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Abstract

In this paper, the well-known Fuzzy Inference Systems (FIS) in combination

with Adaptive Network-based Fuzzy Inference Systems (ANFIS) are coupled

for the first time with a nonstationary time series modelling for an improved

prediction of wind and wave parameters. The data set used consists of ten-year

long three-hourly time series of significant wave height HS , peak wave period Tp

and wind speed WS based on hindcasts of WAVEWATCH III model and GFS

analysis winds. The field used covers the area [30W,40E]ˆ[50N,78N]. The initial

time series is first decomposed by means of the aforementioned nonstationary

modelling into a seasonal mean value and a residual time series multiplied by a

seasonal standard deviation. Then, the FIS/ANFIS models are applied to the

stationary part only in order to calculate forecasts of future values. Using the

nonstationary modelling, forecasts of the full time series are finally obtained.

For comparison purposes, the FIS/ANFIS models are also applied to the initial

nonstationary series. The performance of both forecasting procedures is assessed

by means of well-known error measures. The methodology is applied to obtain

a) point-wise forecasts for a specific datapoint, and b) field-wise forecasts for the

whole field of wave parameters. Especially, the latter is performed for the first

time. The comparison of the error measures from the two approaches showed

that the forecasts based on the proposed methodology outperforms the ones
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using only FIS/ANFIS models.

Keywords: fuzzy time series, significant wave height, peak wave period, wind

speed, forecasting, prediction error

1. Introduction

Wind and wave data are very important for a number of applications, in-

cluding among others design of coastal and offshore structures, coastal erosion

and sediment transport, wave energy resource evaluation etc.

In situ buoy measurements consist the most reliable data source. However,

measurement campaigns are considerably costly, and buoy networks do not have

a good spatial coverage of the seas, providing us with a relatively small number

of long-term records of wind and wave measurements. A very useful alternative

is the long-term hindcast wave databases based on third generation spectral

wave models (The WAMDI Group, 1988; Tolman, 1991; Booij et al., 1999).

They provide us with data of good spatial and time resolution without gaps,

and, thus, can be used for forecasting purposes (either off-line or in near real-

time); see, e.g., Roulston et al. (2005); Reikard & Rogers (2011). However, and

because their numerical implementation is quite complicated, they require great

computational power and high CPU time.

On the other hand, various researchers treat the forecasting problem by

means of various soft computing techniques (Mahjoobi et al., 2008). Some of

them utilize Artificial Neural Networks (ANN); see, e.g., Deo et al. (2001); Rao

& Mandal (2005); Jain & Deo (2007). Some others use Fuzzy Inference Systems

(FIS) in combination with Adaptive Network-based Fuzzy Inference Systems

(ANFIS). Kazeminezhad et al. (2005) developed an ANFIS model for the pre-

diction of wave parameters (height and period) based on past wind parameters

(speed, fetch) and applied his findings to data from lake Ontario. Özger & Şen

(2007) applied ANFIS to buoy data from the west American coast (off Califor-

nia) to predict wave data based on a combination of past values of both wind

and wave data. See also Zamani et al. (2008); Sylaios et al. (2009); Akpinar et al.
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(2014), who presented various different ANFIS approaches for the prediction of

wave parameters using buoy data from the Caspian, Aegean and Black Sea, re-

spectively. It should be noted that ANFIS techniques require less computational

effort and they are easy to be applied.

In the present work, FIS and ANFIS models are combined for the first time

with a nonstationary (NS) modelling in the prediction of wind and wave pa-

rameters. NS model has been developed by the author in a series of works for

the analysis, modelling and simulation of wind and wave parameters (Athanas-

soulis & Stefanakos, 1995; Stefanakos & Belibassakis, 2005, and references cited

therein), and recently of bunker prices (Stefanakos & Schinas, 2014). Here, it

is used for the extraction of the nonstationary character of the data, and then

FIS/ANFIS models are applied only to the stationary part. As it will be shown

in the sequel, this step is essential for the accuracy of the prediction models.

Forecasting procedures are tested against model data from the North Atlantic

Ocean both on a point- and a field-wise basis. The quality of the forecasts is

tested against estimates obtained by applying FIS/ANFIS models to the initial

nonstationary series. Especially field results, i.e. forecasts for a large area in

the Atlantic Ocean, are presented for the first time depicting the great potential

usability of the prediction model.

