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In this investigation, a data-driven turbulence closure framework is introduced and
deployed for the sub-grid modelling of Kraichnan turbulence. The novelty of the proposed
method lies in the fact that snapshots from high-fidelity numerical data are used to inform
artificial neural networks for predicting the turbulence source term through localized grid-
resolved information. In particular, our proposed methodology successfully establishes a
map between inputs given by stencils of the vorticity and the streamfunction along with
information from two well-known eddy-viscosity kernels. Through this we predict the
sub-grid vorticity forcing in a temporally and spatially dynamic fashion. Our study
is both a-priori and a-posteriori in nature. In the former, we present an extensive
hyper-parameter optimization analysis in addition to learning quantification through
probability density function based validation of sub-grid predictions. In the latter, we
analyse the performance of our framework for flow evolution in a classical decaying two-
dimensional turbulence test case in the presence of errors related to temporal and spatial
discretization. Statistical assessments in the form of angle-averaged kinetic energy spectra
demonstrate the promise of the proposed methodology for sub-grid quantity inference. In
addition, it is also observed that some measure of a-posteriori error must be considered
during optimal model selection for greater accuracy. The results in this article thus
represent a promising development in the formalization of a framework for generation of
heuristic-free turbulence closures from data.

1. Introduction

The efficient computational modelling of energetic flows continues to remain an im-
portant area of research for many engineering and geophysical applications. Over the
past few decades, coarse-grained techniques such as Reynolds-averaged Navier-Stokes
(RANS) and large eddy simulation (LES) have proven promising for the statistically
accurate prediction of the grid-resolved scales of a turbulent flow. While RANS is
based on the modelling of turbulence in a temporally averaged sense, LES requires
the specification of a model for the finer scales and their effect on the grid-resolved
quantities. This modelling of the excluded wavenumbers in LES represents the classical
closure problem which has spawned a variety of algebraic or equation based techniques
for representing the effect of these discarded scales on the resolved ones (Berselli et al.
2005; Sagaut 2006). It has generally been observed that the choice of the sub-grid model
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is physics dependant, i.e., that different flow phenomena require different expressions
for sub-grid terms with a-priori assumptions of phenomenology (Vreman 2004). We use
this fact as a motivation for moving to an equation-free model for the source term
through the use of an artificial neural network (ANN). Our hope, in addition to the
formulation of a prediction framework, is to devise the formalization of a ‘machine-
learning experiment’ where a-priori model selection and a-posteriori deployment are
coupled to reveal information about the physical characteristics of a particular flow class.
This not only enables the selection of computationally efficient predictive models but
also reveals the importance of certain grid-resolved quantities of interest from the flow
characteristics. In accordance with the recent trends of first-principles informed learning
for physics inference in turbulence (Ling & Templeton 2015; Tracey et al. 2015; Xiao et al.
2016; Singh et al. 2017; Wang et al. 2017b,a; Weatheritt & Sandberg 2017; Schaeffer 2017;
Wu et al. 2018a; Raissi & Karniadakis 2018; Wan et al. 2018; Mohan & Gaitonde 2018),
a major goal of this research is to study the combination of the traditional learning
framework (inherently data-driven) and the physics-based prediction tool (based on the
coarse-grained Navier-Stokes equations). We devote particular attention to the necessity
for physical realizability as well as the issues faced by learning frameworks and their
interactions with numerical discretization error.

Over the past decade, there have been multiple studies on the use of machine learning
tools for the reduced-order prediction of energetic flow physics. The study of these
techniques has been equally popular for both severely truncated systems such as those
obtained by leveraging sparsity in transformed bases (Faller & Schreck 1997; Cohen
et al. 2003; Mannarino & Mantegazza 2014; San & Maulik 2018) as well as for modelling
methodologies for coarse-grained meshes such as LES and RANS simulations (Maulik &
San 2017a; Wang et al. 2017b; Wu et al. 2018b). Therefore they represent a promising
direction for the assimilation of high-fidelity numerical and experimental data during
the model-formulation phase for improved predictions during deployment. A hybrid
formulation leveraging our knowledge of governing equations and augmenting these with
machine learning represents a great opportunity for obtaining optimal LES closures for
multiscale physics simulations (Langford & Moser 1999; Moser et al. 2009; King et al.
2016; Pathak et al. 2018).

From the point of view of turbulence modelling, we follow a strategy of utilizing
machine learning methods for estimating the sub-grid forcing quantity such as the one
utilized in Ling et al. (2016) where a deep ANN has been described for Reynolds stress
predictions in an invariant subspace. ANNs have been also implemented in Parish &
Duraisamy (2016) to correct errors in RANS turbulence models after the formulation
of a field-inversion step. Gamahara & Hattori (2017) detailed the application of ANNs
for identifying quantities of interest for sub-grid modelling in a turbulent channel flow
through the measurement of Pearson correlation coefficients. Milano & Koumoutsakos
(2002) also implemented these techniques for turbulent channel flow but for the gen-
eration of low-order wall models while Sarghini et al. (2003) deployed ANNs for the
prediction of the Smagorinsky coefficient (and thus the sub-grid contribution) in a mixed
sub-grid model. In Beck et al. (2018), an ANN prediction has been hybridized with a
least-squares projection onto a truncated eddy-viscosity model for LES. In these (and
most) utilizations of machine learning techniques, sub-grid effects were estimated using
grid-resolved quantities. Our approach is similar, wherein grid-resolved information is
embedded into the input variables for predicting LES source terms for the filtered
vorticity transport equation.

