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Abstract—Oscillation phenomena of offshore wind power plant
(OWPP) in a wide frequency range can be caused due to
impedance interactions between grid-connected inverters (GCIs)
and transmission cables. In this paper, impedance model of GCI
with outer power control loop, inner current control loop and
phase-locked loop is first established in dq reference frame. The
correctness is validated by frequency scanning method. Then,
the effects of active and reactive power/current references on dq
impedance characteristics of GCI with/without consideration of
power control loop are investigated using complex space vectors
and complex transfer functions. Furthermore, RLC circuit model
of transmission cable considering frequency-dependent charac-
teristics is also established for dq-domain IBSC. On the basis
of them, it’s found that low-frequency oscillation phenomena
of OWPP under power control mode may occur if active
power reference exceeds a certain threshold value, which can
be mitigated by injecting a certain amount of negative reactive
power. Impacts of PLL parameters, length of transmission cable
and number of paralleled GCIs on required negative reactive
power for low-frequency stabilization are further investigated.
Both Matlab/Simulink-based simulation and OPAL-RT-based
real-time verification are implemented in an OWPP with four
permanent magnet synchronous generators to validate the cor-
rectness of the reactive power characteristic analysis results and
the feasibility of mitigating low-frequency oscillation phenomena
by negative reactive power injection.

Index Terms—Frequency scanning, grid-connected inverter,
low-frequency stability, offshore wind power plant, reactive
power, transmission cable.

I. INTRODUCTION

OFFSHORE wind power plants (OWPPs) are increasingly
explored in recent years, which are commonly connected

into utility grid by transmission cables [1]. Grid-connected
inverter (GCI), as an important power electronic interface, is
frequently used to deliver electricity to utility grid [2]. Re-
cently, oscillation phenomena of OWPPs in a wide frequency
range due to dynamic interactions between control loops of
GCIs and time-varying grid impedance have been frequently
reported [3]–[8].

Control loops of the GCI mainly include outer power control
loop, inner current control loop and phase-locked loop (PLL),
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which are used to perform power regulation, current regu-
lation and grid synchronization, respectively [7]. Impedance-
based stability criterion (IBSC) for three-phase GCI has been
proposed to investigate these oscillation phenomena, where
impacts of the control loops on terminal impedance have
been investigated by various impedance models [3]–[7], [9]–
[14]. The mechanism of high-frequency instability phenomena
induced by the interaction between inner current control loop
and transmission cable is investigated in [6], [10], [11]. The
analysis results indicate that the impedance formula of a GCI
with only consideration of inner current control loop does
not consist of active power reference. Therefore, the high-
frequency stability dominated by the inner current control
loop is not affected by active power level [11], [15]. Out-
put impedance of the GCI further considering PLL can be
represented as a two-dimensional matrix, which is diagonal
dominant if the GCI is operated under high power factor
condition [7]. However, the high power factor condition is not
commonly satisfied in practical application, since the GCIs
are sometimes controlled to inject reactive power [12], [16],
[17]. The recent study in [7], [18] shows that magnitude of
cross-coupling term of the two-dimensional impedance matrix
can be increased once reactive current reference is increased,
whereas the quadrature-axis impedance which reflects the
negative resistor feature of PLL in low-frequency range is not
affected. In addition, stability analysis of the GCI considering
outer power control loop is implemented in [19], where eigen-
value analysis indicates that controller parameters of the outer
power control loop have an important effect on stability in
low-frequency range. However, the effect of power operation
point, i.e., active and reactive power references, on stability
has not been studied. Impedance model of the GCI with both
inner current control loop and outer power control loop is
established in [13], [14], which is related with active and
reactive power references. Furthermore, instability phenomena
in a two-terminal VSC-HVDC system can be caused by high
active power reference [13], [20]. Also, flow direction of
active power of two-terminal and three-terminal VSC-HVDC
systems can influence system stability [14]. However, impacts
of power level and flow direction of reactive power on system
stability have slightly been analyzed.

In addition to the aforementioned works about stability
analysis of offshore wind generators connected to long trans-
mission cables, extensive researches about stability analysis
of solar PV generators which work under weak grid condition
have been reported in [21]–[24]. The stability issues of PV
inverters connected with weak grid considering effects of inner
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current control loop on both low-frequency and high-frequency
stability are initially investigated in [21]. Furthermore, it is
found in [22] that increase of grid impedance can suppress
the low-frequency instability, whereas the increase of grid
impedance can degrade the high-frequency stability. In [23], a
probabilistic method is presented to analyze the small-signal
stability of power systems with PV integration considering
variation and uncertainty of solar irradiation. In [24], a nonlin-
ear describing function method is presented to perform the ac-
curate stability analysis of PV generators with consideration of
the nonlinear and discontinuous perturbation and observation-
based power control. However, only stability analysis methods
of PV generators connected with weak grid are developed in
[21]–[24], whereas no further stability enhancement strategies
are explored. In [18], [25]–[30], dq impedance model of the
GCI is reshaped to mitigate the negative effect of PLL on low-
frequency stability. In [18], the stability margin under weak
grid condition is improved by optimizing current controller
parameters. In [25], [26], the stability margin under weak
grid condition is improved by decreasing PLL bandwidth.
However, system dynamic performances will be degraded,
if a lower PLL bandwidth is adopted. In [27]–[30], grid
voltage feed-forward control strategies are used to reshape
the quadrature-axis impedance to mitigate the negative effect
of PLL on low-frequency stability. However, too large or too
small grid voltage feed-forward coefficient can degrade system
stability, which makes it difficult to select optimal value [30].
In addition, only inner current control loop and PLL, instead
of outer power control loop, are considered in [18], [21]–[30].

Similar with OWPP case, reactive power injection has been
a well-developed solution of PV applications for voltage sup-
port [31], for power transfer capability improvement [32], and
for power losses minimization [33]. However, few researches
have been reported to reshape the quadrature-axis impedance
through adjusting power operation point. Case studies in
[7] show that reactive power injection affects all the four
components of the dq impedance model when further con-
sidering outer power control loop. However, quantitative and
general analysis of the impacts of reactive power injection on
quadrature-axis impedance and corresponding system stability
has not been performed yet. To the best of the authors’ knowl-
edge, there is no report about the application of the reactive
power injection in either OWPP case or PV case to miti-
gate low-frequency instability phenomena through reshaping
quadrature-axis impedance. The low-frequency stabilization
approach presented in this paper may explore the inherent
capability of the GCI to mitigate low-frequency instability
phenomena under weak grid condition by injecting negative
reactive power.

Besides the aforementioned dq impedance models of GCIs,
it’s also important to establish accurate circuit models of
transmission cables to reproduce practical terminal impedance
feature for dq-domain IBSC. Previous works about circuit
modelling of transmission cable have been presented in [10],
[11], [34]–[39]. The established circuit models of transmission
cables in [10], [11], [34]–[36] are used for phasor-domain
IBSC. In [34], the transmission cable is modelled as a Π
section which consists of a series inductor and two parallel

capacitors, which fails to reveal practical frequency char-
acteristics and may perform inaccurate stability assessment.
Furthermore, circuit models of transmission cables with con-
sideration of distributed parasitic capacitance are established in
[10], [11], [35], in which multiple-cascaded Π-section circuit
model is used. However, per-unit-length (p.u.l.) resistance
and inductance of transmission cable are still regarded as
constant, which cannot reveal practical frequency-dependent
characteristics and corresponding damping characteristics. To
simulate practical frequency characteristics of transmission
cables, extra RL branches are inserted into each Π section
in parallel connection in [37]–[39]. However, the established
frequency-dependent circuit models are used for state space
model-based eigenvalues analysis. Whether the RLC circuit
model of transmission cable considering frequency-dependent
characteristics is applicable for dq-domain IBSC should fur-
ther be investigated.