2. The nonstationary stochastic model

The nonstationary stochastic model under discussion in the present work has

been presented in its univariate form in Athanassoulis & Stefanakos (1995), and

been extended to its multivariate version in Stefanakos & Belibassakis (2005);

see also Stefanakos & Schinas (2014). It can be described as follows; see also

Fig.1.

A many-year long time series of wind and wave data can be treated as a

nonstationary stochastic process with yearly periodic mean value and standard

deviation. That is, it admits of the following decomposition:

Y ptq “ mptq ` sptqW ptq, (1)
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Figure 1: Nonstationary time series modelling

where mptq and sptq are deterministic periodic functions with a period of one

year, and W ptq is a zero-mean, stationary, stochastic process. The functions

mptq and sptq are seasonal mean value and seasonal standard deviation, respec-

tively, and describe the exhibited seasonal patterns.

In order to properly treat variability at different time scales, the time series

Y ptq is re-indexed, using the following triple index notation:

$

&

%

Y pj,m, τkq,
j “ 1, . . . , J,

m “ 1, . . . , 12,

k “ 1, . . . , Km

,

.

-

, (2)

where j is the year index, m is the month index, τk represents the monthly time,

and Km is the number of observations within the m-th month. For example,

for a time series with 3-hourly measurements, the number Km for a month of

31 days is 8ˆ 31 “ 248.

The three indices j, m, τk, represent three different time-scales, making it

possible to explicitly define statistics with respect to each one of them sepa-

rately. The subscripts: 1, 2, 3 are used to denote various statistics (mean value

and standard deviation) with respect to the corresponding (first, second, third)

index.

The seasonal patterns (mean value and standard deviation) are estimated

by the following means:

1. The time series of monthly mean values and monthly standard deviations
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are formed:

µ3pj,mq “
1

Km

Km
ÿ

k“1

Y pj,m, τkq, (3)

σ3pj,mq “

g

f

f

e

1

Km

Km
ÿ

k“1

“

Y pj,m, τkq ´ µ3pj,mq
‰2
. (4)

2. The seasonal patterns (mean value and standard deviation) are easily

obtained by averaging the time series of Equations (3) and (4) over the

years J :

rµ3pmq “
1

J

J
ÿ

j“1

µ3pj,mq, (5)

rσ3pmq “
1

J

J
ÿ

j“1

σ3pj,mq, (6)

with m=1,2,. . . ,12. Stefanakos et al. (2006) have shown that, periodic

extensions of quantities rµ3pmq and rσ3pmq are good estimates of periodic

functions mptq and sptq.

Furthermore, if the residual component W ptq is considered stationary, then

the initial process Y ptq forms the structure of a periodically correlated stochastic

process.

Following the univariate case (1), a many-year long multivariate time series

allows for the following decomposition:

Yptq
pNˆ1q

“Mptq
pNˆ1q

` ΣΣΣptq
pNˆNq

Wptq
pNˆ1q

, (7)

where N is the number of time series. The vector Mptq and the matrix ΣΣΣptq are

deterministic periodic functions with a period of one year, and Wptq is assumed

to be a vector zero-mean, stationary, stochastic process. As in the univariate

case, the functions Mptq and ΣΣΣptq describe the exhibited seasonal patterns.

The terms of the seasonal patterns Mptq and ΣΣΣptq are estimated following a

procedure similar to the one used in the univariate case.
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3. Fuzzy inference systems

Fuzzy theory was originally developed to deal with problems involving lin-

guistic terms, like “tall” and “short” for height, “young” and “old” for age, etc

(Zadeh, 1975a,b,c). Song & Chissom (1993b) defined fuzzy time series (FTS)

and have applied the fuzzy time series model to forecast the enrollments of the

University of Alabama (Song & Chissom, 1993a, 1994). Fuzzy sets are defined

as sets whose elements have degrees of membership, in contrast to the classical

theory, where the membership of elements in a set is considered in binary terms

according to a bivalent condition.

Since then, various fuzzy time series models have been applied to the pre-

diction of parameters from a plethora of problem areas such as stock market

indices (Huarng, 2001b,a; Yu, 2005; Chen et al., 2007), temperature (Hsu et al.,

2010), shipping market indices (Duru, 2010, 2012), and tourism (Tsaur & Kuo,

2011).

In the conventional set theory, the membership of an element x to a set L

is characterized by the function

µLpxq “

$

’

&

’

%

1, if x P L,

0, if x R L,

(8)

The boundaries of such a set, and the set itself, are called crisp.