We outline a methodology for the development, testing and validation of a purely
data-driven LES modelling strategy using ANNs which precludes the utilization of any
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phenomenology. However, in our framework the machine learning paradigm is used for
predicting the vorticity forcing or damping of the unresolved scales, which lends to
an easier characterization of numerical stability restrictions as well as ease of imple-
mentation. Our model development and testing framework is outlined for Kraichnan
turbulence (Kraichnan 1967) where it is observed that a combination of a-priori and a-
posteriori analyses ensure the choice of model frameworks that are optimally accurate and
physically constrained during prediction. Conclusions are drawn by statistical comparison
of predictions with high-fidelity data drawn from direct numerical simulations (DNS).

To improve the viability of our proposed ideas, we devise our learning using extremely
sub-sampled data sets. The use of such sub-sampled data necessitates a greater emphasis
on physics-distillation to prevent extrapolation and over-fitting during the training phase.
An a-priori hyper-parameter optimization is detailed for the selection of our framework
architecture before deployment. An a-posteriori prediction in a numerically evolving
flow tests the aforementioned ‘learning’ of the framework for spectral scaling recovery
which are compared to robust models utilizing algebraic eddy-viscosities given by the
Smagorinsky (Smagorinsky 1963) and Leith (Leith 1968) models. A hardwired numerical
realizability also ensures viscous stability of the proposed framework in an a-posteriori
setting. Later discussions demonstrate how the proposed framework is suitable for the
prediction of vorticity forcing as well as damping in the modeled scales. The proposed
formulation also ensures data-locality, where a dynamic forcing or dissipation of vorticity
is specified spatio-temporally.

Following our primary assessments, our article proposes the use of a combined a-priori
and a-posteriori study for optimal predictions of kinetic energy spectra as well as hyper-
parameter selection prior to deployment for different flows which belong to the same
class but have a different control parameter or initial conditions. It is also observed that
the specification of eddy-viscosity kernels (which are devised from dimensional analyses)
constrain the predictive performance of the framework for the larger scales. Results also
detail the effect of data-locality, where an appropriate region of influence utilized for
sampling is shown to generate improved accuracy. The reader may find a thorough review
of concurrent ideas in Duraisamy et al. (2018). An excellent review of the strengths and
opportunities of using artificial neural networks for fluid dynamics applications may also
be found in Kutz (2017).

The mathematical background of sub-grid modelling for the LES of two-dimensional
turbulence may be summarized in the following. In terms of the vorticity-streamfunction
formulation, our non-dimensional governing equation for incompressible flow may be
represented as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω, (1.1)

where Re is the Reynolds number, ω and ψ are the vorticity and streamfunction respec-
tively connected to each other through the Poisson equation given by

∇2ψ = −ω. (1.2)

It may be noted that the Poisson equation implicitly ensures a divergence-free flow
evolution. The nonlinear term (denoted the Jacobian) is given by

J(ω, ψ) =
∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
. (1.3)

A reduced-order implementation of the aforementioned governing laws (i.e., an LES)
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is obtained through

∂ω̄

∂t
+ J(ω̄, ψ̄) =

1

Re
∇2ω̄ +Π, (1.4)

where the overbarred variables are now evolved on a grid with far fewer degrees of
freedom. The sub-grid term Π encapsulates the effects of the finer wavenumbers which
have been truncated due to insufficient-grid support and must be approximated by a
model. Mathematically we may express this (ideal) loss as

Π = J(ω̄, ψ̄)− J(ω, ψ). (1.5)

In essence, the basic principle of LES is to compute the largest scales of turbulent motion
and use closures to model the contributions from the smallest turbulent flow scales. The
nonlinear evolution equations introduce unclosed terms that must be modeled to account
for local, instantaneous momentum and energy exchange between resolved and unresolved
scales. If these inter-eddy interactions are not properly parameterized, then an increase
in resolution will not necessarily improve the accuracy of these large scales (Frederiksen
& Zidikheri 2016; Frederiksen et al. 2013). Additionally, most LES closures are based
on three-dimensional turbulence considerations primarily encountered in engineering
applications. These LES models fundamentally rely on the concept of the forward energy
cascade and their extension to geophysical flows is challenging (Eden & Greatbatch 2008;
Fox-Kemper et al. 2011; San et al. 2013), due to the effects of stratification and rotation
which suppress vertical motions in the thin layers of fluid. In the following, we shall
elaborate on the use of a machine learning framework to predict the approximate value
of Π in a pointwise fashion on the coarser grid and assess the results of its deployment
in both a-priori and a-posteriori testing. Through this we attempt to bypass an algebraic
or differential equation based specification of the turbulence closure and let the data
drive the quantity and quality of sub-grid forcing. We note here that the definition of the
sub-grid source term given in Equation 1.5 is formulated for the LES of two-dimensional
Navier-Stokes equations in the vorticity-streamfunction formulation but the framework
outlined in this article may be readily extended to the primitive-variable formulation in
two or higher dimensions (Mansfield et al. 1998; Marshall & Beninati 2003).