In this paper, dq impedance models of GCIs with only
inner current control loop and PLL, and with outer power
control loop, inner current control loop and PLL are first
established, respectively. A frequency scanning scheme is
also developed to verify the correctness of the established
dq impedance models. The effects of active and reactive
current/power references on dq impedance feature, especially
on quadrature-axis impedance feature, are then theoretically
derived using complex space vectors and complex transfer
functions. On its basis, a quadrature-axis impedance reshaping
method through negative reactive power injection for low-
frequency stability improvement is presented. In addition,
circuit model of transmission cable considering frequency-
dependent characteristics of p.u.l. resistance and inductance is
established for dq-domain IBSC. The correctness of the effects
of active and reactive current/power references on quadrature-
axis impedance feature and corresponding system stability
is validated in an OWPP. In addition, the effectiveness of
the proposed low-frequency stabilization method based on
negative reactive power injection is verified with variation
of PLL bandwidth, grid strength and number of operating
inverters.

Main contributions of this paper are summarized as follows.
(1) The dq impedance models of the GCI without and with

consideration of outer power control loop are reformulated
using complex space vectors and complex transfer functions,
which facilitates the observation of effects of different control
loops on dq impedance model.

(2) The impact of reactive current/power injection on dq
impedance model under current/power control mode, espe-
cially on quadrature-axis impedance, is theoretically derived,
which shows that the quadrature-axis impedance without outer
power control loop remains unchanged with variation of reac-
tive power injection, whereas the quadrature-axis impedance
will be affected by outer power control loop.

(3) Circuit model of transmission cable considering
frequency-dependent feature is established for dq-domain
IBSC, which is able to obtain an accurate impedance-based
stability analysis result.

(4) A quadrature-axis impedance reshaping method through
negative reactive power injection to improve low-frequency
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stability is presented, where the amount of required reactive
power under a specific weak grid condition can be obtained.

The rest of this paper is organized as follows. In Section
II, system configuration of the studied OWPP is introduced,
followed by impedance modelling of GCIs and transmission
cables. In Section III, the effects of reactive power injection
on quadrature-axis impedance feature of current-controlled
and power-controlled GCIs are theoretically analyzed, based
on which the quadrature-axis impedance reshaping method
through negative reactive power injection is presented. The
correctness of the analysis results is validated in Section IV.
On its basis, in Section V, impacts of PLL parameters, grid
strength and number of operating GCIs on required negative
reactive power for low-frequency stabilization are analyzed
and validated. Finally, conclusions are drawn in Section VI.

II. SYSTEM CONFIGURATION AND IMPEDANCE
MODELLING

In this section, system configuration of an exemplified
OWPP is first depicted, followed by establishing dq impedance
matrix of GCI with consideration of outer power control loop,
inner current control loop and PLL. Also, circuit model of
transmission cable considering frequency-dependent feature is
established.

A. System Configuration

Fig. 1(a) shows the circuit configuration of an exemplified
OWPP, where four permanent magnet synchronous generators
(PMSGs) are connected with point of common coupling (PCC)
through 575 V/ 33 kV transformers T1, T2, T3, T4 and
transmission cables TC1, TC2, TC3, TC4. And the 33 kV bus
is connected into 150 kV main AC grid through 33 kV/150
kV transformer T5 and transmission cable TC5.

For each PMSG, controls of generator side converter and
GCI are decoupled, and dc-link voltage Vdc is regarded as con-
stant [10]. Therefore, output impedances of the four PMSGs
are only dependent on the four GCIs. The control structure
of the GCIs is shown in Fig. 1(b), where outer power control
loop, inner current control loop and PLL are marked as blue,
black and red, respectively. Although many PLL structures
different from each other by the phase detectors have been
proposed, they share the same phase-locking principle and
differ mainly in the area of phase-angle measurement [40]. Its
impact on the converter output impedance is negative, which
is not changed by advanced PLL, current, and power control
strategies [7]. Therefore, the synchronous reference frame-PLL
(SRF-PLL) which is currently the most common phase-locked
method is used in this paper.

Instability phenomena may occur under weak grid condi-
tion. Specifically, the grid is regarded as weak if it has a
high impedance seen from PCC, which can be depicted by
the short-circuit ratio (SCR), shown as follows [32].

SCR =
PSC

POWPP rated
=

V 2
g / |Zg|

POWPP rated
(1)

where PSC and POWPP rated are the short-circuited capacity
of the grid at the PCC and the rated generation power of the
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Fig. 1. Typical configuration of an HVAC-connected OWPP. (a) Four PMSGs
connected with PCC via transmission cables in parallel. (b) Control structure
of the four GCIs.
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Fig. 2. Block diagram of the GCIs in Fig. 1 using transfer matrices [7].

OWPP, respectively. Generally, the grid is weak when 2 ≤
SCR ≤ 3 and very weak when SCR < 2 [18].

B. DQ Impedance Modelling of GCI

Output impedances of L-filtered GCI without and with outer
power control loop have been derived in [7]. On its basis,
dq impedance models of LCL-filtered GCIs without and with
power control loop can be established based on the control
block diagram in Fig. 2, shown as (2) and (3) on the next
page, where Y m

LCL,c and Y m
LCL,g are defined as follows.

Y m
LCL,c = −∆Isg,dq(∆V s

PCC,dq)
−1
∣∣∣
∆V s

m,dq=0

= (((Zm
Lf1

)−1 + (Zm
Cf

)−1)−1 + Zm
Lf2

)−1

Y m
LCL,g = ∆Isg,dq(∆V s

m,dq)
−1
∣∣∣
∆V s

PCC,dq=0

= (Zm
Lf2

(Im + ((Zm
Lf2

)−1 + (Zm
Cf

)−1)Zm
Lf1

))−1

(4)

where the superscript m denotes matrix. Detailed expressions
of the symbols in (2) and (3) are shown in Appendix A. It can
be seen that the two PLL-related transfer matrices (Gm

PLL i

and Gm
PLL d) and the three power control loop-related transfer

matrices (Gm
PLL v , Gm

PQ i and Gm
PQ v) are highly sensitive to
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Zm
LCL no PCL =

[
ZPLL
dd ZPLL

dq
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qd ZPLL

qq

]
= −∆Isg,dq(∆V s
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Fig. 3. Circuit model of transmission cable. (a) Two-port network model. (b)
RL circuit model of p.u.l. series impedance.

operating point V s
PCC,dq , Isg,dq and Ds

dq . The effects of the
operation point on dq impedance model will be investigated
in Section III.

C. Circuit Modelling of Transmission Cable with Considera-
tion of Frequency-Dependent Characteristics

1) Practical Electrical Characteristics of Transmission Ca-
ble: Transmission cable can be modelled as a two-port net-
work, as shown in Fig. 3(a). The parameters are given as
follows [41].

ZS = z(ω)L
sinh(γ(ω)L)

γ(ω)L

YP = y(ω)L
tanh(γ(ω)L/2)

γ(ω)L/2

(5)

where ZS and YP are series impedance and shunt admittance;
z(ω) = r(ω) + jωl(ω) and y(ω) = g(ω) + jωc(ω) the p.u.l.
impedance and admittance; γ(ω) =

√
(z(ω)y(ω) propagation

constant, and L the length of transmission cable; r(ω), l(ω),
g(ω) and c(ω) p.u.l. resistance, inductance, conductance and
capacitance, respectively. For transmission cable, r(ω) and
l(ω) change as frequency varies. g(ω) can be ignored, and
c(ω) is regarded as constant [41].

2) Generate Cascaded Π-Section Circuit Model of Trans-
mission Cable: In the proposed circuit modelling method,
r(ω), l(ω) and c(ω) are first calculated by Matlab toolbox
power cableparam based on the material and size of the
transmission cable [42]. On its basis, vector fitting (VF)
algorithm is then employed to fit frequency characteristics of
p.u.l. series impedance z(ω). The mathematical representation
can be obtained as follows [43].

f(s) =
N∑

n=1

Bn/(s−An) +D + sE (6)
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Fig. 4. Multi-segment lumped-parameter RLC circuit model of transmission
cable.

where f(s) is the fitted transfer function, N is the order
of f(s), Bn and An are the nth residue and pole pair. D
is nonzero if the order of the numerator polynomial is not
lower than the order of denominator polynomial. Nonzero E
indicates the transfer function is improper [43].