On the other hand, in fuzzy set theory a membership function can take

several values between 0 and 1. Commonly used membership functions are: the

triangular-shaped, the trapezoidal-shape, the bell-shaped etc.

All crisp sets can become fuzzy by assigning such a membership function.

This procedure is called fuzzification.

Especially, if the membership function is of the form

µLpxq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

µ´Lpxq, a1 ď x ă a2,

1, a2 ď x ă a3,

µ`Lpxq, a3 ď x ă a4,

0, otherwise,

(9)
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where µ´Lpxq is strictly increasing, and µ`Lpxq strictly decreasing functions, re-

spectively, then the associated fuzzy set L is called fuzzy number.

A conventional time series is considered as a realization of a random process.

In the same sense, a fuzzy time series is considered as a realization of a a fuzzy

random process; i.e., of a sequence of fuzzy random variables (Möller & Beer,

2008).

At each specific time instance t, the realization of each fuzzy random vari-

able is a fuzzy variable; i.e., a collection of fuzzy numbers characterized by the

collection of their membership functions defined in Equ. (9):

F ptq “ tµL1
ptq, µL2

ptq, . . . , µLi
ptq, . . .u “ tµ1ptq, µ2ptq, . . . , µiptq, . . .u (10)

If F ptq is caused by F pt´ 1q, then there is a relationship of the form

F ptq “ F pt´ 1q ˚Rpt; t´ 1q, (11)

where ’˚’ represents an operator. If Rpt; t ´ 1q is independent of time t, then

F ptq is called a time-invariant time series. If F pt ´ 1q is associated with fuzzy

set Li,t´1 ” Li and F ptq with Lj,t ” Lj , then the relationship between F ptq and

F pt´ 1q is also referred to as a fuzzy logical relationship (FLR), denoted by

Li Ñ Lj , (12)

where Li is called the left-hand side (LHS) and Lj the right-hand side (RHS)

of the FLR.

Fuzzy logical relationships can be further grouped into relationship group.

Suppose there are FLRs with the same LHSs,

Li Ñ Lk1

Li Ñ Lk2

. . . . . . . . .

(13)

then, FLRs can be grouped into fuzzy logical relationship groups (FLRGs) of

the form

Li Ñ Lk1
, Lk2

. . . . (14)
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Figure 2: Sketch of fuzzy forecasting procedure

FLRs, which are also known as IF-THEN rules, are set up based on the

experience of specialized experts from the available historical data. The first

part of an IF-THEN rule is known as antecedent or premise and the second part

as consequent .

Fuzzy Inference Systems (FIS)consist of the following building blocks; see

also Fig. 2:

(1) a fuzzification process, transforming the crisp values of the input;

(2) a knowledge base, defining the appropriate membership functions and the

IF-THEN rules based on available historical data;

(3) an inference system, performing forecasts (inference) based on the estab-

lished rules;

(4) a defuzzification process, transforming the fuzzy forecasts back into crisp

output.

There are two main types of Fuzzy Inference Systems, namely, the Mamdani
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y2 “ f2px1, x2q

y

Layer 5

Figure 3: Sketch of ANFIS procedure

(Mamdani & Assilian, 1975) and the Takagi–Sugeno (TS) (Takagi & Sugeno,

1985), which mainly differentiates in the defuzzification process. In the Mam-

dani approach, each output belongs to a fuzzy set and needs defuzzification to

obtain the crisp values of the output. The consequent part of the IF-THEN

rules is of the form:

Rule k: IF WSptq is high and HSptq is high,

THEN Tppt` 1q is high , k “ 1, 2, . . . . (15)

On the other hand, in the TS approach, the consequent part of each rule is a

scalar expressed as a linear combination of the input variables of the form:

Rule k: IF WSptq is high and HSptq is high,

THEN Tppt` 1q “ pk WSptq ` qk HSptq ` rk, k “ 1, 2, . . . , (16)

where pk, qk, rk are parameters to be defined. The final value of the output

variable is obtained by means of the weighted average of all IF-THEN outcomes.

Adaptive Network-based Fuzzy Inference Systems (ANFIS) were introduced

by Jang (1993) and it is a TS FISystem where both antecedent and consequent

parts are optimised based on the available data. The ANFIS procedure is illus-

trated by means of the following example; see also Fig. 3. Assume that we have

a system with two inputs x1, x2 and one output y. The IF-THEN rules are of
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the form

IF x1 is L1k and x2 is L2k, THEN yk “ pk x1 ` qk x2 ` rk. (17)

The ANFIS architecture consists of five layers:

Layer 1: The membership functions of the antecedent part are defined as

µLi
pxq “ µLi

px; ai, bi, ciq, (18)

where ai, bi, ci are called the parameters of the antecedent. The node

is called adaptive, because it contains parameters which are to be

estimated.