2. Machine learning architecture

2.1. Mathematical formulation

In this section, we introduce the machine learning methodology employed for the previ-
ously described regression problem. The ANN, also known as a multilayered perceptron,
consists of a set of linear or nonlinear mathematical operations on an input space vector
to establish a map to an output space. Other than the input and output spaces, an
ANN is also said to contain multiple hidden layers (denoted so due to the obscure
mathematical significance of the matrix operations occurring here). Each of these layers
is an intermediate vector in a multi-step transformation which is acted on by biasing
and activation before the next set of matrix operations. Biasing refers to an addition
of a constant vector to the incident vector at each layer, on its way to a transformed
output. The process of activation refers to an element-wise functional modification of the
incident vector to generally introduce nonlinearity into the eventual map. In contrast, no
activation (also referred to as ‘linear’ activation), results in the incident vector being acted
on solely by biasing. Note that each component of an intermediate vector corresponds
to a unit cell also known as the neuron. The learning in this investigation is supervised
implying label data used for informing the optimal map between inputs and outputs.
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Mathematically, if our input vector p resides in a P -dimensional space and our desired
output q resides in a Q-dimensional space, this framework establishes a map M as follows:

M : {p1, p2, . . . , pP } ∈ RP → {q1, q2, . . . , qQ} ∈ RQ. (2.1)

A schematic for this map may be observed in Figure 1, where input, output and hidden
spaces are summarized. In equation form, our default optimal map is given by

M : {ω̄i,j , ω̄i,j+1, ω̄i,j−1, . . . , ω̄i−1,j−1,

ψ̄i,j , ψ̄i,j+1, ψ̄i,j−1, . . . , ψ̄i−1,j−1, |S̄|i,j , |∇ω̄|i,j} ∈ R20 → {Π̃i,j} ∈ R1.
(2.2)

where

|S̄| =
√

4

(
∂2ψ̄

∂x∂y

)2

+

(
∂2ψ̄

∂x2
− ∂2ψ̄

∂y2

)2

, |∇ω̄| =
√(

∂ω̄

∂x

)2

+

(
∂ω̄

∂y

)2

(2.3)

are eddy-viscosity kernel information input to the framework and Π̃ is the approximation
to the true sub-grid source term. Note that the indices i and j correspond to discrete
spatial locations on a coarse-grained two-dimensional grid. The map represented by
Equation 2.2 is considered ‘default’ due to the utilization of a 9-point sampling stencil
of vorticity and streamfunction (corresponding to 18 total inputs) and two other inputs
of the Smagorinsky and Leith kernels. The purpose of utilizing the additional infor-
mation from these well-established eddy-viscosity hypotheses may be considered a data
pre-processing mechanism where certain important quantities of interest are distilled
and presented ‘as-is’ to the network for simplified architectures and reduced training
durations. The motivation behind the choice of these particular kernels is discussed in
later sections where it is revealed that they also introduce a certain regularization to the
optimization. We note that all our variables in this study are non-dimensionalized at the
stage of problem definition and no further pre-processing is utilized prior to exposing the
map to the input data for predictions. The predicted value of Π̃ is post-processed before
injection into the vorticity equation as follows:

Π =

{
Π̃, if (∇2ω̄)(Π̃) > 0

0, otherwise.
(2.4)

This ensures numerical stability due to potentially negative eddy-viscosities embedded
in the source term prediction and may be considered to be an implicit assumption of
Bousinessq hypothesis for functional sub-grid modelling. It is later demonstrated that the
presence of this constraint does not preclude the prediction of positive or negative values
of Π̃, which implies that the proposed framework is adept at predicting vorticity forcing or
damping at the finer scales respectively. The damping of vorticity at the finer scales would
correspond to a lower dissipation of kinetic energy (assuming that vorticity dissipates
kinetic energy in the sub-grid scales). Similarly, the forcing of vorticity at the finer scales
may be assumed to be an localized event of high kinetic energy dissipation. In general,
Equation 2.4 precludes the presence of a backscatter of enstrophy for strict adherence
to viscous stability requirements on the coarse-grained mesh. Instead of the proposed
truncation, one may also resort to some form of spatial averaging in an identifiable
homogeneous direction as utilized by Germano et al. (1991). However, the former was
chosen to remove any dependency on model-forms or coefficient calculations. In what
follows for the rest of this document, our proposed framework is denoted ANN-SGS.
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Figure 1. Proposed artificial neural network architecture and relation to sampling and
prediction space.

2.2. Hyper-parameter optimization

In this sub-section, we detail the process of a-priori architecture selection before
training and deployment. Our hidden layers have neurons which are activated by the
rectified-linear (ReLU) function. The choice of the ReLU activation was made for efficient
optimization of the network architecture by bypassing the problems of vanishing gradients
inherent in sigmoidal activation functions (Ling et al. 2016).