(6) is then represented by an RL network, as shown in Fig.
3(b), where parameters of the RL circuit are calculated as
follows.

R0 = D −
n∑

i=1

Bn/An L0 = E

Rk = Bk/Ak Lk = −Rk/Ak (k = 1, 2...N)

(7)

Finally, cascaded Π-section circuit model of the transmis-
sion cable is established, as shown in Fig. 4, where the
parameters of each Π section are calculated as follows.

R′0 = R0L/m L′0 = L0L/m R′k = RkL/m

L
′

k = LkL/m C
′

= cL/m (k = 1, 2...N)

(8)

where L is cable length, m number of Π sections, c p.u.l.
capacitance. Basically, m increases as L increases. In addition,
N increases as frequency range of interest widens.

Note that the impedance models of GCIs (2) and (3) are
established in dq-domain, whereas the impedance model of
transmission cable in Fig. 4 is established in phasor-domain.
The impedance models of GCIs and transmission cable should
also be represented in phasor-domain and dq-domain, respec-
tively, to investigate the impedance interaction. The phasor-
domain impedance model of the GCI can be obtained as
follows [44].

Zm
inv pn =

[
Zinv pp Zinv pn

Zinv np Zinv nn

]
= Am

Z Z
m
inv dq

(Am
Z )−1 (9)

where Zm
inv dq

and Zm
inv pn

are dq-domain and modified
sequence-domain impedance models of the GCI, respectively.
Am

Z = 1√
2
[1, j; 1,−j], Zinv pp = Zinv(s + jω1), Zinv nn =

Zinv(s− jω1). Zinv is the phasor-domain impedance model.
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On the other hand, the dq-domain impedance model of the
transmission cable can be obtained as follows.

Zm
TC dq = (Am

Z )−1Zm
TC pnA

m
Z

= (Am
Z )−1

[
ZTC pp ZTC pn

ZTC np ZTC nn

]
Am

Z (10)

where Zm
TC dq and Zm

TC pn are dq-domain and modified
sequence-domain impedance models of the transmission cable,
respectively. ZTC pn = ZTC np = 0, ZTC pp = Zcable(s +
jω1), ZTC nn = Zcable(s−jω1). Zcable is the phasor-domain
impedance model in Fig. 4.

3) Comparison of Different Circuit Models of Transmission
Cable for Stability Analysis: Circuit and controller parameters
of the GCIs are shown in Table I, where the bandwidths of
inner current control loop, outer power control loop and PLL
are 278 Hz, 13 Hz and 111 Hz, respectively. In addition, the
material and physical parameters of the transmission cables
can be found in [42]. Based on the material and physical
parameters, the OPAL-RT ARTEMiS-SSN library is able to
generate the WideBand Line model which can accurately
reproduce terminal impedance characteristics [45]. Therefore,
the WideBand Line model will be regarded as a benchmark to
assess the accuracy of the fitted RLC circuit models. The Bode
diagram of the WideBand Line model for a 11 km transmission
line, i.e., SCR= 3.27, is plotted as Zwideband in Fig. 5(a).

Furthermore, Matlab toolbox power cableparam is used
to calculate r(ω) and l(ω). On its basis, z(ω) is fitted as
(6) using VF algorithm, and frequency-dependent RLC circuit
models in form of Fig. 4 is established based on (7) and (8).
Specifically, Bode diagrams of the frequency-dependent RLC
circuit models with different number of Π sections (1, 5, 10
and 20) ZFD 1 Pi, ZFD 5 Pi, ZFD 10 Pi, ZFD 20 Pi for the
11 km transmission cable are plotted in Fig. 5(a). It can be seen
that fitting accuracy becomes higher as the number of cascaded
Π sections increases. On the other hand, Bode diagram of
terminal impedance of RLC circuit model which consists of
20 Π sections without consideration of frequency-dependent
characteristics Znon FD cable is plotted in Fig. 5(b). It can
be seen that the non-frequency-dependent RLC circuit model
cannot reveal practical damping characteristics, especially in
high-frequency range.

TABLE I
CIRCUIT AND CONTROLLER PARAMETERS OF THE GCIS

Parameter Value

DC-link voltage Vdc 1150 V
Grid fundamental frequency f1 50 Hz
Inverter side filter inductance Lf1 263 µH
Grid side filter inductance Lf2 200 µH
Filter capacitance Cf 40 µF
Switching frequency fswit 2.5 kHz
Sampling frequency fsamp 2.5 kHz
Grid Vrms (phase-to-phase) Vg 33 kV
Proportional gain of power controller kpPQ 2.7454e-04
Integral gain of power controller kiPQ 0.165

Proportional gain of current controller kpi 1.4054e-3
Integral gain of current controller kii 0.2455
Proportional gain of PLL kppll 20
Integral gain of PLL kipll 200

10
-3

10
-1

10
1

M
ag

n
it

u
d

e 
[

]

50 100 500 1000 2500
Frequency [Hz]

-50
0

50

A
n

g
le

 [
o
]

Z
wideband

Z
FD_1_Pi

Z
FD_5_Pi

Z
FD_10_Pi

Z
FD_20_Pi

(a)

(b)

Fig. 5. Comparison of different circuit models of transmission cable for
stability analysis. (a) Bode diagrams of output impedances of WideBand
Line model and RLC circuit models for 11 km transmission cable. (b) Bode
diagrams of output impedances of GCI 1 and 11 km transmission cable using
different circuit models.

Three-phase voltages and currents when GCI 1 is connected
with the 11 km transmission cable using the non-frequency-
dependent circuit model with 20 Π sections, WideBand Line
model and frequency-dependent circuit model with 20 Π
sections are shown in Figs. 6(a), 7(a) and 7(b), respectively. It
can be seen that the system is unstable in Fig. 6(a) and stable
in Figs. 7(a),(b). In addition, frequency spectrum of Fig. 6(a)
is shown in Fig. 6(b), where oscillation phenomena occur at
427 Hz and 714 Hz. To reveal the high-frequency oscillation
phenomena, phasor-domain impedance model of GCI 1 Zinv

is calculated from (2) using matrix transformation (9), and
Bode diagram of Zinv is plotted in Fig. 5(b). It can be seen
that magnitudes of Zinv and Znon FD cable interact at both
424 Hz and 699 Hz, where phase angle differences are higher
than 180o. It indicates that the system is unstable at the two
frequency points. In addition, magnitudes of Zwideband and
ZFD 20 Pi do not interact with Zinv in non-passive region of
GCI 1, which indicates that the system is stable. The analysis
results agree with the simulation results in Figs. 6 and 7. Since
low-frequency stability is focused in this paper, and the low-
frequency impedance characteristic of transmission cable can
be reproduced by one Π section, the proposed one-Π-section-
based frequency-dependent RLC circuit modelling method of
transmission cable will be used in Sections IV and V for the
dq impedance-based stability analysis of the OWPP shown in
Fig. 1(a).

III. IMPACTS OF ACTIVE AND REACTIVE POWER ON DQ
IMPEDANCE FEATURE OF THE GCI

In this section, impacts of active and reactive current/power
references on low-frequency dq impedance characteristics
of the GCI are first theoretically derived using complex
space vectors and complex transfer functions. On its basis, a
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Fig. 6. Simulation results using non-frequency dependent circuit model with
20 Π sections. (a) Time-domain simulation results. (b) Frequency spectrum
of three-phase voltages and currents.
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Fig. 7. Time-domain simulation results using WideBand Line model and
frequency-dependent circuit model with 20 Π sections. (a) Simulation results
using the WideBand Line model. (b) Simulation results using frequency-
dependent circuit model with 20 Π sections.

quadrature-axis impedance reshaping method through reactive
power injection is presented.