Layer 2: The weight of each rule k is calculated as

wk “ µL1k
px1q ˆ µL2k

px2q. (19)

This node is called fixed, since it does not contain parameters to be

estimated.

Layer 3: The relative weight of each rule k is calculated as

swk “
wk
ř

wk
. (20)

Layer 4: The output of each rule k is calculated as

swk yk “ swk fk
`

x1, x2
˘

“ swk

`

pk x1 ` qk x2 ` rk
˘

, (21)

where pk, qk, rk are parameters. This node is also adaptive, since it

contains the parameters of the consequent part.

Layer 5: The final (weighted-average) value of the output is calculated as

y “
ÿ

k

swk yk. (22)

The parameters of the consequent part are tuned in a forward propagation

mode using least squares, while the antecedent parameters in a back-propagation

learning algorithm (Jang, 1993).

Another important issue is the prevailing seasonal character of wind and

wave time series, which calls for a nonstationary modelling of the series. In most
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Fuzzy Time Series (FTS) studies, the nonstationarity is generally neglected and

checking for stationarity is usually considered as an unnecessary condition for

the FTS modelling. In contrast, Duru & Yoshida (2012), and the present author

(Stefanakos et al., 2014), consider that nonstationarity should be first removed

from the initial time series, before starting the fuzzy forecasting procedure. The

reason is the following. Generally, FIS models use the pattern estimated based

on the previous cases for the forecasting procedure. If the present step is a new

condition that has never been experienced before, the so-called “no-change”

solution is usually generated by the model as a forecasted value. So, if the

forecasted time series end up to be a constant line, this is a strong indication of

nonstationarity in the data.

4. Methodology

4.1. Data used

The data set used for this work consists of wave hindcasts done using the

WAVEWATCH III model and GFS analysis winds. For more details, see Chawla

et al. (2011). Although the hindcasts cover the entire globe with a half-degree

resolution, we have used only the data cover the area shown in Fig. 4. At each

datapoint, three-hourly time series of significant wave height HS , peak wave

period Tp and wind speed WS are available. The time span of the data is

2005.02.01–2015.03.31, which is ten years and two months.

4.2. Model setup

For the prediction of wind speed WS , significant wave height HS and peak

wave period Tp, the following FIS systems are assumed:

(a) wind speed WS :

WSpt` 1q “ f p1q
`

WSptq
˘

“ p
p1q
k WSptq ` s

p1q
k , (23)

(b) significant wave height HS :

HSpt` 1q “ f p2q
`

WSptq, HSptq
˘

“ p
p2q
k WSptq ` q

p2q
k HSptq ` s

p2q
k , (24)
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Figure 4: Data points used and covered area

(c) peak wave period Tp:

Tppt` 1q “ f p3q
`

WSptq, HSptq, Tpptq
˘

“

“ p
p3q
k WSptq ` q

p3q
k HSptq ` r

p3q
k Tpptq ` s

p3q
k , (25)

where the parameters
 

p
p¨q

k , q
p¨q

k , r
p¨q

k , s
p¨q

k

(

in the above three equations are esti-

mated using the ANFIS procedure described in Section 3.

The modelling of the membership functions has been intentionally kept as

simple as possible in order to first depict the usability of the FIS/ANFIS method-

ology before proceeding to more sophisticated solutions. In that sense, two

linear functions has been used for the membership functions of the fuzzy sets,

representing the “Low” and “High” linguistic cases, respectively. In Fig. 5, an

example of the membership functions is given for the case of significant wave

height.

The number of rules is derived from the number of inputs in each one of

the forecasting models (23)–(25). In Tables 1–3, one can find the values of the
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Figure 5: Membership functions of input variables for the case of significant wave height

Table 1: Fuzzy rules for the prediction of WSpt` 1q

Input(s) Output

Rule WSptq WSpt` 1q

1 Low 1.0684 WSptq + 0.22669

2 High 0.85411 WSptq + 0.063187

estimated parameters
 

p
p¨q

k , q
p¨q

k , r
p¨q

k , s
p¨q

k

(

, along with the IF-THEN rules implied

for each case.

