) in January, to close drift ice in February 

and March (70% to 90% ice concentration) and finally to close drift ice and very close drift ice (70% 

to 100% ice concentration) until end of April. From the examples shown in Fig. 13c, the calculated 

drift path follows the ice drift trajectoris produced by IFREMER. Hence, under free-drift assumptions, 

the ridges formed most probably within 10° to 15° east of the start position. Absolute drift length since 

ridge formation date (Section 4.3) is 600 to 700 km leading to an average drift speed of 0.12 to 0.14 

ms-1.  

4.3 Age of Ridges in 2013 

Semi-empirical FDD models (Eq. 3 to Eq. 6) based on Stefan’s analytical solution (Stefan, 1891) 

predict ice growth from air temperature alone. They are commonly used to model ice growth when 

detailed meteorological and oceanographic measurements are missing. The calculations were 

performed in two steps. First a possible ice formation date for the level ice was estimated. For this the 
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FDD’s from the 29th of April backwards in time were used until the level ice thickness of 67 cm was 

reached. As a second step, the date when ice thickness reached the measured ice block thickness was 

calculated from the date of the initial ice growth obtained from step one. The time when the ice 

thickness equals the block thickness was assumed to be the date of ridge formation. Both ERA and 

NCEP data for temperatures along the respective drift track for the winter/spring season 2013 are 

given in Fig. 14. The NCEP data resulted in some colder temperature peaks from middle of February 

until middle of April but are overall in good agreement with the ERA data. Earlier work showed a 

good agreement for both data sets with actual field measurements during a two week field campaign in 

2012, Petrich and Bonath (2014). The fluctuations of changes in the case of temperature and wind 

speed were in phase. However, the extreme values were not as pronounced as in the field data.  

The results from ice growth calculations are shown in Fig. 16. Since the ERA-data gave milder 

temperatures during this period, the possible ice formation period for different FDD models was 

predicted earlier than for the NCEP data. The total interval of possible ice formation was from 23rd of 

February (Kovacs) to 10th of March (Anderson). Accordingly the possible ridge formation date, where 

the ice thickness equals the ice block thickness was between 2nd of March (Kovacs) and 14th of March 

(Anderson). This is a time period of 13 days. Assuming that the wind is a driving factor for ridge 

formation, the time period for possible ridge formation could be narrowed down to 10 days between 

3rd and 12th of March. Wind speed peaks that are sufficiently high to ridge an ice cover of 0.26 m 

thickness (according to equations from Parmerter and Coon, 1973 and Leppäranta, 1981) occurred on 

3rd (15.4 m/s), 5th (16.3m/s) and 9th of March (14.4m/s), see Fig. 15. As a result, the ridge R3-2013 was 

7 to 8 weeks old at the time of field measurements.  

5 Discussion 

5.1 Ridge Profiles  

Typical ridge dimensions have lately been presented by Strub-Klein and Sudom (2012) based on ridge 

data from over 300 first – year ridges. Table 6 shows how different ridge dimensions correlate to each 

other and compares the present data with the findings from Strub-Klein and Sudom (2012). The 
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maximum total ridge thickness (HS+HK) is close to what was found earlier in the Barents Sea, 

implying that the presented ridges were of medium size and comparable with other ridges in the 

Barents Sea. The keel to sail ratios (HK/HS) for the presented ridges are all below 3.9, and significantly 

lower than the average values for these regions, which are 5 for Svalbard and 4.4 for the Barents Sea. 

This is probably due to higher measured sail heights (2.3 in average) and lower keel depths (6.1 in 

average) than measured earlier in these areas (2.1 and 8.5 respectively for the Barents Sea). Suitable 

ridges were chosen as apparently biggest ridges within the area, where a high sail height was a 

decisive factor. R2-2012 is a good example showing that the drilling position for doing ridge 

measurement matters, because if only cross-section B would have been drilled, HK/HS would have 

resulted in 8.38 instead of 3.94. Correlations made with keel widths and sail widths (Table 5) are given 

for completeness but do generally show high variations. Different ridge shapes and occasional 

merging of the ridges with a rubble field, as it is the case for R2-2013, make comparisons difficult.  

The ridges investigated in this study had triangular sail shape as proposed by e.g. Timco and Burden 

(1997) with exception of R2-2013, where both drilled cross-sections showed trapezoidal ridge sails. 

The observed keel shapes in this study barely complied with the perfect triangular or trapezoidal keel 

shapes recommended both in literature (e.g. Kankaanpää, 1988; Timco and Burden, 1997, Strub-Klein 

and Sudom, 2012) and ISO 19906 (2010). Yet R1-2011 and R2-2012 are both symmetrical and 

approximately triangular in both keel and sail. Both ridges are straight along its spine instead for 

sinusoidal and differ from the other ridges in the way that R1-2011 is located in landfast ice and R2-

2012 is built from thick ice. Some of the ridges with sinusoidal spines, e.g. the ridges from 2013 

resemble the asymmetrical ridge profiles that were generated from ice tank tests by Tuhkuri and Lensu 

(2002). This gives evidence that the sinusoidal spines are a result of initial finger rafting before 

ridging. 