For the purpose of optimal network architecture selection, we utilize a grid-search
selection coupled with a 3-fold cross-validation implemented in the open-source library
Scikit-learn. In essence, a parameter space given by a grid is coupled with three trainings,
tests and validations for each network through three partitions of the total training data.
We first undertake our aforementioned optimization for the number of layers by utilizing
a total of 1000 epochs for determining the optimal depth of the network. Each network
with a particular choice of the number of layers (ranging between 1 to 8) is optimized
three times using a 3-fold cross-validation strategy and utilized for prediction on the
test and validation partitions not used for weight optimization. The three networks for
each hyper-parameter are then assigned a mean cost-function score which is used for
selection of the final model depth. We observe that a two-layer model outperforms other
alternatives during this grid-search as shown in Figure 2. We note that the number of
neurons in this first grid-search is fixed at 50 although similar trends are recovered with
varying specifications between 10 and a 100. Our mean cost index is given by the following
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expression for each location on the grid

Mean cost index =
1

K

K∑
i=1

∣∣∣∣∣∣Πtrue
K − Π̃K

∣∣∣∣∣∣
2

(2.5)

where K refers to the training fold chosen for gradient calculation in the backpropagation
within the same dataset.

A second grid-search is performed with a fixed number of layers (i.e., two obtained
from the previous tuning) and with a varying number of neurons. The results of this
optimization are observed in Figure 2 which shows that an optimal number of neurons of
50 suffice for this training. We note however, that the choice for the number of neurons
in the two-layer network does not affect the tuning score significantly. We clarify here
that the model optimization may have been carried out using a multidimensional grid-
search for the optimal hyper-parameters or through sampling in a certain probability
distribution space, however our approach was formulated out of a desire to reduce offline
training cost as much as possible. The final network was then selected for a longer
duration of training (5000 epochs) till the learning rate is minimal as shown in Figure
3. Details of our network optimization and dataset generation are provided in the next
section.

3. Training and validation

For the purpose of generating an optimal map discussed in the previous section, we
utilize a supervised learning with sets of labeled inputs and outputs obtained from
direct numerical simulation data (DNS) for two-dimensional turbulence (San & Staples
2012; Maulik & San 2017b). Our grid-resolved variables (which we remind the reader,
are denoted as overbarred quantities) are generated by a Fourier cut-off filter so as to
truncate the fully-resolved DNS fields (obtained at 20482 degrees-of-freedom) to coarse-
grained grid level (i.e. given by 2562 degrees-of-freedom). Therefore, this procedure is
utilized to generate input-output pairs for the process of training our ANN map. We
also emphasize on the fact that, while the DNS data generated multiple time snapshots
of flow evolution, data was harvested from times t = 0, 1, 2, 3 and 4 for the purpose of
training and validation. This represents a stringent sub-sampling of the total available
data for map optimization. To quantify this sub-sampling, we note that we had potential
access to 40000 space-time snapshots of DNS data out of which only 5 were chosen for
training and validation data generation (0.0125 % of total data). We also note that the
Reynolds number chosen for generating the training and validation data sets is given by
Re = 32000 alone.

Two-thirds of the total dataset generated for optimization was utilized for training
and the rest was utilized for validation assessment. Here, training refers to the use of
data for loss calculation (which in this study is a classical mean-squared-error) and
backpropagation for parameter update. Validation was utilized to record the performance
of the trained network on data it was not exposed to during training. Similar behavior in
training and validation loss would imply a well-formulated learning problem. The final
ANN (obtained post-training) would be selected according to the best validation loss
after a desired number of iterations which for this study was fixed at 5000. We also
note that the error-minimization in the training of the ANN utilized the Adam optimizer
(Kingma & Ba 2014) implemented in the open-source ANN training platform TensorFlow.
Figure 3 shows the learning rate of the proposed framework with very similar behavior
between training and validation loss implying a successfully optimized map. We remark



8 R. Maulik, O. San, A. Rasheed, and P. Vedula

1 2 3 4 5 6 7 8
Number of layers

0

2000

4000

6000

8000

10000

12000
M

ea
n 

co
st

 in
de

x

10 30 50 70 90 110 130 150
Number of neurons

0

1000

2000

3000

4000

5000

6000

M
ea

n 
co

st
 in

de
x

Figure 2. Quantification of hyper-parameter optimization shown for number of layers (top) and
number of neurons (bottom). An optimal network architecture of two-layers and 50 neurons is
chosen for our study.

that while the network may have learned the map from the data it has been provided for
training and validation, testing would require an a-posteriori examination as detailed in
the following section.

We first outline an a-priori study for the proposed framework where the optimal map is
utilized for predicting probability distributions for the true sub-grid source term. In other
words, we assess the turbulence model for a one snapshot prediction. Before proceeding,
we return to our previous discussion about the choice of Smagorinsky and Leith viscosity
kernels by highlighting their behavior for different choices of model coefficients (utilized
in effective eddy-viscosity computations using mixing-length based phenomenological
arguments). The Smagorinsky or Leith sub-grid scale models may be implemented in the
vorticity-streamfunction formulation via the specification of an effective eddy-viscosity

Π̃ = νe∇2ω̄, (3.1)
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Figure 3. Learning rate of the proposed optimal model architecture. Note how training and
validation loss are correlated closely for this learning problem.

where the Smagorinsky model utilizes

νe = (Csδ)
2|S̄|, (3.2)

while the Leith hypothesis states

νe = (Clδ)
3|∇ω̄|. (3.3)

In the above relations, δ refers to the grid-volume (or area in two-dimensional cases)
and νe is an effective eddy-viscosity. From Figure 1, it is apparent that the choice
of model-form coefficients Cs and Cl for the Smagorinsky and Leith models dictate
the accuracy of the closure model in a-priori analyses. Instances here refer to the
probability densities of truth and prediction at different magnitudes. We would also
like to draw the readers attention to the fact that ideal reconstructions of the true sub-
grid term are with coefficients near the value of 1.0, a value that is rather different to
the theoretically accepted values of Cs applicable in three-dimensional turbulence. This
dependance of closure efficacy on model coefficients continues to represent a non-trivial
a-priori parameter specification task for practical utilization of common LES turbulence
models particularly in geophysical applications. Later, we shall demonstrate that a-
posteriori implementations of these static turbulence models is beset with difficulties
for non-stationary turbulent behavior.