Of course, one may further improve the forecasts by experimentizing with

the type and multitude of membership functions, and/or the multitude of IF-

THEN rules. For example, in the present work, and for the sake of simplicity,

all possible combinations of these rules have been considered. One, e.g., may

a) increase the number of membership functions, b) keep only a subset of pos-

sible IF-THEN rules, c) use trapezoidal, Gaussian or user-defined membership

functions, or d) combine all the above.
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Table 2: Fuzzy rules for the prediction of HSpt` 1q

Input(s) Output

Rule WSptq HSptq HSpt` 1q

1 Low Low 0.04005 WSptq + 0.73593 HSptq + 0.11531

2 Low High 0.5966 WSptq + 0.47159 HSptq + 0.099497

3 High Low -0.0078906 WSptq + 0.17761 HSptq + 0.00056337

4 High High 0.3224 WSptq + 0.17605 HSptq + 0.030245

Table 3: Fuzzy rules for the prediction of Tppt` 1q

Input(s) Output

Rule WSptq HSptq Tpptq Tppt` 1q

1 Low Low Low 0.10368 WSptq + 0.35483 HSptq + 0.91832 Tpptq + 0.063429

2 Low Low High 0.42497 WSptq + 0.33192 HSptq + 0.99617 Tpptq + 0.07091

3 Low High Low 0.42499 WSptq + 0.25875 HSptq + 0.64724 Tpptq + 0.050384

4 Low High High 0.42838 WSptq + 0.23776 HSptq + 0.62642 Tpptq + 0.046257

5 High Low Low -0.030458 WSptq + 0.12641 HSptq + 0.16931 Tpptq + 0.0021683

6 High Low High 0.17572 WSptq + 0.14223 HSptq + 0.32119 Tpptq + 0.019731

7 High High Low 0.29742 WSptq + 0.15283 HSptq + 0.32209 Tpptq + 0.023884

8 High High High 0.29496 WSptq + 0.14547 HSptq + 0.33091 Tpptq + 0.023932

In the sequel, an example will be given to illustrate the forecasting procedure.

Let us assume that, at time t, the values of wind speed and significant wave

height are x1 “WSptq “ 10 m/s and x2 “ HSptq “ 2 m, respectively. Based on

the equations of the membership functions (MFs) given below (see also Fig. 5):

yWS

Low “ ´0.033535 x1 ` 1.004, x P r0.13, 29.95s (26)

yWS

High “ 0.033543 x1 ´ 0.0046246, x P r0.13, 29.95s (27)

yHS

Low “ ´0.088398 x2 ` 1.0335, x P r0.38, 11.69s (28)

yHS

High “ 0.088595 x2 ´ 0.03557, x P r0.38, 11.69s (29)

one can calculate the values of MFs for x1 “ 10 and x2 “ 2, which are given in

Table 4. Further, using the rules given in Table 2, one can calculate the weight
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Table 4: Values of membership functions for WSptq “ 10m{s and HSptq “ 2m

yLow yHigh

WS 0.66902 0.3308

HS 0.85669 0.14162

of each rule based on Equ. (19):

w1 “ yWS

Low ˆ y
HS

Low “ 0.57315, (30)

w2 “ yWS

Low ˆ y
HS

High “ 0.094747, (31)

w3 “ yWS

High ˆ y
HS

Low “ 0.2834, (32)

w4 “ yWS

High ˆ y
HS

High “ 0.046848, (33)

and the forecasted values based on each rule:

y1 “ 0.04005 WSptq ` 0.73593 HSptq ` 0.11531 “ 1.9877, (34)

y2 “ 0.5966 WSptq ` 0.47159 HSptq ` 0.099497 “ 7.0086, (35)

y3 “ ´0.0078906 WSptq ` 0.17761 HSptq ` 0.00056337 “ 0.27688, (36)

y4 “ 0.3224 WSptq ` 0.17605 HSptq ` 0.030245 “ 3.6063. (37)

Then, the forecasting of the final valueHSpt`1q is performed using Equ. (22):

y “
w1 y1 ` w2 y2 ` w3 y3 ` w4 y4

w1 ` w2 ` w3 ` w4
“ 2.0545 m. (38)

The forecasting procedure is applied both to the initial nonstationary time

series Y ptq, and to the stationary part W ptq; see Equ. (1). The former pro-

cedure will be hereafter referred to as “y-calculations”, and the latter as “w-

calulations”. Especially, in the latter, forecasts should be combined with the

estimated mptq and sptq, to obtain forecasts of the initial time series.