Regarding the variations in keel shape, the keel area could provide better information on the keel size 

(Obert and Brown, 2011), rather than only considering ridge heights. Dalane et al. (2015) showed in a 

series of ice-tank measurements on ridge-structure interaction that forces from unmanaged ridges 

increased almost linearly with increased ridge cross-sectional area, giving that ridge parameter a major 

importance. The present ridge areas are listed in Table 2 for both, sail, keel and consolidated part. 
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Often was the area of the consolidated part greater than the keel rubble area. In average was the 

consolidated area 58% of the ridge keel, with a minimum value of 33% for R2-2013. Timco and 

Burden (1997) found a best-fit linear relation where the sail area is direct proportional to the keel area 

multiplied by a factor of 8. This factor is only valid for R2-2013 with a relatively large trapezoidal 

keel, but would greatly underestimate the keel areas for the other ridges. This is probably because both 

keel depth and keel width were bigger in relation to sail height than the average ratios from the ridges 

presented by Timco and Burden (1997). The average ratio AK/AS for the present study is 14 along the 

cross-sections and 3 along the spines. The difference can simply be explained by the fact that firstly 

the sail has its maximum values along the spines, but not necessarily the keels. Secondly the sail width 

perpendicular to the spine is much smaller than the keel width. In this study keel areas ranged from 52 

to 518 m2, whereof the highest values conform to areas along the spine. Obert and Brown (2011) 

presented 3197 keel areas recorded by sonar measurements whereof 60% of all ridge keels areas 

(ranging from 2.6 m2 to 851 m2) were smaller than 40 m2. This is because all passing ice features were 

recorded and not only the apparently bigger ridges as it was done in this study. Obert and Brown 

(2011), who also presented load measurements of the ridges against a bridge peer, could not point out 

any direct connection between keel area and the magnitude of ice load. Therefore the consolidated 

area is probably more relevant, at least for the Bridge across the Northumberland Strait. 

5.2 Macroporosity and consolidation 

The calculated average sail macroporosity was 13% vs. the average keel macroporosity value of 23%, 

which are lower than most values presented in literature (Table 7) but in good agreement with the 

values presented by Ervik et al. (2018). Present results showed variation of the sail macroporosity 

between 0 and 30% and values from less than 1% up to 51% in the case of keels. If excluding sail 

porosities equal to zero (R1-2011, R2-2011 and partly R2-2012), with sail height close to block 

thickness, the average sail porosity is 19% and conforms to most data presented in literature. If further 

excluding the keel rubble porosities from R1-2011 and R1-2013, where a high amount of slush 

complicated the profile drilling, the average rubble porosity is with 30% in perfect agreement with 

earlier reported values. Porosity variations in the magnitude of up to 15% were found within the same 
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ridge for different profiles as in R2-2012 for ridge sails and in R2-2013 and R3-2013 for both keels 

and sails. Veitch et al. (1991) reported variations in the same order with ridge porosities ranging from 

22% to 38% for different cross-sections of the same ridge. Ridge porosity values have commonly high 

variations between different literature sources probably caused by several uncertainty factors. For 

published porosity data it is often unclear whether keel porosity is related to only the unconsolidated 

keel rubble or the keel inclusive the consolidated layer, which can differ considerably, see Table 3. 

Further the usage of different measurement techniques to investigate the internal structure of a ridge 

matters, Strub-Klein and Sudom (2012). The biggest drawback of mechanical drilling is the purely 

sensuous and visual assessment of the drilling resistance and the material transported upwards with the 

drilling rod; the accuracy is especially low for soft and warm ice. In such case it is very difficult to 

distinguish between soft ice and slush. When the slush layer is on top of the ice, it gets virtually 

impossible to determine whether the material transported upwards from drilling is wet or dry. Thermal 

drilling is used e.g. by Kharitonov (2008, 2012) and Beketsky et al. (1996). The determination of the 

macroporosity maybe more accurate since ice consistency and pores are determined from the drill 

penetration rate, anyhow an element of uncertainty is the definition of critical penetration rates for 

distinguishing between hard and soft ice. Moreover in their studies only ice free zones are identified as 

pores, whereas for most studies done by mechanical drilling, very soft ice/slush are accounted for as 

pores. This might be one reason for the lower values presented by Kharitonov (2008, 2012). Variations 

in sail macro porosity for different ridges could be related to differences in the ratio of sail size vs. 

block thickness. Fig. 17 shows a tendency of increasing sail porosities for low ratios. One needs also 

consider that macro porosity is determined based on a limited number of drill holes, introducing 

statistical errors. Therefore Kankaanpää (1989) used the term apparent macro porosity. A matter for 

future studies could be if a large number of ideally uncorrelated measurements would be preferable.  

Dealing carefully with porosity data is a significant issue and needs more attention in future. Surkov 

(2001) studied the correctness of porosity data obtained from drill holes in laboratory experiments and 

found the real or volumetric macro porosity to be underestimated by 15 to 25 % by spot drillings.  

Kharitonov (2012) and others reported that keel porosity increases with depth which could then slow 

down ridge consolidation. The porosity increases for all three ridges from 2013 (Fig. 18) until a certain 
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depth is reached, where only few boreholes still encounter ice. At this point porosity partly even turns 

zero, since only single ice blocks without gaps are drilled through. The non-zero start values at depth 

from 0 to -0.5 m of the three ridges depend on some slush-filled pools on the surface of the ridges 

which were accounted for as pores. The increase of porosity is not constant and ridges R2-2013 and 

R3-2013 show several local maxima and minima which could indicate a layered block structure in the 

ridge. This fluctuating porosity distribution at a certain depth is similar in the depth profile presented 

by Kharitonov (2012). Very high porosity values of 0.4 to 0.6 (maximum 0.7) appear commonly in the 

middle of the ridge keels. From a thermodynamic model, Høyland (2002) concluded rubble porosity to 

be the most important parameters influencing consolidation besides snow. Høyland (2002) derived a 

relationship between the consolidated layer and the level ice thickness from analytical solutions, 

depending on the ridge macro porosity: 
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HtH
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

2
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2

2

0,

2
)(

)(


 ,   (7) 

The application of Eq.7 to the measured values for R3-2013 with HLI=0.67 m, HLI,0=0.26 m and 

HCL,0=0 would result in HCL=0.86 m and thus underestimate the measured consolidated layer by factor 