A. Theoretical Derivation of Impacts of Active and Reactive
Current/Power References on DQ Impedance Characteristics

The dq impedance models in (2) and (3) will be refor-
mulated using complex space vectors and complex transfer
functions to clearly observe the effects of different control
loops on dq impedance characteristics. The complex transfer
function representations of the transfer matrices in (2) and (3)
are listed in Appendix A, based on which the complex transfer
functions-based control block diagram of the GCIs is derived
in Fig. 8.
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Fig. 8. Block diagram of the GCIs in Fig. 1 using complex space vectors and
complex transfer functions.

1) Without Outer Power Control Loop: The closed-loop
response of ∆Is

g,dq can be derived from Fig. 8, shown as
follows.

−∆Is
g,dq

∣∣
∆Irefg,dq=0

= YCCL
cl,dq∆Vs

PCC,dq −YPLL
cl,dq∆Vs

PCC,dq

+YPLL
cl,dq∆Vs∗

PCC,dq (11)

where YCCL
cl,dq and YPLL

cl,dq are the complex transfer function
representations of current control loop-related and PLL-related
output admittance, respectively, shown as follows.

YCCL
cl,dq = YLCL,c/(1 + Tcl,dq)

YPLL
cl,dq = (

G+,PLL d

Gci
+ G+,PLL i)G

CCL
cl,dq (12)

where GCCL
cl,dq = Tcl,dq/(1 + Tcl,dq) and Tcl,dq =

1
2VdcYLCL,gGdelGci are the closed-loop and open-loop
gains of the current control loop, respectively.

When ∆Iref
g,dq = 0, the following equation can be obtained

based on (11).

−
[

∆Is
g,dq

∆Is∗
g,dq

]
=

[
YCCL

cl,dq −YPLL
cl,dq YPLL

cl,dq

YPLL∗
cl,dq YCCL∗

cl,dq −YPLL∗
cl,dq

]
...[

∆Vs
PCC,dq

∆Vs∗
PCC,dq

]
= YPLL,m

±,dq

[
∆Vs

PCC,dq

∆Vs∗
PCC,dq

]
(13)

YPLL,m
±,dq is actually the modified sequence-domain admit-

tance model [46]. The four components of the dq-domain
admittance model (2) can thus be derived using (9), shown
as follows.

Y PLL
dd =

YCCL
cl,dq + YCCL∗

cl,dq

2

Y PLL
dq = j(

YCCL
cl,dq −YCCL∗

cl,dq

2
−YPLL

cl,dq + YPLL∗
cl,dq )

Y PLL
qd = j(

YCCL∗
cl,dq −YCCL

cl,dq

2
)

Y PLL
qq =

YCCL
cl,dq + YCCL∗

cl,dq

2
−YPLL

cl,dq −YPLL∗
cl,dq (14)

It can be seen from (2) and (14) that the effects of current
control loop and PLL on the four components of the dq
admittance model can be clearly observed with the help of
complex transfer functions. Specifically, PLL dynamics only
affect Y PLL

dq and Y PLL
qq . By substituting (12), (37) and (40)

into (14), it can be found that Y PLL
qq and Y PLL

dq are affected
by active power injection Isg,d and reactive power injection
Isg,q , respectively. In addition, the four components of the dq
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impedance model are shown in (15) (L-type filter Lf is used
here for simplicity.).

ZPLL
dd = Zinv + j

1

2
ω1Lf (V s

c,q + Isg,qGci)GPLLGdelVdc/...

(1− 1

2
(V s

c,d + Isg,dGci)GPLLGdelVdc)

ZPLL
dq = −ω1Lf + j

1

2
(V s

c,q + Isg,qGci)(Lfs+
1

2
GciGdelVdc)...

GPLLGdelVdc/(1−
1

2
(V s

c,d + Isg,dGci)GPLLGdelVdc)

ZPLL
qd = (ω1Lf )/(1− 1

2
(V s

c,d + Isg,dGci)GPLLGdelVdc)

ZPLL
qq = Zinv/(1−

1

2
(V s

c,d + Isg,dGci)GPLLGdelVdc) (15)

where Zinv = Lfs+ 1
2VdcGciGdel. It can be seen from (15)

that reactive current injection Isg,q affects both ZPLL
dd and

ZPLL
dq . Note that the case study in [7] shows that only ZPLL

dq

is affected by Isg,q , which may be not accurate based on the
aforementioned analysis.

2) With Outer Power Control Loop: Similar with (11),
the closed-loop response of ∆Isg,dq when further considering
power control loop can be derived from Fig. 8, shown as
follows.

−∆Is
g,dq

∣∣
∆Pref

PQ=0
= YCCL1

cl,dq ∆Vs
PCC,dq −YPLL1

cl,dq ...

∆Vs
PCC,dq + YPLL1

cl,dq ∆Vs∗
PCC,dq −YPCL1

cl,dq ∆Vs
PCC,dq...

−YPCL2
cl,dq ∆Vs∗

PCC,dq (16)

where YCCL1
cl,dq and YPLL1

cl,dq are the complex transfer func-
tion representations of current control loop-related and PLL-
related output admittance when considering power control
loop, respectively. In addition, YPCL1

cl,dq and YPCL2
cl,dq are the

power control loop-related output admittance. The detailed
expressions are shown as follows.

YCCL1
cl,dq =

1 + Tcl,dq

1 + TPCL
cl,dq

YCCL
cl,dq

YPLL1
cl,dq =

1 + Tcl,dq

1 + TPCL
cl,dq

YPLL
cl,dq

YPCL1
cl,dq =

2Tcl,dq

1 + TPCL
cl,dq

G+,PLL iV
s∗
PCC,dqGcPQ

YPCL2
cl,dq =

Tcl,dq

1 + TPCL
cl,dq

(Is
g,dq − 2G+,PLL iV

s∗
PCC,dq)GcPQ

(17)

where TPCL
cl,dq

= (1 + GcPQVs∗
PCC,dq)Tcl,dq.

Similar with (13), the complex transfer function represen-
tation of the dq admittance model when further considering
power control loop can be derived based on (16), shown as
follows.

YPCL,m
±,dq =

[
YPCL
±,dd YPCL

±,dq

YPCL∗
±,dq YPCL∗

±,dd

]
(18)

where

YPCL
±,dd = YCCL1

cl,dq −YPLL1
cl,dq −YPCL1

cl,dq

YPCL
±,dq = YPLL1

cl,dq −YPCL2
cl,dq (19)

By substituting (14) and (17) into (19), and applying the
inverse transformation of (9), the dq admittance model con-
sidering power control loop is shown as follows.

Y PCL
dd =

1 + Tcl,dq

1 + TPCL
cl,dq

Y PLL
dd − Tcl,dqGcPQ

1 + TPCL
cl,dq

P ref

V s
PCC,d

Y PCL
dq =

1 + Tcl,dq

1 + TPCL
cl,dq

Y PLL
dq +

Tcl,dqGcPQ

1 + TPCL
cl,dq

Qref

V s
PCC,d

...

(2GPLLV
s
PCC,d − 1)

Y PCL
qd =

1 + Tcl,dq

1 + TPCL
cl,dq

Y PLL
qd − Tcl,dqGcPQ

1 + TPCL
cl,dq

Qref

V s
PCC,d

Y PCL
qq =

1 + Tcl,dq

1 + TPCL
cl,dq

Y PLL
qq +

Tcl,dqGcPQ

1 + TPCL
cl,dq

P ref

V s
PCC,d

...

(1− 2GPLLV
s
PCC,d) (20)

It can be seen from (14) and (20) that, under power control
mode, Y PCL

dd and Y PCL
qq are affected by active power injection

P ref . In addition, Y PCL
dq and Y PCL

qd are affected by reactive
power injection Qref .

Similar with (15), the four components of the dq impedance
model (3) can be derived as follows.

ZPCL
dd =

BD + CE

A

ZPCL
dq =

BE − CD
A

ZPCL
qd =

GcPQGciGdelI
ref
g,q B − CF

A

ZPCL
qq = −

GcPQGciGdelI
ref
g,q C +BF

A
(21)

where the detailed expressions of A,B..., F are shown in
Appendix B. It can be seen from (21) and (43) that, when
further considering power control loop, all of the four elements
of the dq impedance model are affected by both active and
reactive power injection P ref and Qref .