After the end of the prediction process, the forecasts based on w-calculations

are compared against the ones obtained by the y-calculations. For this purpose,

the dataset is divided into two parts: one for training and one for testing. Based

on the latter dataset, various error measures are calculated and is the main tool

for the comparison. The definition of these error measures is given in Section 4.3.
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4.3. Measuring forecasting quality

Assuming that we have I steps of forecasts and actual values to be compared,

there are three large categories of errors measuring the forecasting performance

(Hyndman & Koehler, 2006):

(i) Scaled-dependent measures, that depend on the scale of the data. These

are useful when comparing different methods applied to the same dataset,

but should not be used, for example, when comparing across data sets that

have different scales.

(ii) Measures based on percentage errors. Percentage errors have the advantage

of being scale- independent, and so are frequently used to compare forecast

performance across different data sets.

(iii) Relative measures, which are calculated relatively to the error from a

benchmark method.

Popular representatives of the first two categories are the

(a) Root Mean Square Error (RMSE) defined as

RMSE “

g

f

f

e

1

I

I
ÿ

i“1

|eptiq|2 (39)

(b) Mean Absolute Percentage Error (MAPE) defined as

MAPE “
1

I

I
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

eptiq

actualptiq

ˇ

ˇ

ˇ

ˇ

, (40)

where

eptiq “ actualptiq ´ forecastptiq (41)

denotes the forecasting error at time ti.

(c) Percentage Error (PE) defined as

PEptq “
eptq

actualptq
. (42)
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Results from the measures RMSE and MAPE are calculated and presented

in Section 5 showing the accuracy of the proposed forecasting model.

Furthermore, Hyndman & Koehler (2006) coined the term “scaled error”,

and they proposed that measures based on scaled errors should become the

standard approach in comparing forecast accuracy.

A scaled error is defined as

qptiq “
eptiq

1
N

řN
n“2

ˇ

ˇXptnq ´Xptn´1q
ˇ

ˇ

, (43)

where tXptnq, n “ 1, 2, . . . , Nu are the existing observations, used for training

of the FTS model. Then, one can define various error measures in an analogous

way. Let us consider, e.g., the

(a) Mean Absolute Scaled Error (MASE) defined as

MASE “
1

I

I
ÿ

i“1

|qptiq| , (44)

and the

(b) Root Mean Square Scaled Error (RMSSE) defined as

RMSSE “

g

f

f

e

1

I

I
ÿ

i“1

|qptiq|2 (45)

Error measures MASE and RMSSE are also calculated and presented in

Section 5.

Also, the usual error measures Bias, Scatter Index (SI) and correlation co-

efficient R2 are calculated:

(a) Bias:

Bias “
1

I

I
ÿ

i“1

r´eptiqs, (46)

(b) Scatter Index (SI) in %:

SI “

d

RMSE
řI

i“1 actualptiq
ˆ 100, (47)

17



(c) Correlation coefficient R2:

R2 “

řI
i“1

ˆ

forecastptiq ´ actual

˙ˆ

actualptiq ´ actual

˙

d

řI
i“1

ˆ

forecastptiq ´ actual

˙2
řI

i“1

ˆ

actualptiq ´ actual

˙2
,

(48)

where

actual “
1

I

I
ÿ

i“1

actualptiq. (49)

5. Numerical results and discussion

5.1. Point-wise forecast

First, the forecasting procedure is applied and tested to wind and wave data

for a point in the Norwegian Sea with coordinates (0 E, 63 N). The data consist

of three-hourly time series of significant wave height HS , wind speed WS and

peak wave period Tp. The total amount of datapoints (29688) is divided into

two parts: one for training (29440) and one for testing (248). The values of the

testing period correspond to one month data.

For the forecast of the three series, the methodology described in Section 4.2

is used, and the results are shown in Figs. 6–8 with a continuous line (“Fore-

cast”). In the same figures, and for comparison purposes, the dataset kept for

testing is plotted with dashed line (“Actual”). The (a)-part of the figures de-

pict results based on the y-calculations, while the (b)-part results based on the

w-calculations.