2.1. This is due to a high keel rubble porosity of 51%. Regarding the fact that porosity increases with 

depth and considering the amount of crushed ice found within the ridge from thin sections (Fig. 12), 

the keel porosity for the consolidated part before refreezing was probably much lower. Small crushed 

ice pieces and slush would float upwards and fill the gaps between bigger blocks shortly after the 

turbulences from ridge formation relaxed. Thus the thermodynamic consolidation rate for the upper 

part could be underestimated when constant macro porosity is assumed throughout the keel depth. The 

measured average consolidated layer thickness of 1.8 m for R3-2013 (Table 4) would be obtained 

from ηM equal to 10%. Fig.18 shows that the measured macroporosity was in fact lower than 40% in 

the upper 2 m of the keel. It has also to be kept in mind that Eq.7 only applies for the main phase of 

consolidation. The initial consolidation, subjected to the internal re-distribution of energy between 

cold ice and the surrounding warmer water until a smooth temperature distribution appears, may lead 

to a higher consolidation rate than calculated with Eq.7.  
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The average consolidated layer thickness in the Barents Sea and Svalbard regions presented by Strub-

Klein and Sudom (2012), which are 1.55 m and 1.37 m respectively are exceeded by the ridges studied 

here, where the consolidated layer in average was 1.74 m (Table 4). The consolidated layer presented 

by Strub-Klein and Sudom (2012) only considers the part below water line, which would result in 

averaged 12% lower values for the recent study and thus in conformity with the literature. The average 

maximum thickness of consolidation for all ridges was 4 m, which was twice the value found by 

Strub-Klein and Sudom (2012). It is suggested in ISO 19906 (2010) that the consolidated layer 

thickness can be assumed to be two times the level ice thickness. The attempt to relate the level ice 

thickness to the consolidated layer thickness has practical reasons since level ice thickness is more 

easily accessible. But for field data it is not always clear whether the surrounding level ice is the same 

as from which the ridge originated. This is the case for the ridges R2-2012, R1-2013 and R3-2013 as 

extracted from ice texture studies, for the other ridges it can only be assumed. The ridges investigated 

here have in eight out of eleven cases ratios of HCL/HLI between 2 and 3, when using the average 

thickness for consolidation. Both Kharitonov (2008) and Høyland (2007) report lower ratios, ranging 

from 0.83 to 1.63 and from 1 to 1.7 respectively. The ice growth is changing seasonally and therefore 

can the age and formation date of the ridges be highly influencing factors causing the differences. 

Timco and Burden (1997) show that a high variability is always present for the consolidated layer 

thickness and gave a measure for it as presented in Table 8. The smallest variability, presented by 

Høyland (2002), may depend on the ridge origin, which is landfast ice in only that case. Even though 

variations were higher for the present ridges with a factor of 11.6 for variability, the highest factor 

with 20.0 for variations was obtained by Strub-Klein and Sudom (2012). For the present data the mean 

of the minimum to average thickness values is very low, due to values equal to zero coming from 

slush pools just around water level. Neglecting these slush pools would not correctly follow the 

present definition of the consolidated layer anymore and is therefore not done, but more realistic 

values for a consolidated layer could be expected and a lowering of the variability factor CMax/CMin. 

Its variability is a challenge for estimating a representative consolidated layer thickness. Similar to the 

determination of the porosity is also the determination of the consolidated layer sensitive to the 
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measurement method. Depending on the method, different factors are defining the consolidated layer. 

Thermal methods, such as temperature measurements on ice cores or with thermistor-strings would 

define the lower border of the consolidated layer where measured temperatures reach freezing 

temperature. Mechanical methods such as drilling or compressive strength tests define the 

consolidated layer by ice strength or consistency. The lack of the definition of the consolidated layer 

and of a standardized measurement technique can explain the variability of the data presented by 

Strub-Klein and Sudom (2012). Høyland (2007) pointed out that temperature profiles result in lower 

values for the consolidated layer thickness than mechanical drilling. From the temperature profiles in 

Fig. 10 it is obvious that the measured ice temperatures at the respective lower boundary for 

consolidation are lower than the freezing temperatures for all three ridges. According to the 

temperature profiles hCL would be 2.1 m instead of 0.5 m for R1-2013 at B6, at least 1.4 m instead of 

0.3 m for R2-2013 at B5 and at least 2.0 m instead of 1.4 m for R3-2013 at B15. This is contradictory 

to Høyland (2007). Obviously high saline interstitial water was detected by drilling, maybe pockets of 

frazil/crushed ice built under ridge formation, located such as to inhibit efficient drainage. Expelled 

brine concentrates within the gaps so that very high bulk salinity prevents development of strength 

during consolidation even at -5 C. Høyland and Løset (1999) treated those gaps as brine pockets and 

considered them as macro pores within the consolidated layer.  

R2-2011 has two unreasonable high peaks for consolidated layer thickness, which can either be 

referred to as measurement errors by missing gaps or accidently ice blocks were lying on top of each 

other, connected by freeze-bonds. It was noticed during field work, that the ridge sail consisted of big 

vertical blocks (Fig. 4a). If the same phenomena occurred in the keel, the high consolidated layer 

values could be explained by drilling through vertical blocks. Leppäranta and Hakkala (1992) refer to 

the uneven void distribution within ridges. 