In contrast, Figure 5 shows the performance of the proposed framework in predicting
sub-grid contributions purely through the indirect exposure to supervised data in the
training process. The figure shows a remarkable ability for Π reconstruction for both Re
values of 32000 and 64000, solely from grid-resolved quantities. Performance similar to
ideal model-coefficients mentioned in the previous figure are also observed. The Re =
64000 case is utilized to assess model performance for ‘out-of-training’ snapshot data in
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Figure 4. A-priori performance of Smagorinsky and Leith models for varying model coefficients
for data snapshot at t = 2. Here, instances refer to the probability densities of truth and
prediction at different magnitudes.
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Figure 5. A-priori results for the probability density distributions of the true and framework
predicted LES source terms for Re = 32000 (left) and Re = 64000 (right). Note that the training
data was generated for Re = 32000 only and prediction on Re = 64000 represents a stringent
validation.

an a-priori sense. The trained framework is seen to lead to viable results for a completely
unseen data set with more energetic physics. We may thus conclude that the map has
managed to embed a relationship between sharp spectral cutoff filtered quantities and
sub-grid source terms.

We also visually quantify the effect of Equation 2.4 (described for the process of
numerical realizability) in Figure 6 where a hardwired truncation is utilized for precluding
violation of viscous stability in the forward simulations of our learning deployment. One
can observe that the blue regions of the figure, which are spatial locations of sub-grid
forcing (Π̃) and Laplacian ∇2ω̄ being the opposite sign, are truncated. However, we must
clarify that this does not imply a constraint on the nature of forcing being obtained by
our model - a negative value of the sub-grid term implies a damping of vorticity and the
finer scales whereas a positive value implies production at the finer scales. Our next step
is to assess the ability of this relationship to recover statistical trends in an a-posteriori
deployment. The fact that roughly half of the predicted sub-grid terms are truncated
matches the observations in Piomelli et al. (1991) where it is observed that forward and
backscatter are present in approximately equal amounts when extracted from DNS data.
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Figure 6. An a-priori assessment of the nature of truncation given by Equation 2.4 for t = 2
snapshot data at Re = 32000 (top) and Re = 64000 (bottom). The nature of this truncation is
for the preservation of viscous stability in a coarse-grained forward simulation.

Studies are underway to extend some form of dynamic localization of backscatter to the
current formulation along the lines of Ghosal et al. (1995).

4. Deployment and a-posteriori assessment

The ultimate test of any data-driven closure model is in an a-posteriori framework with
subsequent assessment for the said model’s ability to preserve coherent structures and
scaling laws. While the authors have undertaken a-priori studies with promising results
for data-driven ideologies for LES (Maulik & San 2017a), the results of the following
section are unique in that they represent a model-free turbulence model computation
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in temporally and spatially dynamic fashion. This test setup is particulary challeng-
ing due to the neglected effects of numerics in the a-priori training and assessment.
In the following we utilize angle-averaged kinetic energy spectra to assess the ability
of the proposed framework to preserve integral and inertial range statistics. In brief,
we mention that the numerical implementation of the conservation laws are through
second-order discretizations for all spatial quantities (with a kinetic-energy conserving
Arakawa discretization (Arakawa 1966) for the calculation of the nonlinear Jacobian). A
third-order total-variation-diminishing Runge-Kutta method is utilized for the vorticity
evolution and a spectrally-accurate Poisson solver is utilized for updating streamfunction
values from the vorticity. Our proposed framework is deployed pointwise for approximate
Π at each explicit time-step until the final time of t = 4 is reached. The robustness of
the network to the effects of numerics is thus examined.