Then, the error statistics defined in Section 4.3 are calculated for all forecasts

and are summarized in Table 5. According to this table, there is an improvement

due to w-calculations which is reflected in the the reduction of the errors. This

seems to be greater in significant wave height, where the error reduction is

generally between 27-30% and with minimum and maximum values at 2% (R2)

and 82% (Bias), respectively. In wind speed the improvement is generally not

so eminent (1%) with max value though at 56% (Bias). Finally, in peak wave

period a mixed picture is present: some error measures are greatly improved

18



(a) y-calculations

(b) w-calculations

Figure 6: Forecasts of significant wave height HS
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(a) y-calculations

(b) w-calculations

Figure 7: Forecasts of wind speed WS
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(a) y-calculations

(b) w-calculations

Figure 8: Forecasts of peak wave period Tp
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Table 5: Error measures

parameter Bias SI (%) R2 RMSE MAPE RMSSE MASE

HS (y-calc) -0.162 9.052 0.968 0.331 0.063 1.492 1.062

(w-calc) -0.029 6.588 0.983 0.241 0.045 1.086 0.747

WS (y-calc) 0.048 26.089 0.790 2.531 0.258 1.315 0.985

(w-calc) 0.075 25.792 0.792 2.503 0.260 1.300 0.975

Tp (y-calc) -0.605 12.100 0.792 1.400 0.085 1.937 1.295

(w-calc) -0.232 10.980 0.829 1.271 0.067 1.758 0.966

(21-25%) while some others show a moderate improvement (5-9%) with max

value of the improvement at 62% (Bias).

In the sequel, in order to further investigate the influence of the length of

both the training and the testing period, the following two sensitivity investi-

gations are performed.

First, the forecasting horizon has been kept fixed to 248 points (one month),

and the error measures are calculated for various lengths of the training pe-

riod. By inspecting Figs. 9–10, one can observe that in w-calculations the error

measures are stabilised from the first point, which correspond to 1100 steps

in the training set; approximately 4.5 times the forecasting period. On the

other hand, in y-calculations the error measures are stabilised after 12000 steps,

which roughly corresponds to 48 times the forecasting period. This example

shows that, using w-calculations, not only error measures are reduced, but also

less points are needed for the training period, which consist a clear improvement

in the forecasting methodology.

In the second example, the forecasting horizon, and thus the points used in

the testing period, varies from 124 (two weeks) to 7300 (two and half years). In

Figs. 11–12, results based on both y- and w-calculations are given, depicting the

better performance of the latter. Further, one may expect that the longer the

forecasting horizon the higher the errors, which is not evident in these figures

due to the averaging nature of the error measures.

22



Figure 9: Error measures vs length in training period (Bias, SI, R2)

Figure 10: Error measures vs length in training period (RMSE, MASE, RMSSE)
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Figure 11: Error measures vs length in testing period (Bias, SI, R2)

Figure 12: Error measures vs length in testing period (RMSE, MASE, RMSSE)
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Figure 13: Maximum of absolute values of forecasting error vs length in (a) training, (b)

testing period

In order to further investigate this, the maximum of absolute values of the

instantaneous forecasting error (41) are calculated for various lengths of both

the training and the testing period; see Figs. 13. In the upper figure, one

can observe that these maximum errors are stabilized after a training length

of approximately 5000, which corresponds to 1.7 years. According to the lower

figure, in the forecasting of 124 points the max instantaneous error in both

cases is near 0.8. However, after a length of 744 steps (3 months), the situation

changes. On one hand, y-calculations’ error becomes rapidly very high with

values near 2.5 and is stabilized there. On the other hand, the corresponding

curve of w-calculations depict an oscillating behaviour with peaks at 2.4 and

troughs at 1.26 and 1.8. The better performance of the latter is attributed

to an extent to the removal of the nonstationary character of the series before

applying the forecasting procedure, a fact that allows the procedure to go on

for longer forecasting horizons.
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Figure 14: Forecasts of significant wave height HS for Haltenbanken buoy

Table 6: Error measures for Haltenbanken forecasts

parameter Bias SI (%) R2 RMSE MAPE RMSSE MASE

HS (y-calc) -0.104 14.179 0.939 0.525 0.084 1.415 0.893

(w-calc) -0.028 13.237 0.946 0.490 0.082 1.321 0.848

Further, the same methodology is applied to measured wave data from Hal-

tenbanken buoy in the Norwegian Sea (7.6 E, 65.1 N). The dataset consists of

3-hourly measurements of significant wave height, covering a period of 8 years

(1980-1987). In Fig. 14, forecasted values are plotted with continuous lines and

the testing dataset with dashed line. The associated error measures are given

in Table 6, where once again lower errors suggest a better fit in the case of

w-calculations.