5.3 Ice block dimensions  

Tucker et al. (1984) found up to three different ice block thicknesses within a ridge sail. In the present 

study only one predominant peak for each ridge was found, i.e. the modal block thickness. 80% (and 

for R3-2013 even 90%) of all measured ice blocks deviated less than 0.1 m from the accordingly 
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modal block thickness. Shafrova and Høyland (2008) reported higher variations for ice block 

thickness, but their field measurements were performed later in the season which could have caused 

higher degree of aging of ice blocks, by e.g. erosion due to wind and solar radiation (Strub-Klein and 

Høyland, 2011). Thickness variations in ice blocks can also come from natural ice growth variations in 

ice floes initiated by uneven snow cover, or cracks. Field observations have shown that snow ice has 

built on top and between ice blocks, probably formed from flushing during ridge building or snow-ice 

formation through snow-metamorphism (Leppäranta, 1983). The mono-modal block thickness 

distribution for the present ridges indicates that they either formed from two floes with equal 

thicknesses or that only one of the floes broke during ridge formation. Both cases maybe applicable: 

Ridges R2-2012 and R2-2013 had level ice on one side and a thick rafted ice or rubble field on the 

other side, i.e. presumed that only the thin level ice failed, while ridges R1-2011 and R1-2013 had 

equal level ice thickness on either side of the ridge. 

Ice block thickness is often related to the sail height. For example Parmerter and Coon (1972) 

identified ice block thickness as a limiting factor for maximum sail height. Hopkins (1998) suggested 

that this limit appears to be rarely met in arctic ridges. Tucker and Govoni (1981) related the sail 

height to the square root of ice block thickness multiplied by a factor of 3.69 with a best-fit curve of 

field data. The factor was recently updated to 3.73 by Strub-Klein and Sudom (2012). Ridges R1-2013 

and R2-2013 comply with the curve, whereas R2-2012 is significantly below the curve, meaning that 

low driving forces accompanied the ridging event. High driving forces for the ridging event are R3-

2013 are accepted since maximum sail height exceeded even the value obtained from the empirical 

upper limit expression by Tucker and Govoni (1981). It can be concluded that the magnitude of 

driving forces for ridging differs certainly significantly for different events, so that one can argue if the 

block thickness can really directly be related to sail height. Only very few ridges develop sufficiently 

high driving forces to enabling to reach a limiting maximum sail height as stated by Hopkins (1998).  

Parmerter and Coon (1972), Hopkins (1998) and Tuhkuri and Lensu (2002) described that ridge 

growth tends to continue in lateral direction when driving forces for vertical formation becomes 

insufficient. Tucker et al. (1984) found a strong relationship blS hW 6.351=  between the sail width 
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WS and the ice block thickness hbl, which is only valid in the absence of lateral ridge growth. This 

formula fits R3-2013 very well, but overestimates the width for the narrow sails of R1-2013 and R2-

2012. Yet the deviations are within 3m and approximately in line with the formula, thus can be a result 

of the subjective assessment of the sail width determination. The width of the trapezoida l sail from 

R2-2013 is underestimated by 6m. This fact and the trapezoidal sail shape could be a result of lateral 

growth of the ridge sail. 

Surface shapes from ice blocks are in most cases not perfectly rectangular, yet the surface area was 

defined as the product of d1 and d2 (Section 2.2). The correlation described by Tucker et al. (1984) that 

the largest block surface areas belong to the thickest blocks can be confirmed (Table 3), as the blocks 

with highest block thickness also had in average the biggest block areas.  

The ratio d2/d1 characterizes ice block shape. The closer this shape parameter is to 1, the more 

quadratic the ice blocks can be expected. Round ice blocks were barely observed during the field 

studies. Results show that 80 % of all ice blocks had a shape parameter between 1.0 and 2.0, Fig. 19, 

which is in accordance with data presented by Sayed and Frederking (1989) and Surkov and Truskov 

(2003). A 3-parameter lognormal distribution was suggested as best-fit to three data sets, Fig. 20. One 

should be aware of that this fit is purely empirical and allows the data to be slightly below 1. The 

shape parameter was in average 1.5, which is similar to Høyland (2007), Kankaanpää (1989) and 

Veitch et al (1991) who all found average shape parameters between 1.5 and 1.6. Since the block 

shape parameter is noticeable similar for all block measurements presented in literature, it could be 

worthwhile to further study if the shape parameter indicates any prevailing failure mechanism, even 

though a variation of different failure modes of the ice floe during a ridging event should be expected. 

When comparing the block shape with ice block thicknesses for each single ice block, it appears as 

though the likelihood of encountering elongated blocks (i.e. high d2/d1) decreases with increasing 

block thickness, Fig. 21. Yet a regression analysis giving a p-value of 0.19 rejects the hypothesis of 

any significant relationship between the variables hbl and the ratio d2/d1, meaning that the block shape 

is independent of ice block thickness. Kulyakhtin (2014) proposed that the ratio between the longest 

axis d2 and the block thickness has a unique distribution for each ridge. Confirmation with the present 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

data is given with Fig. 22, which further shows that the distributions assimilate the higher number of 

measured ice blocks involved. Comparing the present data to ice block data from literature, Fig.23, 

one distinct distribution followed by all data sets can doubtless be identified. The ratio d2/hbl is 

following clearly a log-normal distribution (Fig. 24) suggesting mean value and standard deviation to 

be equal to 1.22 and 0.46 respectively. 

Ice block inclination was estimated with respect to the horizontal plane. The maximum inclination 

between block and horizontal plane was 50° in the case of ice blocks thicker than 0.60 m. The average 

angle for ice blocks between 0.60 m and 1 m thick was 14°, similar to results presented by 

Kankaanpää (1989). For ice thinner than 0.60 m instead the average inclination was much higher with 

50°, which complies with the results of Shafrova and Høyland (2008) for ridges located east of 

Svalbard. Ice block thickness seems to affect the inclination angle. The average inclination for all ice 

blocks studied in the present research was 48° (average hbl=0.36) which is higher than the inclination 

angles of all ice blocks studied by Høyland (2007) with average inclinations of 39° (average hbl=0.38). 

Measurement errors can be expected from the present study due to the rough estimate of inclination 

angles.  