Figure 7 displays the statistical fidelity of coarse-grained simulations obtained with
the deployment of the proposed framework for Re = 32000. Stable realizations of the
vorticity field are generated due to the combination of our training and post-processing.
For the purpose of comparison, we also include coarse-grained no-model simulations, i.e.,
unresolved numerical simulations (UNS) which demonstrate an expected accumulation
of noise at grid cut-off wavenumbers. DNS spectra are also provided showing agreement
with the k−3 theoretical scaling expected for two-dimensional turbulence. Our proposed
framework is effective at stabilizing the coarse-grained flow by estimating the effect of sub-
grid quantities and preserving trends with regards to the inertial range scaling. We also
demonstrate the utility of our learned map on an a-posteriori simulation for Re = 64000
data where similar trends are recovered. This also demonstrates an additional stringent
validation of the data-driven model for ensuring generalized-learning. The reader may
observe that Smagorinsky and Leith turbulence model predictions using static model
coefficients of value 1.0 (i.e., Cs = Cl = 1.0) lead to over-dissipative results particularly
at the lower (integral) wavenumbers. This trend is unsurprising, since the test case
examined here represents non-stationary decaying turbulence for which fixed values of
the coefficients are not recommended. Indeed, the application of the Smagorinsky model
to various engineering and geophysical flow problems has revealed that the constant is
not single-valued and varies depending on resolution and flow characteristics (Galperin
& Orszag 1993; Canuto & Cheng 1997; Vorobev & Zikanov 2008) with higher values
specifically for geophysical flows (Cushman-Roisin & Beckers 2011). In comparison, the
proposed framework has embedded the adaptive nature of dissipation into its map which
is a promising outcome. Figures 8 and 9 show the performance of the Smagorinsky and
Leith models, respectively, for a Re = 32000 and Re = 64000 a-posteriori deployment
for different values of the eddy-viscosity coefficients. One can observe that the choice of
the model-form coefficient is critical in the capture of the lower wavenumber fidelity.

In particular, we would like to note that the choice of a coarse-grained forward
simulation using a Reynolds number of 64000 represents a test for establishing what
the model has learned. This forward simulation verifies if the closure performance of
the framework is generalizable and not a numerical artifact. A similar performance
of the model on a different deployment scenario establishes the hybrid nature of our
framework where the bulk behavior of the governing law is retained (through the
vorticity-streamfunction formulation) and the artificial intelligence acts as a corrector
for statistical fidelity. This observation holds promise for the development of closures
which are generalizable to multiple classes of flow without being restricted by initial or
boundary conditions. To test the premise of this hypothesis, we also display ensemble-
averaged kinetic energy spectra from multiple coarse-grained simulations at Re = 32000
and at Re = 64000, utilizing a different set of random initial conditions for each test
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Figure 7. A-posteriori results for the spatially-averaged kinetic energy spectra for the proposed
framework compared with DNS and UNS solutions. Note that only Re = 32000 training data is
used for both deployments and network is applied spatially and temporally in a dynamic manner
until t = 4.
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Figure 8. A-posteriori results for the spatially-averaged kinetic energy spectra for the
Smagorinsky model for different values of their eddy-viscosity coefficients and for different
Reynolds numbers at t = 4. One can observe that the capture of lower-wavenumber energy
and scaling is heavily dependant on the value of these coefficients.
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Figure 9. A-posteriori results for the spatially-averaged kinetic energy spectra for the Leith
model for different values of their eddy-viscosity coefficients and for different Reynolds numbers
at t = 4. One can observe that the capture of lower-wavenumber energy and scaling is heavily
dependant on the value of these coefficients.
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Figure 10. A-posteriori results for 24 ensemble-averaged simulations for Re = 32000 (left)
and Re = 64000 (right).

100 101 102 103

k
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E(
k)

DNS
UNS
Smagorinsky
Leith
ANN SGS
k−3  caling

(a) Re = 32000

100 101 102 103
k

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
E(
k)

(b) Re = 64000

Figure 11. The deployment of our framework till t = 6 for Re = 32000 (left) and Re = 64000
(right) showing that a sub-grid model has been learned for utility beyond the training region.
We note that the training region is defined between t = 0 and t = 4 alone.

case. In particular, we utilize 24 different tests for averaged spectra which are displayed in
Figure 10. We would like to emphasize here that the different initial conditions correspond
to the same initial energy spectrum in wavenumber space but with random vorticity
fields in Cartesian space. The performance of our proposed framework is seen to be
repeatable across different instances of random initial vorticity fields sharing the same
energy spectra. Details related to the generation of these random initial conditions may
be found in Maulik & San (2017b). In addition, we also display spectra obtained from
an a-posteriori deployment of our framework till t = 6 for Re = 32000 and Re = 64000 ,
shown in Figure 11, which ensures that the model has learned a sub-grid closure effectively
and predicts the vorticity forcing adequately in a temporal region that it has not been
exposed to during training.

Figure 12 shows a qualitative assessment of the stabilization property of machine
learning framework where a significant reduction in noise can be visually ascertained
due its deployment. Coherent structures are retained successfully as against UNS results
where high-wavenumber noise is seen to corrupt field realizations heavily. Filtered DNS
(FDNS) data obtained by Fourier cut-off filtering of vorticity data obtained from DNS
are also shown for the purpose of comparison. As discussed previously, the stabilization
behavior is observed for both Re = 32000 and Re = 64000 data. We may thus conclude
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(b) ANN SGS - Re = 64000
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(c) UNS - Re = 32000
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(d) UNS - Re = 64000
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(e) FDNS - Re = 32000
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Figure 12. A-posteriori results for the proposed framework showing vorticity fields for
Re = 32000 and Re = 64000 data using coarse-grained grids (top). We also provide no-model
simulations (middle) and filtered DNS contours (bottom) for the purpose of comparison.

that the learned model has established an implicit sub-grid model as a function of grid-
resolved variables. We reiterate that the choice of the eddy-viscosities is motivated by
ensuring a fair comparison with the static Smagorinsky and Leith sub-grid models and
studies are underway to increase complexity in the mapping as well as input space.
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(b) A-posteriori deployment

Figure 13. A-priori (left) and a-posteriori (right) effect of the utilization of eddy-viscosity kernel
inputs in training and deployment for a two-layer 50 neuron network with a 9-point stencil.
The presence of these kernels (intangible in a-priori error minimization) leads to constrained
statistical fidelity in a-posteriori deployment at Re = 32000.