B. Impacts of Active and Reactive Power References on Low-
Frequency Stability

Since low-frequency stability is mainly determined by
ZPCL
qq , investigation of impacts of P ref and Qref on ZPCL

qq is
focused here [18], [27]–[29]. ZPCL

qq is reformulated as follows.

ZPCL
qq = −Γ1 + Γ2P

ref + Γ3Q
ref

A
(22)

where Γ1, Γ2 and Γ3 are shown as follows.

Γ1 = Lfs+
GdelVdcGci(1 +GcPQV

s
PCC,d)

2
= Γ1 1s+ Γ1 2

Γ2 =
GciGcPQGdelLfs

V s
PCC,d

+ ...

G2
ciGcPQG

2
delVdc(1 +GcPQV

s
PCC,d)

2V s
PCC,d

= Γ2 1s+ Γ2 2

Γ3 =
GciGcPQGdelω1Lf

V s
PCC,d

(23)
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Then, phase angle of ZPCL
qq at specific angular frequency

ω0 can be derived as follows.

∠ZPCL
qq

∣∣
s=jω0

= −180o + arctan
(Γ1 1 + Γ2 1P

ref )ω0

Γ1 2 + Γ2 2P ref + Γ3Qref

(24)

It can be seen from (24) that ∠ZPCL
qq may be below −90o

for certain combination of P ref and Qref , which may lead to
instability phenomena under weak grid condition.

C. Requirement of Flow Direction and Power Level of Reac-
tive Power Injection for Stability Enhancement

The parameters in (24) except Qref are guaranteed to
be positive. Therefore, if Qref ≥ 0, then ∠ZPCL

qq ∈
(−180o,−90o), which means that the passivity of ZPCL

qq

cannot be guaranteed under positive flow direction of reactive
power. In other words, negative flow direction of reactive
power is required for passivity enforcement. Therefore,

∠ZPCL
qq ∈ (−90o,−0o)↔ Γ1 2 + Γ2 2P

ref − Γ3

∣∣Qref
∣∣ < 0

(25)

Based on (25), for a given P ref , passivity of ZPCL
qq can be

enforced if Qref satisfies the following inequation.∣∣Qref
∣∣ > ∣∣∣Qref

min

∣∣∣ =
Γ1 2 + Γ2 2Pref

Γ3
=
∣∣∣Qref

min 1

∣∣∣+
∣∣∣Qref

min 2

∣∣∣
(26)

where
∣∣∣Qref

min 1

∣∣∣ and
∣∣∣Qref

min 2

∣∣∣ are independent and dependent
on active power injection, respectively.

On the other hand, for a given negative Qref , passivity
of ZPCL

qq can be enforced if P ref satisfies the following
inequation.

P ref < P ref
max =

−Γ1 2 + Γ3 |Qref |
Γ2 2

= P ref
max 1 + P ref

max 2 (27)

where P ref
max 1 and P ref

max 2 are independent and dependent on re-
active power injection, respectively. When the grid impedance
is not purely inductive, e.g., the phase angle of grid impedance
is lower than 90o, the allowed maximum delivered active
power not to trigger the low-frequency instability is higher
than P ref

max, and the required minimum reactive power to
mitigate the low-frequency instability is lower than

∣∣∣Qref
min

∣∣∣.
IV. SIMULATION VERIFICATION OF IMPACTS OF ACTIVE
AND REACTIVE POWER ON LOW-FREQUENCY STABILITY

In this section, the impacts of power control loop, active
and reactive power on low-frequency stability derived in
Section III are verified by time-domain simulation results in
Matlab/Simulink.

A. Impact of Power Control Loop on Low-Frequency Stability

Fig. 9(a) shows Bode diagrams of measured impedance
frequency responses of GCI 1 without power control loop
Zm,mea
LCL no PCL when Irefg,d = 1.5 kA and Irefg,q = 0, and

with power control loop Zm,mea
LCL with PCL when P ref = 1.3

MW and Qref = 0 obtained by frequency scanning method.

Zdq and Zqd are omitted, since instability phenomena can
be revealed using diagonal elements Zdd and Zqq [7], [18].
Bode diagram of the theoretically-derived dq impedance model
without power control loop Zm

LCL no PCL using (2) is also
plotted in Fig. 9(a). It can be seen that Zm,mea

LCL no PCL highly
agrees with Zm

LCL no PCL, which verifies the correctness of
the measured impedance data. In addition, Bode diagram
of the dq impedance model of frequency-dependent circuit
model with one Π section of a 19 km transmission cable, i.e.,
SCR=1.90, derived by the method presented in Section II is
shown as Zm

Ldq in Fig. 9(a). Magnitude of Zm,mea
LCL with PCL

interacts with that of Zm
Ldq at point A (20 Hz), where phase

angle difference is 84 − (−98) = 182o, which indicates
that the system is unstable. On the other hand, magnitude of
Zm,mea
LCL no PCL interacts with that of Zm

Ldq at point B (22 Hz),
where phase angle difference is 74.4 − (−91.1) = 165.5o,
which indicates that the system is stable.

Figs. 9(b), (c) show corresponding simulation results with
power control loop before 3 s and without power control
loop after 3 s. It can be seen that low-frequency oscillation
phenomena occur before 3 s. Frequency spectrum of phase
A voltage and current before 3 s is shown in Fig. 9(a). It
can be seen that oscillation phenomenon occurs at 26.75 Hz
(50− 23.25 = 26.75 Hz) and 73.25 Hz (50 + 23.25 = 73.25
Hz), which verifies correctness of the impedance-based stabil-
ity analysis. Therefore, the presence of power control loop
increases the possibility of instability phenomena in low-
frequency range, which agrees with the theoretical analysis
results in Section III.A.

B. Impact of Active Power on Low-Frequency Stability
Fig. 10(a) shows Bode diagrams of Zdd and Zqq of dq

impedance matrices of GCI 1 as P ref increases from 0.1 MW
to 2.0 MW and Qref = 0. It can be seen that magnitude
of Zqq decreases in low-frequency range as P ref increases,
making magnitude interaction point move leftward and phase
angle difference increase. For example, if P ref is increased
from 0.5 MW to 2.0 MW, magnitude interaction point of Zqq

moves from point C to point D, where phase angle difference
is increased from 74− (−95) = 169o to 84− (−98) = 182o.
It indicates that the system is stable when P ref = 0.5 MW,
and unstable when P ref = 2.0 MW. Similarly, it can be seen
that the system is stable when P ref = 0.1 MW and unstable
when P ref = 1.3 MW.

Figs. 10(b), (c) show corresponding simulation results of
GCI 1 when P ref changes from 1.3 MW to 0.5 MW at 3
s and from 0.5 MW to 2.0 MW at 6 s. It can be seen that
GCI 1 is stable when P ref is 0.5 MW, and is unstable when
P ref are 1.3 MW and 2.0 MW, respectively. The simulation
results agree with the theoretical analysis result in Fig. 10(a).
In addition, frequency spectrum of three-phase voltages and
currents from 6 s to 9 s is also shown in Fig. 10(a). It can be
seen from Figs. 9(a) and 10(a) that total harmonic distortion
(THD) of three-phase voltages increases from 319.92% to
401.98%, and THD of three-phase currents increases from
100.77% to 131.84% once P ref is increased from 1.3 MW
to 2.0 MW. In conclusion, higher P ref tends to cause low-
frequency instability when the GCI is connected into weak
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Fig. 9. Impedance-based stability analysis of GCI 1 connected with 19 km transmission cable and simulation results considering effect of power control loop.
(a) Bode diagrams. (b) Three-phase voltages and currents. (c) Active and reactive power.

(a)

(b)

(c)

Fig. 10. Impedance-based stability analysis of GCI 1 connected with 19 km transmission cable and simulation results considering effect of different P ref

with Qref = 0. (a) Bode diagrams. (b) Three-phase voltages and currents. (c) Active and reactive power.

grid, and brings severer distortion of three-phase voltages and
currents, which agrees with the theoretical analysis results in
Section III.C.