5.4 Ridge formation 

The method to reconnoiter ridge formation from the ridge internal structure has been used earlier by 

Tuhkuri et al. (1999) and Kankaanpää (1997). Tuhkuri et al. (1999) cut a profile of thick sections 

through the ridge sail and the consolidated part with a chain saw to study the ice block configuration in 

the ridge. Kankaanpää (1997) took spot samples of the studied ridge cross-sections and could identify 

rafting as a part of the ridging process through ice texture analysis. 

The ridging scenario described in Fig. 12a and Fig. 12b complies with the ridging scenarios described 

in literature. Tuhkuri and Lensu (2002) obtained from laboratory tests that initially rafting of the 

thinner ice sheets is followed by ridging. Multiple rafting, as it was observed here with several ice 

layers rafted upon each other, has been observed the ridges studied by Kankaanpää (1997) and 

Tuhkuri et al. (1999). The rafting scenario described by Tuhkuri et al. (1999) equals the rafting 

scenario here, where the left thick ice sheet is overthrusted by long multiple layers of thin rafted ice 
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sheets. The difference is that at least 10 rafted layers (compared to 5) where observed in this study 

built up of 2 to 6 cm thin ice layers (compared to 8 cm). As described in Kankaanpää (1997) very thin 

lead ice (from 3cm) is strong enough, but also flexible enough to undergo bending and rafting without 

breakage. The lead ice in this study probably formed shortly before the ridging event and has not 

undergone any surface wrinkling that would increase frictional forces during rafting. Rafting of one 

layer will possibly end when the bending forces exerted by the overriding of the thick ice sheet exceed 

the tensile strength of the lead ice. At some point the rafting would turn into ridging. As the ridge R3-

2013 was built up of ice blocks from the adjacent level ice sheet, ridging continued after the thin lead 

ice depleted. The scenario that ridging continuous with the adjacent thicker ice sheet after rafting and 

ridging of lead ice when driving forces are sufficiently high, was earlier described by Weeks et al.  

(1971) and Tucker et al. (1984). From section 5.3, high driving forces can be assumed for this ridging 

event. It is not sure when the changeover from lead ice to level ice occurred in this ridging scenario. 

Since no ice blocks with lead ice thickness were found, it is not impossible that the lead ice was only 

rafting and the ridging continued instead with the 0.26 m level ice floe. But the fact that a big amount 

of small crushed ice was found within the ridge keel could be a result of crushing and compression of 

thinner, weaker lead ice in between two thicker ice floes.  

A time span of 10 days for possible ridge formation date was found, when taken into account the slight 

differences from the data sets for weather and the different FDD models. Several wind peaks during 

that period could have initiated ridge building. The ridge age at time of investigation was 7 to 8 weeks 

which could conform to the degree of consolidation and the observed deterioration of the sail rubble.  

The ridge origin was backtracked by free-drift approximation and results in a location east of 

Svalbard. When comparing the estimated drift path with drift trajectories generated by IFREMER for 

different dates, the drift directions correlate to the drift trajectories. The applied free-drift assumption, 

which was valid for surface winds, requires close drift ice fields and drift passage free from distortions 

caused by shorelines or shallow waters. Both requirements were met during the time from ice 

formation until the ridges end position. One could argue that ice deformation such as ridging should be 

accompanied by large internal stresses and consequently makes free-drift approximation less 
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applicable. Considering that the ice cover was broken and the ice floe that formed the ridge was 

generally thin (0.26 m during ridge formation and 0.67 m during field measurements), the effect of 

internal ice stresses should be negligible.  

The presented attempt of retracing the ridging event for the investigated ice ridge is accompanied by 

uncertainties, but still holds a number of matches with actual measured data. Conformity of results 

was found for free drift and for theoretical ridging process with actual ridge structure. A first attempt 

to relate ridge ice properties to environmental conditions from large-scale products was earlier 

presented by Petrich and Bonath (2014) and applied to ridge R2-2012 and good agreements between 

models and physical values were found. A detailed study on the microstructure and physical 

parameters of pressure ridges could generally give more information than what is extracted from field 

studies so far. 

6 Conclusions 

This paper contributes to a better understanding of ice ridges. Large scatters for ridge geometry data is 

a persistent problem that has to be dealt with. Ice ridges do not build under equal conditions and are 

exposed to different natural occurrences. The morphological data from a comprehensive field study 

comprising the measurements of 6 pressure ridges were presented with the aim to provide complete 

data for further research and attention was paid to so far poorly reported data. The knowledge gaps on 

ice ridge data identified by Strub-Klein and Sudom (2012) such as ridge cross-sectional areas, ridge 

consolidation and block dimensions were covered. For the first time profiles of ridges along and across 

the ridge spine were presented. The data were analyzed with regard to previous publications and new 

approaches to analyze and evaluate ridge data were suggested. Overall ridge data would be easier to 

compare if there would be general agreements on the definition of important ridge parameters such as 

the consolidated layer and ridge porosity. The main findings from the recent study are summarized as 

follows:  

 The determination of ridge cross-sectional areas, for sail, keel and the consolidated layer is 

rarely reported, but an effective way to approximate the overall magnitude of ice ridges, not 
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least due to the variability of ridge keel shapes. The keel area to sail area ratio was 14 for the 

sections perpendicular to the spine and 3 for the measured sections along the ridge spine. 

Furthermore the ratio of consolidated ice area to ridge keel area can be tremendous within a 

cross-section. The consolidated area always exceeded 33 % and was in average 58% of the 

ridge keel area. 

 The consolidated layer thickness was in average from 1.0 m to 2.8 m, and this is higher than 

many other have reported and what models predict. The ratio of consolidated layer and level 

ice thickness ranged from 1.4 to 3 and was between 2 and 3 for 8 of 11 cross-sections, based 

on the assumption that the surrounding level ice has the same origin as the ice that formed the 

ridge.  