Finally, the present (fuzzy) forecasting methodology has been assessed against

other existing forecasting procedures in a previous work (Stefanakos et al., 2014),

where the method has been compared against different ARIMA models of vari-
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ous order.

5.2. Field-wise forecast

In the second application, forecasts are obtained for all the datapoints of the

field shown in Fig. 4. According to Stefanakos (2008), after the extraction of the

seasonal character from the initial time series, the remaining stationary W -part

is almost stable in space. This fact can be exploited in order to accelerate the

calculations for the field forecasts.

So, first, only one datapoint is considered and used for the fit of the FIS/ANFIS

model. In our case, we have chosen the point lying in the bottom-left corner

of our grid with coordinates (30 W,50 N), which is in the open sea and does

not have any interactions with islands or depth-limited coastal areas. Then, the

estimated ANFIS model from this point is applied to the W -parts of all other

points of the field.

In this way, we have for comparison not only the 248 last points that we had

in the previous case, but the whole series (29688 points). Thus, the various error

measures, defined in Section 4.3, are much more reliable. In Figs. 15b,16b, 17b,

18b, MAPE, RMSE, MASE, RMSSE are depicted based on the w-calculations.

For comparison purposes, the same quantities are shown in Figs. 15a,16a, 17a,

18a, based on the y-calculations.

The comparison of these figures shows that the errors in w-calculations are

lower than the corresponding ones in y-calculations. The mean value of the error

reduction is a bit higher than 40% in RMSE and RMSSE, while it surpasses

50% in the cases of MAPE (55%) and MASE (65%).

This shows a great enhancement of the forecasting procedure by introducing

the decomposition (1) and using only the stationary part of it. Also, the esti-

mation of the ANFIS model using only just one point greatly accelerates the

process of forecasting the field values.

Further, as in the point-wise case, the maximum of absolute values of the in-

stantaneous forecasting error (41) are calculated for the whole field; see Figs. 19.
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(a) y-calculations

(b) w-calculations

Figure 15: Mean Absolute Percentage Error (MAPE)
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(a) y-calculations

(b) w-calculations

Figure 16: Root Mean Square Error (RMSE)
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(a) y-calculations

(b) w-calculations

Figure 17: Mean Absolute Scaled Error (MASE)
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(a) y-calculations

(b) w-calculations

Figure 18: Root Mean Square Scaled Error (RMSSE)
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(a) y-calculations

(b) w-calculations

Figure 19: Maximum of absolute values of forecasting error
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In the upper figure (y-calculations), one can observe that the maximum

errors occur in the ocean area west of Ireland and south of Iceland. In contrast,

in the lower figure (w-calculations), the pattern exhibits a great homogeneity

with lower values of maximum forecasting error.

Finally, it is noteworthy to mention that the computational time needed for

the y-calculations for the whole field was 2 days, while w-calculations took only

2.5 hours in a PC with Intel(R) Core(TM) i5-5200U CPU 2.20GHz and 4GB

RAM.

6. Concluding Remarks

In the present work, forecasts of significant wave height HS , peak wave

period Tp and wind speed WS for the area [30W,40E]ˆ[50N,78N] have been

obtained based on a newly introduced procedure.

The well-known Fuzzy Inference Systems (FIS) in combination with Adap-

tive Network-based Fuzzy Inference Systems (ANFIS) are coupled for the first

time with a nonstationary time series modelling. This allows us to remove the

nonstationary character of wind and wave time series before applying the fore-

casting techniques. It should be noted that, since the main purpose was to

demonstrate the applicability of the coupling of the two methodologies, simple

membership functions and IF-THEN rules have been chosen. Further work on

optimal selection of these parameters is under way, and forecasts based on these

improvements will be presented shortly.

The methodology is applied to obtain a) point-wise forecasts for a specific

datapoint, and b) field-wise forecasts for the whole field of wave parameters.

Especially, the latter is performed also for the first time.

For comparison purposes, the FIS/ANFIS models are also applied to the ini-

tial series without removing nonstationarity. The performance of both forecast-

ing procedures is assessed by means of various error measures such as, e.g., Root

Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean

Absolute Scaled Error (MASE) and Root Mean Square Scaled Error (RMSSE).
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The comparison of the error measures from the two approaches showed that

the forecasts based on the proposed methodology outperforms the ones using

only FIS/ANFIS models. Especially, in the case of the field-wise forecasts, the

mean value of the error reduction is a bit higher than 40% in RMSE and RMSSE,

and surpasses 50% in the cases of MAPE (55%) and MASE (65%).
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