5. A-priori and a-posteriori dichotomy

In the previous sections, we have outlined the performance of our proposed framework
according to the optimal model architecture chosen by a grid-search for the number
of hidden layers as well as the number of hidden-layer neurons. This a-priori hyper-
parameter selection is primarily devised on mean-squared-error minimization and is
susceptible to providing model architectures which are less resistant to over-fitting and
more prone to extrapolation. Our experience shows that an a-posteriori prediction (such
as for this simple problem) must be embedded into the model selection decision process
to ensure an accurate learning of physics. We briefly summarize our observations of the
a-priori and a-posteriori dichotomy in the following.

5.1. Effect of eddy-viscosity inputs

By fixing our optimal set of hyper-parameters (i.e., a two-layer 50 neuron network),
we attempted to train a map using an input space without the choice of Smagorinsky
and Leith viscosity kernels. Therefore our inputs would simply be the 9-point stencils for
vorticity and streamfunction as shown in the mathematical expression given by

M : {ω̄i,j , ω̄i,j+1, ω̄i,j−1, . . . , ω̄i−1,j−1,

ψ̄i,j , ψ̄i,j+1, ψ̄i,j−1, . . . , ψ̄i−1,j−1 ∈ R18 → {Π̃i,j} ∈ R1.
(5.1)

As shown in Figure 13, the modification of our input space had very little effect on
the training performance of our optimal network architecture. This would initially seem
to suggest that the Smagorinsky and Leith kernels were not augmenting learning in any
manner. However, our a-posteriori deployment of this model which mapped to sub-grid
quantities from the 18-dimensional input space displayed an unconstrained behavior at
the larger scales with the formation of non-physical large scale structures (also shown in
Figure 10). This strongly points towards an implicit regularization of our model due to
the selection of input dimensions with these kernels.

We undertook the same study for a 5-layer, 50 neuron ANN (one that was deemed
too complex by our grid-search) with results shown in Figure 14. Two conclusions are
apparent here - the utilization of these kernels in the learning process has prevented a-
priori reduction of training error at a much higher value and that the deployment of both
networks (i.e., with and without input viscosities) has led to a constrained prediction of



Sub-grid modelling using neural networks 17

0 1000 2000 3000 4000 5000
Global iterations

3000

4000

5000

6000

7000

8000

9000
Lo

ss
ANN SGS (with kernels)
ANN SGS (no kernels)

(a) Learning rate

100 101 102 103
k

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E(
k)

DNS
UNS
ANN SGS (no kernels)
ANN SGS ( ith kernels)
k−3 scaling

(b) A-posteriori deployment

Figure 14. A-priori (left) and a-posteriori (right) effect of the utilization of eddy-vicsosity
kernel inputs in training and deployment for a five-layer 50 neuron network with a 9-point
stencil. The presence of these kernels leads to higher training errors but viable statistical fidelity
in a-posteriori deployment at Re = 32000.

the k−3 spectral scaling. Large scale statistical predictions remain unchanged and indeed,
a better agreement with the DNS spectrum can be observed with the deeper network
with the use of the kernels.

5.2. A-posteriori informed architecture selection

While a-priori hyper-parameter tuning is classically utilized for most machine-learning
deployments, the enforcement of physical realizability constraints (such as those given
by Equation 2.4) and the presence of numerical errors during deployment may often
necessitate architectures which differ significantly during a-posteriori deployment. This
article demonstrates the fact that while constrained predictions are obtained by our
optimal two-layer network (obtained by a grid-search), the utilization of a deeper network
actually leads to more accurate predictions of the Kraichnan turbulence spectrum as
shown in Figure 15. This despite the fact that the deeper network displays a great mean-
squared-error during the training phase (which was the root-cause of it being deemed
ineligible in the hyper-parameter tuning). Figure 14 thus tells us that it is important to
couple some form of a-posteriori analysis during model-form selection before it is deemed
optimal (physically or computationally) for deployment. We note that both networks
tested in this subsection utilized the Smagorinsky and Leith eddy-viscosities in their
input space.

5.3. Stencil selection

Another comparison is made when the input dimension is substantially reduced by
choosing a 5 point stencil (instead of the aforementioned 9 point stencil). In this archi-
tecture, vorticity and streamfunction values are chosen only for the x and y directions
(i.e., ω̄i,j , ω̄i+1,j , ω̄i−1,j , ω̄i,j+1, ω̄i,j−1 for vorticity and similarly for streamfunction). The
input eddy-viscosities given by the Smagorinsky and Leith kernels are also provided to
this reduced network architecture. Mathematically, this new map may be expressed as

M : {ω̄i,j , ω̄i,j+1, ω̄i,j−1, ω̄i+1,j , ω̄i−1,j

ψ̄i,j , ψ̄i,j+1, ψ̄i,j−1, ψ̄i+1,j , ψ̄i−1,j , |S̄|i,j , |∇ω̄|i,j} ∈ R12 → {Π̃i,j} ∈ R1.
(5.2)