 Macroporosity within the ridge keel is highly variable with depth. After a fast increase in the 

upper keel part follows a fluctuating porosity distribution where macroporosity values can be 

as high as 70%. Macroporosity approaches zero quickly in the lowest keel part, where the 

ridge keel only consists of some single, underlying ice blocks.  

 Even though the absolute values for ice block dimensions differ for different ridges, the 

distributions of the ratio between the longest and shortest axis of ice blocks and the ratio 

between the longest axes and the block thickness are similar for all ridges. The ratio d2/d1, 

describing roughly the block surface shape, is in average 1.5 and follows a unique trend which 

can be described by a 3-parameter lognormal distribution. The ratio d2/hbl is lognormal 

distributed with μ = 1.22 and σ=0.46. Hence the distribution of ice block sizes and block 

shapes within a ridge is predictable and ice blocks for a ridge can be determined from the 

block thickness. 

The re-creation of a possible ridge formation scenario was attempted for R3—2013. It is possible to 

identify the process of ridge formation based on information on ridge morphology and ice texture with 

reasonable results. A realistic ridge history can be recreated from ice growth models, reanalyzed 

weather data and reconstruction of ice drift path. The accuracy of possible formation date lies within a 
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time span of two weeks. The identification of ridge age and ridge origin is one step forward to 

determine the growth rate of the consolidated layer. 
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Tables 

Table 1. Coordinates for the six ridges studied from 2011 to 2013 (Sand et al., 2015) 

 

 

 

 

 

Table 2. Summary of measured geometric ridge data, including sail height (HS), keel depth (HK), sail 

and keel width (WS, WK), ridge length (LR), sail and keel slope angles (αS, αK) and ridge areas for ridge 

sail (AS), keel (AK), the consolidated part (ACL) and the total ridge (ATot).Profiles named ‘A’ were 

measured along the ridge spine, whereas the others were across. 

 2011 R2-2012 R1-2013 R2-2013 R3-2013 

Profile R1 R2 A B C A B A B C A B 

HS (m) 2.0 2.4 1.7 0.8 1.4 2.0 1.8 2.0 2.0 2.1 3.3 2.7 

HK (m) 5.1 6.9 4.3 6.7 4.3 3.4 2.3 6.1 6.3 6.8 6.2 7.6 

WS (m) 8 9 - 9 8 - 14 - 12 12 - 10 

WK (m) 44 32 - 20 20 - 32 - 32** 32** - 64 

LR (m)* - - 25 - - 100 - 65 - - >120 - 

αS (°) 26 23 - 10 19 - 22 - 24 - - 32 

αK (°) 12 20 - 28 19 - 8 - 11 15 - 10 

AS (m
2) 5 8 36 3 3 68 7 97 13 17 191 12 

AK (m
2) 82 114 97 63 36 222 52 278 139 135 518 281 

ACL (m
2) - 66 84 41 36 130 33 120 63 45 224 126 

ATot (m
2) 87 122 133 66 39 290 59 375 152 152 709 293 

*
LR is the length of the ridge sail along the spine 

**
The keel merges with a rubble field 

 

Table 3. Macroporosity (µM) values for ridge sails and keels and the number of involved drill holes 

(nSail and nKeel) for determining sail and keel porosities. Profiles named ‘A’ were measured along the 

ridge spine, whereas the others were across. 

Macroporosity μM (%) 

 2011 R2-2012 R1-2013 R2-2013 R3-2013 

 R1* R2* A B* C* A B A B C A B 

Ridge: Date: Coordinates: 

R1-2011 19 Mar 14.237 E, 79.847 N 

R2-2011 29 Mar 22.521 E, 76.249 N 

R2-2012 14 Mar 1.48 W, 79.93 N 

R1-2013 27 Apr 26.645 E, 78.124 N 

R2-2013 28 Apr 26.523 E, 78.116 N 

R3-2013 29 Apr 26.381 E, 78.142 N 
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Sail 0 0 6 0 0 16 12 19 15 26 26 30 

Keel rubble 1** 31 22 20 27 1 <1 34 31 19 38 51 

Keel(incl. CL) 1** 14 6 8 2 1 <1 21 17 13 23 33 

nSail (-) 5 5 6 7 5 19 8 12 7 7 13 6 

nKeel (-) 23 15 6 11 11 19 17 12 17 17 13 27 

*Sails consist of only few ice blocks and with snow/slush on top **Voids in the keel were not or hardly measurable 

 

Table 4. The average consolidated layer thickness (HCL,ave) and standard variations (HCL,stdev), the 

minimum (HCL,min) and maximum (HCL,max) measured consolidated layer thickness and the number of 

boreholes n for the investigated ridge profiles. Profiles named ‘A’ were measured along the ridge 

spine, whereas the others were across. 

 2011 R2-2012 R1-2013 R2-2013 R3-2013 

R2 

R2 

A B C A B A B C A B 

HCL, ave (m) 2.02 2.82 1.84 1.64 1.36 0.97 1.84 1.85 1.33 1.73 1.92 

HCL, stdev (m) 2.00 1.16 0.97 1.13 1.11 0.53 1.07 1.13 0.78 1.29 0.57 

HCL, min (m) 0.46 1.40 0.48 0.38 0 0.03 0.2 0.35 0.60 0 0.24 

HCL, max (m) 6.27 4.15 3.90 4.15 3.20 2.40 3.97 3.20 3.52 4.43 2.93 

n (-) 15 6 11 11 19 17 13 17 17 13 27 

HCL,ave/HLI (-) 2.53 3.00 1.96 1.44 2.12 1.50 2.97 3.00 2.15 2.58 2.87 

 

 

Table 5. Summary of ice block dimensions (hbl, d1, d2) and orientation (αbl), block surface areas (Abl) 

and ratios for block lengths (d2/d1). 