C. Impact of Reactive Power on Low-Frequency Stability

Fig. 11(a) shows Bode diagrams of output impedances of
GCI 1 with P ref = 2.0 MW and Qref changing from 0 MVar
to -1.2 MVar. When Qref is 0 MVar or -0.1 MVar, phase angle
difference at magnitude interaction point E of Zqq is 84 −
(−99) = 183o or 84−(−98) = 182o, which indicates that the
system is unstable. When Qref is changed to -0.8 MVar and
-1.2 MVar, phase angles of Zqq of GCI 1 impedance matrix at
magnitude interaction points E and F are within −90o, which
indicates that the system is stable.

Figs. 11(b), (c) show corresponding simulation results of
GCI 1 with P ref = 2.0 MW and Qref changing from 0
MVar to -0.8 MVar at 1 s and from -0.8 MVar to -0.1 MVar

at 4 s. It can be seen that the system is unstable from 0 s to
1 s, stable from 1 s to 4 s and unstable again from 4 s to 8 s,
which agree with the Bode diagrams in Fig. 11(a). It can be
seen that negative reactive power of GCI 1 can be adjusted to
stabilize the low-frequency oscillation, which agrees with the
theoretical analysis results in Section III.C.

V. IMPACTS OF DIFFERENT FACTORS ON REQUIRED
REACTIVE POWER FOR LOW-FREQUENCY STABILIZATION

In this section, impacts of different factors, e.g., PLL
parameters, length of transmission cable and number of par-
alleled GCIs, on required reactive power for low-frequency
stabilization are investigated. Real-time verification based on
OPAL-RT digital simulator platform is also performed. In
addition, comparisons among the presented low-frequency
stabilization method and existing commonly-used methods are
also performed.
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(a)
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(c)

Fig. 11. Impedance-based stability analysis of GCI 1 connected with 19 km transmission cable and simulation results considering effect of different Qref

with P ref = 2.0 MW. (a) Bode diagrams. (b) Three-phase voltages and currents. (c) Active and reactive power.

A. Impact of PLL Parameters on Required Reactive Power for
Low-Frequency Stabilization

Fig. 12(a) shows Bode diagrams of output impedances of
GCI 1 with different PLL controller parameters and Qref .
It can be seen that, when PLL bandwidth fpll = 56 Hz
(kppll = 10 and kipll = 50) and Qref = −0.1 MVar,
phase angle difference at magnitude interaction point A (20
Hz) is 83.57 − (−96.22) = 179.79o, which indicates that
the system is stable. In addition, when fpll = 133 Hz
(kppll = 24 and kipll = 288) and Qref = −0.1 MVar,
phase angle difference at magnitude interaction point A (20
Hz) is 83.57− (−99.05) = 182.62o, which indicates that the
system is unstable. Furthermore, when fpll = 133 Hz and
Qref = −0.6 MVar, phase angle difference at magnitude
interaction point A (20 Hz) is 83.57 − (−87.57) = 171.14o,
which indicates that the system is stable. Figs. 12(b), (c) show
corresponding simulation results when PLL controller param-
eters and reactive power reference change from fpll = 56 Hz
and Qref = −0.1 MVar to fpll = 133 Hz and Qref = −0.1
MVar at 3 s, to fpll = 133 Hz and Qref = −0.6 MVar at
7 s. It can be seen that the system is stable from 0 s to 3 s,
unstable from 3 s to 7 s, stable again from 7 s, respectively.
Simulation results agree with the impedance-based stability
analysis in Fig. 12(a). It can be seen that the GCI with lower
PLL bandwidth can be stabilized by less negative reactive
power.

B. Impact of Length of Transmission Cable on Required
Reactive Power for Low-Frequency Stabilization

Fig. 13(a) shows Bode diagrams of grid impedance and out-
put impedance of GCI 1 with different Qref when P ref = 2.0
MW and fpll = 89 Hz (kppll = 16 and kipll = 128).
When LTC = 19 km and Qref = −0.1 MVar, phase
angle difference at magnitude interaction point A (20 Hz) is
83.57− (−95.86) = 179.43o, which indicates that the system
is stable. In addition, when LTC = 20 km, i.e., SCR=1.80,

and Qref = −0.1 MVar, phase angle difference at magnitude
interaction point B (17 Hz) is 82.71 − (−99.17) = 181.88o,
which indicates that the system is unstable. Furthermore,
when LTC = 20 km and Qref = −0.7 MVar, phase
angle difference at magnitude interaction point C (16 Hz) is
84.59− (−94.50) = 179.09o, which indicates that the system
is stable again. Figs. 13(b), (c) show corresponding simulation
results with length of transmission cable and reactive power
reference changing from LTC = 19 km and Qref = −0.1
MVar to LTC = 20 km and Qref = −0.1 MVar at 4 s, to
LTC = 20 km and Qref = −0.7 MVar at 6 s. It can be seen
that the system is stable from 0 s to 4 s, unstable from 4 s to
6 s, stable again from 6 s, respectively. Frequency spectrum
of three-phase voltages and currents when LTC = 20 km and
Qref = −0.1 MVar is shown in Fig. 13(a). It can be seen that
the simulation results agree with the impedance-based stability
analysis results. Therefore, weaker grid tends to make system
unstable, which can be stabilized by more negative reactive
power injection.

C. Impact of Number of Paralleled GCIs on Required Reactive
Power for Low-Frequency Stabilization

Fig. 14(a) shows Bode diagrams of the OWPP in Fig. 1(a)
with P ref = 2.0 MW, fpll = 89 Hz, different number of
paralleled GCIs NGCI and different Qref . When NGCI = 2,
Qref = −0.1 MVar and NGCI = 2, Qref = −0.7 MVar,
phase angle differences at magnitude interaction points A (19
Hz) and B (17 Hz) are 84.99 − (−97.81) = 182.8o and
86.45− (−90.02) = 176.47o, respectively, which indicate that
the system is unstable and stable in the two cases, respectively.
In addition, when NGCI = 4, Qref = −0.7 MVar, phase
angle difference at magnitude interaction point C (11 Hz)
is 87.71 − (−104.80) = 192.51o, which indicates that the
system is unstable. Finally, when NGCI = 4, Qref = −2.0
MVar, the Bode diagrams indicate that the system is stable.
The corresponding simulation results are shown in Figs. 14(b),
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(a)

(b)

(c)

Fig. 12. Impedance-based stability analysis and simulation results of GCI 1 with different PLL controller parameters and Qref . (a) Bode diagrams. (b)
Three-phase voltages and currents. (c) Active and reactive power.

(a)

(b)

(c)

Fig. 13. Impedance-based stability analysis and simulation results of GCI 1 connected with length-scalable transmission cable. (a) Bode diagrams. (b) Three-
phase voltages and currents. (c) Active and reactive power.

(c), and collected in the fifth and sixth columns in Table II.
In addition, frequency spectrum of three-phase voltages and
currents when NGCI = 2, Qref = −0.7 MVar is shown in Fig.
14(a). It can be seen that the simulation results agree with the
impedance-based stability analysis. In conclusion, integration
of more GCIs tends to make OWPP unstable, which can be
stabilized by injecting more negative reactive power.