Figure 16 shows the performance of this setup in training and deployment where it can
once again be observed that a-posteriori analysis is imperative for determining a map
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Figure 15. A-priori (left) and a-posteriori (right) effect of the number of hidden-layers in
the proposed framework. While the two-layered ANN with a 9-point stencil leads to excellent
a-priori results, the five-layered network predicts k−3 scaling more accurately in deployment for
an a-posteriori simulaion at Re = 32000.
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Figure 16. A-priori (left) and a-posteriori (right) effect of the stencil size in the 2-layer, 50
neuron framework for a Re = 32000 simulation. While the 5-point stencil leads to similar
a-priori training errors, an a-posteriori deployment at Re = 32000 reveals its limitations.

for the sub-grid terms. While training errors are more or less similar, the reduced stencil
fails to capture the nonlinear relationship between the resolved and cut-off scales with
consequent results on the statistical fidelity of the lower wavenumbers. We perform a
similar study related to this effect of data-locality on a deeper network given by 5 layers
and 50 neurons to verify the effect of the deeper architecture on constrained prediction.
The results of this training and deployment are shown in Figure 17 where it is observed
that the increased depth of the ANN leads to a similar performance with a smaller stencil
size. This implies that optimal data-locality (in terms of the choice of a stencil) leads to a
reduced number of hidden layers. Again, the a-priori mean-squared-error is not indicative
of the quality of a-posteriori prediction.

The main take-away from this section thus becomes the fact that optimal architectures
and maps for sub-grid predictions require a careful a-priori and a-posteriori study for
tractable computational problems (such as the Kraichnan turbulence case) before they
may be deployed for representative flows. The effect of realizability constraints and
numerical errors often leads to unexpected a-posteriori performance and some form of
lightweight deployment must be utilized for confirming model feasibility.
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Figure 17. A-priori (left) and a-posteriori (right) effect of the stencil size in the 5-layer, 50
neuron framework for a Re = 32000 simulation. With deeper architectures, the 5 and 9-point
stencils show similar statistical performance

6. Conclusions

In this investigation, a purely data-driven approach to closure modelling utilizing
artificial neural networks is detailed, implemented and analysed in both a-priori and
a-posteriori assessments for decaying two-dimensional turbulence. An extensive hyper-
parameter selection strategy is also performed prior to the selection of an optimal
network architecture in addition to explanations regarding the choice of input space
and truncation for numerical realizability. The motivation behind the search of a model-
free closure stems from the fact that most closures utilize empirical or phenomenological
relationships to determine closure strength with associated hazards of insufficient or
more than adequate dissipation in a-posteriori utilizations. To that end, our proposed
framework utilizes an implicit map with inputs as grid-resolved variables and eddy-
viscosities to determine a dynamic closure strength. Our optimal map is determined by
training an artificial neural network with extremely sub-sampled data obtained from high-
fidelity direct numerical simulations of the decaying two-dimensional turbulence test case.
Our inputs to the network are given by sampling stencils of vorticity and streamfunction
in addition to two kernels utilized in the classical Smagorinsky and Leith models for
eddy-viscosity computations. Based on these inputs, the network predicts a temporally
and spatially dynamic closure term which is pre-processed for numerical stability before
injection into the vorticity equation as a potential source (or sink) of vorticity in the
finer scales. Our statistical studies show that the proposed framework is successful in
imparting a dynamic dissipation of kinetic energy to the decaying turbulence problem
for accurate capture of coherent structures and inertial range fidelity.

In addition, we also come to the conclusion that the effects of prediction truncation
(for numerical realizability) and numerical error during forward simulation deployment
necessitate the need for a-posteriori analyses when identifying optimal architectures (such
as the number of hidden layers and the input spaces). This conclusion has significant
implications for the modern era of physics-informed machine learning for fluid dynam-
ics applications where a-priori trained learning is constrained by knowledge from first
principles. Our conclusions point toward the need for coupling a-posteriori knowledge
during hyper-parameter optimization either passively (as demonstrated in this article)
or through the use of custom training objective functions which embed physics in the
form of regularization. Our study basically proposes that data-driven spatio-temporally
dynamic sub-grid models may be developed for tractable computational cases such as
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Kraichnan and Kolmogorov turbulence through a combination of a-priori and a-posteriori
study before they may be deployed for practical flow problems such as those encountered
in engineering or geophysical flows. Studies are underway to extend these concepts
to multiple flow classes in pursuit of data-driven closures that may prove to be more
universal.

While this article represents the successful application of a proof-of-concept, our
expectation is that further robust turbulence closures may be developed on the guidelines
presented in this document, with the utilization of more grid-resolved quantities such as
flow invariants and physics-informed hyper-parameter optimization. In addition, network-
embedded symmetry-considerations are also being explored as a future enhancements
for this research. Dataset pre-processing for outlier identification, not utilized in this
study, is also a potential avenue for improved a-posteriori performance and more efficient
hyper-parameter selection. Our ultimate goal is to determine maps that may implicitly
classify closure requirements according to inhomogeneities in a computational domain
(through exposure to different flow classes) that may then be ported as predictive tools
in multiscale phenomenon with complex initial and boundary conditions. The results in
this document indicate a promising first step in that direction.
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