 

  R2-2012 R1-2013 R2-2013 R3-2013 

  Av Stdev n Av Stdev n Av Stdev n Av Stdev n 
hbl (m) 0.87 0.08 6 0.48 0.11 22 0.40 0.10 45 0.26 0.06 69 

d1 (m) 1.49 0.66 6 0.94 0.29 10 0.97 0.45 43 0.94 0.65 41 
d2 (m) 1.83 0.63 6 1.41 0.59 10 1.35 0.63 45 1.30 0.77 47 
αbl ( °) 14.17 18.00 6 - - - 50.10 35.42 22 50.34 27.96 53 
Abl (m2) 2.97 2.29 6 1.43 1.07 10 1.54 1.41 43 1.71 2.45 41 

d2/d1 (-) 1.30 0.50 6 1.52 0.37 10 1.49 0.50 43 1.55 0.53 41 

 

Table 6. Correlation values of ridge geometry data including the total ridge height (HS+HK) and the 

ratios keel depth to sail height ratio (HK/HS), keel width to keel depth (WK/HK), keel width to sail 

height (WK/HS) and sail width to sail height (WS/HS). 

 

R1-

20111 

R2-

20113 

R2-

20122 

R1-

20133 

R2-

20133 

R3-

20133 

All 

data* 

Svalbar

d* 

Barents 

Sea* 

HS + HK 

(m) 

7.10 9.30 7.40 5.40 8.90 9.90 8.90 6.10 10.00 

HK/HS (-) 2.55 2.88 3.94 1.70 3.24 2.30 5.17 5.00 4.40 

WK/HK (-) 8.63 4.63 2.99 9.41 4.71 8.42 4.85 - - 

WK/HS (-) 22.00 13.33 19.64 16.00 15.62 19.39 20.91 - - 

WS/HS (-) 4.00 3.75 8.48 7.00 5.85 3.03 3.75 - - 

*Average ridge data from Strub – Klein and Sudom (2012) for all first - year ridges, ridges in Svalbard regions and ridges in 
Barents Sea; 

1
 Ridge located in Svalbard region; 

2
 Ridge located in Fram Strait; 

3
 Ridges located in Barents Sea 
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Table 7. Average values for the ridge sail and keel macroporosity from different literature sources 

calculated from the given numbers of ridges (nR) and bore holes (nH). 
 Macroporosity (%) nR (-) nH (-) 

Source Sail Keel+CL Keel Ridges Holes 

Leppäranta and Hakkala (1992) 19 29 - 6 - 

Beketsky et al. (1996) 26 - 28 1 - 

Kankaanpää (1997) 20 30 - 8 - 

Høyland (2007) 21 - 30 4 64c/189d 

Kharitonov (2008,2012) 9 19 - 41 707 

Ervik et al. (2018) 11 (22a) 9 21 4 51 

Present data 13 (19a) 12 (15b) 23 (30b) 6 96c/182d 

 

a
Excluding sail porosities equal to zero 

b
Excluding R1-2011 and R1-2013 

c
Sail 

d
Keel 

Table 8. Mean values for the minimum to average thickness (CMin) and the maximum to average 

thickness (CMax), the respective range of values from the studied ridges, the number of ridges and the 

ratio between CMax and CMin, being a measure for the variability of the consolidated layer thickness. 

 

Source CMax (m) Range (m) CMin (m) Range (m) n (-) CMax/CMin (-) 

Timco and Burden (1997) 1.68 1.2 … 2.7 0.51 0.1 … 0.9 25 3.3 

Høyland (2002) 1.40 1.2 … 1.6 0.74 0.6 … 0.9 3 1.9 

Høyland (2007) 2.00 1.6 … 2.6 0.38 0.3 … 0.7 4 5.3 

Ervik et al. (2018) 1.98 1.8 … 2.3 0.39 0.2 … 0.6 4 5.1 

Strub-Klein and Sudom 
(2012) – all ridges 

3.75 - 0.19 - 117 20 

Present data 2.24 1.5 … 3.1 0.19 0.0 … 0.5 5 11.6 
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Figure Captions 

Fig. 1. Location of the six ridges studied from 2011 to 2013 (Sand et al., 2015) 

Fig. 2. Example of a first-year ridge cross-section with characteristic dimensions. 

Fig. 3. Photo (a) and cross-section (b) through the transect of ridge 1 measured in 2011. 

Fig. 4. Photo (a) and cross-section (b) through the transect of ridge 2 measured in 2011. 

Fig. 5. Profile along the spine (left) and transects B and C (right) of ridge R2-2012. 

Fig. 6. Photos of ridges investigated in 2012 and 2013 which are ridges R2 – 2012 (a), R 1 – 2013 (b), 

R 2 – 2013 (c) and R 3 – 2013 (d). 

Fig. 7. Transects along the spine (a) and through transect B (b) of ridge R1 -2013. 

Fig. 8. Transects along the spine (a) and through transect B and C (b) of ridge R2-2013. 

Fig. 9. Transects along the spine (a) and through transect B (b) of ridge R3-2013. 

Fig. 10. Temperature profiles from ridges R1-2013 to R3-2013 and the adjacent level ice. 

Fig. 11. Distribution of ice block thicknesses 

Fig. 12. Possible ridge building process for R3-2013, showing the initial situation (a), the rafting and 

ridging of the lead ice and level ice (b) and the ridges transect B at date of investigation (c). 

Enlargements of pictures from the crystal studies show examples for ice texture at different ridge 

locations. The greyed out area marks a zone in the ridge keel that contains mainly crushed ice. 

Fig. 13. Ice drift tracks iterated from (a) NCEP and (b) ERA wind data shown from 1st of January to 

29th of April 2013. The zones of likely ridge formation place are marked by a double arrow. (c) Daily 

quiver plots for ice drift generated by CERSAT/IFREMER. Ice drift trajectories represent ice drift for 

6 days periods respectively. 