TABLE II
IMPACT OF NUMBER OF PARALLELED GCIS ON REQUIRED REACTIVE

POWER FOR LOW-FREQUENCY STABILIZATION

Case NGCI Qref IBSC Period Simulation

Case 1 1 -0.1 MVar Stable [0 s, 3.0 s) Stable
Case 2 2 -0.1 MVar Unstable [3.0 s, 4.0 s) Unstable
Case 3 2 -0.7 MVar Stable [4.0 s, 7.0 s) Stable
Case 4 4 -0.7 MVar Unstable [7.0 s, 7.1 s) Unstable
Case 5 4 -2.0 MVar Stable [7.1 s, 10.0 s) Stable

D. Real-Time Simulation Verification Based on OPAL-RT
Platform

Real-time simulation verification based on OPAL-RT digital
simulator platform is performed to further validate the correct-
ness of the theoretical analysis results in Section III and the
time-domain simulation results obtained by Matlab/Simulink.
Fig. 15 shows the picture of the adopted OP5600 real-time
digital simulator. The OP5600 combines the power and re-
liability of Intel Xeon E5 processing cores with the high-
performance latest generation Xilinx Virtex-6 FPGA to address
a wide range of rapid control prototyping applications with
OPAL-RT′s RT-LAB or HYPERSIM software platforms. The
Simulink-based model is established in the RT-LAB software,
based on which code is generated and downloaded into the
OP5600 hardware. Both software and hardware platforms
allow high-speed and real-time simulation. The real-time
simulation results obtained by OPAL-RT platform are then
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(a)

(b)

(c)

Fig. 14. Impedance-based stability analysis and simulation results of the OWPP shown in Fig. 1(a). (a) Bode diagrams. (b) Three-phase voltages and currents.
(c) Active and reactive power.

Fig. 15. Picture of the OP5600 real-time digital simulator platform in
laboratory.

processed in Matlab. The circuit and controller parameters of
the GCI used in the real-time simulation verification are shown
in Table I.

Fig. 16 shows the real-time verification of the effect of outer
power control loop on low-frequency stability. It can be seen
that the system is unstable with power control loop before 3 s,
and stable without power control loop after 3 s, which agrees
with the simulation results based on Matlab/Simulink in Fig.
9.

Fig. 17 shows the real-time verification of the effect of
active power delivery on low-frequency stability. It can be
seen that the system is unstable with Pref = 1.3 MW before
3 s, stable with Pref = 0.5 MW between 3 s and 6 s, and
unstable again with Pref = 2.0 MW after 6 s, which agrees
with the simulation results based on Matlab/Simulink in Fig.

(a) (b)

(c)

Fig. 16. OPAL-RT platform-based real-time verification of the simulation
results in Fig. 9. (a) Three-phase voltages and currents. (b) Active and reactive
power. (c) FFT of three-phase voltages and currents with power control loop.

10.

Fig. 18 shows the real-time verification of the effect of
reactive power injection on low-frequency stability. It can be
seen that the system is unstable with Qref = 0 before 1 s,
stable with Qref = −0.8 MVar between 1 s and 4 s, and
unstable with Qref = −0.1 MVar after 4 s, which agrees
with the simulation results based on Matlab/Simulink in Fig.
11.

Fig. 19 shows the real-time verification of the effect of
PLL bandwidth on require negative reactive power for low-
frequency stabilization. It can be seen that the system is stable
with kppll = 10, kipll = 50 and Qref = −0.1 MVar before
3 s, unstable with kppll = 24, kipll = 288 and Qref = −0.1
MVar between 3 s and 7 s, and stable again with kppll = 24,
kipll = 288 and Qref = −0.6 MVar after 7 s, which agrees
with the simulation results based on Matlab/Simulink in Fig.
12.



0885-8969 (c) 2019 EU. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEC.2020.2965017, IEEE
Transactions on Energy Conversion

(a) (b)

(c)

Fig. 17. OPAL-RT platform-based real-time verification of the simulation
results in Fig. 10. (a) Three-phase voltages and currents. (b) Active and
reactive power. (c) FFT of three-phase voltages and currents between 6 s
and 9 s.

(a) (b)

(c)

Fig. 18. OPAL-RT platform-based real-time verification of the simulation
results in Fig. 11. (a) Three-phase voltages and currents. (b) Active and
reactive power. (c) FFT of three-phase voltages and currents between 4 s
and 6 s.

(a) (b)

(c)

Fig. 19. OPAL-RT platform-based real-time verification of the simulation
results in Fig. 12. (a) Three-phase voltages and currents. (b) Active and
reactive power. (c) FFT of three-phase voltages and currents between 3 s
and 7 s.

E. Discussions of the Presented Low-Frequency Stability Im-
provement Method Based on Negative Reactive Power Injec-
tion

It can be seen from Figs. 11 and 12 that the low-frequency
instability phenomenon which occurs when P ref = 2.0 MW,
Qref = −0.1 MVar, kppll = 20 and kipll = 200 can
be mitigated by either increasing negative reactive power
injection Qref from -0.1 MVar to -0.8 MVar or reducing PLL
controller parameters from kppll = 20 and kipll = 200 to
kppll = 10 and kipll = 50. The low-frequency stabilization
method based on PLL controller parameters re-tuning has
actually been investigated in [18], [25], [26]. However, phase
tracking performance may be weakened, if the PLL bandwidth
is decreased. Fig. 20(a) shows the simulation results of q-axis
output voltage VPCC,q of PLL when P ref is changed from
2.0 MW to 1.0 MW at 2.0 s with different PLL controller
parameters and Qref = −0.1 MVar. It can be seen that
the system with lower PLL bandwidth experiences a larger
deviation and slower dynamics. Therefore, decreasing PLL
bandwidth is actually a trade-off between system stability
and PLL dynamics. On the other hand, Fig. 20(b) shows the
simulation results of q-axis output voltage VPCC,q of PLL
when P ref is changed from 2.0 MW to 1.0 MW at 2.0 s
with different amount of negative reactive power injection
and kppll = 20, kipll = 200. It can be seen that the system
dynamic is slightly affected by reactive power injection, i.e.,
the presented method is able to improve system low-frequency
stability while maintaining fast system dynamics.
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Fig. 20. Simulation results of q-axis output voltage VPCC,q of PLL when
P ref is changed from 2.0 MW to 1.0 MW at 2.0 s based on two low-
frequency stabilization schemes. (a) Scheme 1: By decreasing PLL controller
parameters from kpll = 20, 200 to kpll = 10, 50, kpll = 6, 18 and kpll =
2, 2 with Qref = −0.1 MVar. (b) Scheme 2: By increasing negative reactive
power injection from Qref = −0.1 MVar to Qref = −0.8 MVar, Qref =
−1.2MVar and Qref = −1.5 MVar with kpll = 20, 200.

In addition, the low-frequency instability phenomena can
also be mitigated based on grid voltage feed-forward control
which is able to reshape the output impedance of the GCI
[27]–[30]. High proportional feed-forward coefficient Gffv

increases |Zqq|, which tends to increase stability margin.
However, high Gffv also decreases ∠Zqq , which tends to
decrease stability margin. To further illustrate the two opposite
impacts of the usage of grid voltage feed-forward control loop
on the low-frequency stability, Figs. 21(a) and (b) show the
Bode diagrams of Zqq with different Gffv . It can be seen that
when Gffv is 8.6957e-5 or 1.4783e-3, phase angle difference
at magnitude interaction points A (20 Hz) and B (21 Hz) are
83.56−(−98.56) = 182.12o or 78.98−(−101.11) = 180.09o,
respectively, which indicates that the system is unstable under
the two cases. In addition, when Gffv is 1.0435e-3 or 1.3043e-
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 21. Impedance-based stability analysis of GCI 1 connected with 19 km transmission cable and simulation results considering effect of different grid
voltage feed-forward coefficient Gffv . (a) Bode diagrams of q-q component of dq impedance model. (b) Zoomed Bode diagrams of (a). (c) Three-phase
voltages and currents when Gffv is increased from 1.0435e-3 to 1.4783e-3 at 20 s. (d) Active and reactive power when Gffv is increased from 1.0435e-3 to
1.4783e-3 at 20 s. (e) Three-phase voltages and currents when Gffv is decreased from 1.3043e-3 to 8.6957e-5 at 10 s. (d) Active and reactive power when
Gffv is decreased from 1.3043e-3 to 8.6957e-5 at 10 s.

3, phase angle difference at magnitude interaction point B (21
Hz) is 78.98− (−100.32) = 179.30o or 78.98− (−100.79) =
179.77o, respectively, which indicates that the system is stable
under the two cases. Figs. 21 (c) and (d) show the simulation
results when Gffv is increased from 1.0435e-3 to 1.4783e-
3 at 20 s, which indicates that the stable system becomes
unstable again if larger Gffv is selected. In addition, Figs.
21(e) and (f) show the simulation results when Gffv is
decreased from 1.3043e-3 to 8.6957e-5 at 10 s, which indicates
that the system becomes unstable again if smaller Gffv is
selected. The simulation results in Figs. 21 (c)-(f) agree with
the impedance-based stability analysis in Figs. 21 (a) and (b).
Both the impedance-based stability analysis and the simulation
results indicate that the system can be unstable if too large
or too small Gffv is adopted. On the other hand, as derived
in Section III.C, the system can be stabilized only if amount
of the negative reactive power injection

∣∣Qref
∣∣ is larger than∣∣∣Qref

min

∣∣∣ which is calculated based on (26).

VI. CONCLUSION

This paper investigates the impacts of power control loop
and reactive power injection on dq impedance model and
low-frequency stability of OWPPs, and presents a low-
frequency stability improvement strategy based on reshaping
the quadrature-axis impedance through injecting negative reac-
tive power. The circuit model of transmission cable consider-
ing frequency-dependent characteristics is also established for
dq-domain IBSC. Simulation results show that the established
circuit model is able to obtain accurate impedance-based
stability analysis results. In addition, dq impedance model of
GCI is established using transfer matrices and reformulated
using complex transfer functions to investigate the effects of
different control loops on dq impedance feature, based on
which this paper shows that reactive power injection under

power control mode is able to affect the quadrature-axis
impedance, whereas the quadrature-axis impedance remains
unchanged under current control mode. Theoretical analysis
also indicates that negative reactive power injection tends to
mitigate the low-frequency instability. Specifically, the amount
of the required negative reactive power is highly related with
length of transmission cable, PLL bandwidth and number
of paralleled GCIs. The presented low-frequency stabilization
method based on negative reactive power injection is superior
to the PLL bandwidth retuning-based method in terms of
system dynamic performances, and is superior to the grid
voltage feed-forward control-based method in terms of simple
structure and robustness. In addition, the maximum bandwidth
of the PLL not to violate the low-frequency stability under
weak grid condition can be extended with the help of negative
reactive power injection. A four PMSGs-based OWPP has
been developed in Matlab/Simulink and OPAL-RT real-time
digital simulator platform to demonstrate the correctness of
the theoretical analysis results.

APPENDIX A
COMPLEX TRANSFER FUNCTIONS REPRESENTATIONS OF

TRANSFER MATRICES IN (2) AND (3)

A three-phase symmetrical and balanced electrical param-
eter xabc can be represented in dq reference frame in form
of either real space vector xdq (italic letter) or complex space
vector xdq (bold letter), shown as follows [47].

xdq = [xd, xq]T ↔ xdq = xd + jxq (28)

In addition, a two-dimensional matrix ymdq can be repre-
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sented by two complex transfer functions, shown as follows.

ymdq =

[
ydd ydq
yqd yqq

]
↔

y+,dq =
ydd + yqq

2
+ j

yqd − ydq
2

(29)

y−,dq =
ydd − yqq

2
+ j

yqd + ydq
2

where the superscript m indicates that the parameter is a
matrix. Based on (28) and (29), the equation using real
space vectors and transfer matrices can be reformulated using
complex space vectors and complex transfer functions, shown
as follows.

zdq = ymdqxdq ↔
zdq = y+,dqxdq + y−,dqx∗dq (30)

where zdq = [zd, zq]T and zdq = zd + jzq . x∗dq = xd −
jxq is the complex conjugate of xdq. Specifically, if ymdq is
symmetrical, i.e., ydd = yqq = yd and yqd = −ydq = yq , (30)
can be simplified as follows.

zdq = ydqxdq (31)

where ydq = yd + jyq .
According to (29), the transfer matrices in (2) and (3) can be

represented as complex transfer functions, shown as follows.

Zm
Lfi

=

[
sLfi −ω1Lfi

ω1Lfi sLfi

]
→ ZLfi = sLfi + jω1Lfi

(32)

where ω1 = 2πf1 is the fundamental angular frequency and
i = 1, 2.

Zm
Cf

=
1

(s2 + ω2
1)Cf

[
s ω1

−ω1 s

]
→ ZCf

=
1

(s+ jω1)Cf

(33)

Gm
del =

[
e−1.5Tss 0

0 e−1.5Tss

]
→ Gdel = e−1.5Tss (34)

where Ts is the sampling period.

Gm
ci =

[
kpi + kii

s 0

0 kpi + kii

s

]
→ Gci = kpi +

kii
s

(35)

where kpi and kii are proportional and integrator coefficients
of inner current controller, respectively.

Gm
cPQ =

[
kpPQ +

kiPQ

s 0

0 kpPQ +
kiPQ

s

]
→

GcPQ = kpPQ +
kiPQ

s

(36)

where kpPQ and kiPQ are proportional and integrator coeffi-
cients of outer power controller, respectively.
Gm

PLL i models the small-signal perturbation path from
PCC voltage in system dq frame to grid current in controller
dq frame.

Gm
PLL i =

[
0 −Isg,qGPLL

0 Isg,dGPLL

]
→

G+,PLL i = −G−,PLL i =
Isg,dqGPLL

2

(37)

where Isg,d and Isg,q are d-axis and q-axis components of
three-phase currents in system dq frame. In addition, GPLL

is defined as follows.

GPLL =
kppll + kipll/s

s+ V s
PCC,d(kppll + kipll/s)

(38)

where kppll and kipll are proportional and integrator coeffi-
cients of PLL controller, respectively.

Gm
PLL v models the small-signal perturbation path from

PCC voltage in system dq frame to voltage in controller dq
frame.

Gm
PLL v =

[
1 V s

PCC,qGPLL

0 1− V s
PCC,dGPLL

]
→

G+,PLL v = 1−Vs
PCC,dqGPLL/2

G−,PLL v = Vs
PCC,dqGPLL/2

(39)

where V s
PCC,d and V s

PCC,q are d-axis and q-axis components
of three-phase voltages in system dq frame.

Gm
PLL d models the small-signal perturbation path from

PCC voltage in system dq frame to duty cycle in controller
dq frame, shown as follows.

Gm
PLL d =

[
0 −Ds

qGPLL

0 Ds
dGPLL

]
→

G+,PLL d = −G−,PLL d =
Ds

dqGPLL

2

(40)

where Ds
d and Ds

q are d-axis and q-axis components of three-
phase duty cycles in system dq frame.

In addition, Gm
PQ i and Gm

PQ v model the small-signal
dynamics of power control loop, shown as follows.

Gm
PQ i =

[
V s
PCC,d V s

PCC,q

−V s
PCC,q V s

PCC,d

]
→ GPQ i = Vs∗

PCC,dq
(41)

Gm
PQ v =

[
−Isg,d −Isg,q
−Isg,q Isg,d

]
→

G+,PQ v = 0 G−,PQ v = −Is
g,dq

(42)
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APPENDIX B
DETAILED EXPRESSIONS OF PARAMETERS IN (21)

A =
GcPQG

2
ciG

2
del(GcPQ +GPLL)[(P ref )

2
+ (Qref )

2
]

(V s
PCC,d)

2 + ...

GPLLGdel[
0.5VdcGciP

ref + (V s
PCC,d)

2 − ω1LfQ
ref

0.5VdcV s
PCC,d

] + ...

GPLLGcPQGciG
2
delP

ref

0.5Vdc
− 1

B = Lfs+
GdelVdcGci(1 +GcPQV

s
PCC,d)

2
C=ω1Lf

D =
GdelGPLLV

s
PCC,d

0.5Vdc
+
GciGdel(GcPQ +GPLL)P ref

V s
PCC,d

− ...

ω1LfGdelGPLLQ
ref

0.5VdcV s
PCC,d

− 1

E =
ω1LfGdelGPLLP

ref

0.5VdcV s
PCC,d

+
GciGdel(GcPQ +GPLL)Qref

V s
PCC,d

F = 1 +
GciGcPQGdelP

ref

V s
PCC,d

(43)
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