Fig. 14. Air temperatures along the drift track from January to April 2013. 

Fig. 15. Wind speeds 10 m above surface along the drift track from January to April 2013. The time 

periods for possible ridge formation calculated from ERA-Interim and NCEP data are sketched in the 

figure.  
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Fig. 16. Expected pressure ridge formation date in 2013 (a) backwards calculated from FDD models. 

The horizontal dotted line marks the level ice thickness at R3-2013, i.e. the intersections with the 

curve indicate the predicted ice formation date. Two time intervals for the respective temperature 

dataset were obtained. (b) The possible ridge formation date based on the block size thickness 

(horizontal dotted line). 

Fig. 17. The ratios of ice block thickness and sail height vs. the sail macro porosity. 

Fig. 18. Macroporosity vs. depth, from water level downwards in 0.5 m steps. Dashed lines show the 

macroporosity calculated from varying number of boreholes with depth and grey, solid lines show the 

number of boreholes available at each depth. 

Fig. 19. Distribution for ratios of block dimensions d2/d1 

Fig. 20. Cumulative distribution of block dimension ratio d2/d1 

Fig. 21. Block dimension ratio d2/d1 for different ice block thicknesses 

Fig. 22. Cumulative frequency for ratios of block dimensions d2/hbl from the measured ridges in 2012 

and 2013 

Fig. 23. Cumulative frequency for ratios of block dimensions d2/hbl of all present block measurements 

and data from literature. 

Fig. 24. Lognormal QQ-plot for ratios d2/hbl 
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Figures 

 

Fig. 2. Location of the six ridges studied from 2011 to 2013 (Sand et al., 2015) 

 

Fig. 2. Example of a first-year ridge cross-section with characteristic dimensions. 

 

Fig. 3. Photo (a) and cross-section (b) through the transect of ridge 1 measured in 2011. 

a) b)
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Fig. 4. Photo (a) and cross-section (b) through the transect of ridge 2 measured in 2011. 

 

Fig. 5. Profile along the spine (left) and transects B and C (right) of ridge R2-2012. 

 

Fig. 6. Photos of ridges investigated in 2012 and 2013 which are ridges R2 – 2012 (a), R 1 – 2013 (b), 

R 2 – 2013 (c) and R 3 – 2013 (d). 

 

a) b)

a) b)

c) d)
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Fig. 7. Transects along the spine (a) and through transect B (b) of ridge R1 -2013. 

 

Fig. 8. Transects along the spine (a) and through transect B and C (b) of ridge R2-2013. 

 

Fig. 9. Transects along the spine (a) and through transect B (b) of ridge R3-2013. 
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Fig. 10. Temperature profiles from ridges R1-2013 to R3-2013 and the adjacent level ice. 

 

Fig. 11. Distribution of ice block thicknesses 
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Fig. 12. Possible ridge building process for R3-2013,showing the initial situation (a), the rafting and 

ridging of the lead ice and level ice (b) and the ridges transect B at date of investigation (c). 

Enlargements of pictures from the crystal studies show examples for ice texture at different ridge 

locations. The greyed out area marks a zone in the ridge keel that contains mainly crushed ice. 
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Fig. 13. Ice drift tracks iterated from (a) NCEP and (b) ERA wind data shown from 1st of January to 

29th of April 2013. The zones of likely ridge formation place are marked by a double arrow. (c) Daily 

quiver plots for ice drift generated by CERSAT/IFREMER. Ice drift trajectories represent ice drift for 

6 days periods respectively. 

 

Fig. 14. Air temperatures along the drift track from January to April 2013. 

NCEP – Drift track ERA – Drift track

Jan 01

Jan 01

Apr 29Apr 29

a) b)

c1) 2013-01-01 to 2013-01-07 c2) 2013-03-01 to 2013-03-07 c3) 2013-04-17 to 2013-04-23

Mar 01

Mar 01
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Fig. 15. Wind speeds 10 m above surface along the drift track from January to April 2013. The time 

periods for possible ridge formation calculated from ERA-Interim and NCEP data are sketched in the 

figure.  

 

Fig. 16. Expected pressure ridge formation date in 2013 (a) backwards calculated from FDD models. 

The horizontal dotted line marks the level ice thickness at R3-2013, i.e. the intersections with the curve 

indicate the predicted ice formation date. Two time intervals for the respective temperature dataset 

were obtained. (b) The possible ridge formation date based on the block size thickness (horizontal 

dotted line). 
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Fig. 17. The ratios of ice block thickness and sail height vs. the sail macro porosity. 

 

Fig. 18. Macroporosity vs. depth, from water level downwards in 0.5 m steps. Dashed lines show the 

macroporosity calculated from varying number of bore holes with depth and grey, solid lines show the 

number of boreholes available at each depth. 

 

Fig. 19. Distribution for ratios of block dimensions d2/d1 
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Fig. 20. Cumulative distribution of block dimension ratio d2/d1 

 

Fig. 21. Block dimension ratio d2/d1 for different ice block thicknesses 

 

Fig. 22. Cumulative frequency for ratios of block dimensions d2/hbl from the measured ridges in 2012 

and 2013 
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Fig. 23. Cumulative frequency for ratios of block dimensions d2/hbl.all present block measurements 

and data from literature. 

 

Fig. 24. Lognormal QQ-plot for ratios d2/hbl 
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Highlights: 

 Data from field measurements on in total 6 first-year ice ridges are presented 

 Ice block size and shape distribution appears predictable 

 Ridge keel consolidation ranges from 30 % to 90 % of the ridge keel 

 Ridge formation process can be reproduced from field data and reanalysis products 
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