
Where is the Proof? - A Review of Experiences from
Applying MDE in Industry

Parastoo Mohagheghi1, Vegard Dehlen1

1SINTEF, P.O. Box 124- Blindern
N-0314 Oslo, Norway

{Parastoo.Mohagheghi, Vegard.Dehlen}@sintef.no

Abstract. Model-Driven Engineering (MDE) has been promoted as a solution
to handle the complexity of software development by raising the abstraction
level and automating labor-intensive and error-prone tasks. However, few
efforts have been made at collecting evidence to evaluate its benefits and
limitations, which is the subject of this review. We searched several publication
channels in the period 2000 to June 2007 for empirical studies on applying
MDE in industry, which produced 25 papers for the review. Our findings
include industry motivations for investigating MDE and the different domains it
has been applied to. In most cases the maturity of third-party tool environments
is still perceived as unsatisfactory for large-scale industrial adoption. We found
reports of improvements in software quality and of both productivity gains and
losses, but these reports were mainly from small-scale studies. There are a few
reports on advantages of applying MDE in larger projects, however, more
empirical studies and detailed data are needed to strengthen the evidence. We
conclude that there is too little evidence to allow generalization of the results at
this stage.

Keywords: Model-driven engineering, quality, productivity, evidence.

1 Introduction

The model-driven approach has received considerable attention this decade. The
OMG’s Model-Driven Architecture (MDA) initiative, Model-Driven Development
(MDD) or Model-Driven Engineering (MDE)1 has been hailed as the solution to
handle the key problem facing the software development industry; increasing
complexity, by (1) providing better abstraction techniques and (2) facilitating
automation. By switching to a MDE approach, businesses are promised to reap
benefits through increased productivity and software quality [26].

The motivation behind this paper is that even though many promises are made,
these are in most cases poorly, if at all, supported by evidence. During recent years
we have witnessed the surfacing of attempts to evaluate practices and benefits of

1 In the remainder of the paper we use MDE to refer to a model-driven software development

approach, also where MDD is used in the papers.

MDE through empirical studies; including experiments and industry experience
reports. This paper, the result of an extensive literature review, contributes to the state
of evidence in MDE by gathering the individual evaluations and providing a detailed
overview of industry’s experiences with MDE.

The remainder of the paper is organized as follows. Section 2 presents the review
framework and the three research questions leading the review, the strategy used for
literature search, the publication channels, and an overview of the reviewed papers.
Section 3 through 5 reports our findings, before Section 6 summarizes and concludes
the paper.

2 The Review Process and an Overview of Papers

2.1 The Review Framework and Research Questions

We follow the review framework presented in [19], adopted to this review and
depicted in Figure 1. The formulation of the review questions follows
recommendations by Dybå et al. for collecting evidence as answer to questions.
Questions should be well-partitioned into intervention, context and effect [9]. In this
review, the intervention is “MDE” (vs. non-MDE approaches), the context is
“industrial settings” and the effects are “changes in productivity and quality, or cost
savings”.

Effects:
benefits & savings

Intervention:
MDE

cause-effect

Theory

Observation in industry

Inputs:
assets,

current practices

Outcomes:
metrics & findings

Complementary factors:
e.g., training or tools

construct
validity

construct
validity

internal
validity

conclusion
validity

external
validity

Treatment:
new practices,

metrics

Confounding factors:
e.g., context,

complexity or size

Fig. 1. The review process.

To understand the intervention and context, we ask the following Research
Questions (RQs):

• RQ1. Where and why is MDE applied?
• RQ2. What is the state of maturity of MDE?

And to evaluate the effects, we ask:

• RQ3. What evidence do we have on the impact of MDE on productivity and
software quality?

2.2 An Overview of the Reviewed Papers

We searched the following publication channels for industrial studies related to MDE:

• The Software and Systems Modeling (SoSyM) journal from 2002 (the first issue).
• The Empirical Software Engineering journal since 2000.
• Proceedings of the UML conference from 2000 to 2004, succeeded by the

MODELS conference to 2006.
• Proceedings of The European Conference on MDA- Foundations and

Applications (ECMDA-FA) started in 2005, and to 2007.
• Proceedings of the DSM workshops at OOPSLA since start in 2002.

We also performed a search by keywords in the IEEE Xplore, the ACM digital
library and the Internet. A few additional papers were discovered through references
in the detected papers. The review identified 33 papers and reports (generally called
papers). From these, we excluded 8 papers with claims on industrial application but
no description of the application (a list can be provided by the authors). This left 25
papers for the review.

It was not possible to extract information on the size of projects from the majority
of papers. For appraising the evidence, we asked what types of studies were
performed (see [19] for a definition of study types). We concluded that:

• 20 of papers are experience reports from single projects with description of a
project or development method and discussion of experiences [1-7, 8, 10, 11, 13,
20-24, 27-29 and 31]. Of these, only two include some quantitative data from the
projects (both from Motorola).

• Three papers have used interviews and questionnaires in addition to observations
[24-26].

• Three papers describe comparative studies (comparing projects or development
of components with each other) [12, 14 and16]. From these, [12] provides no
quantitative data.

• One paper describes three (quasi)experiments [16].

Only seven papers report experiences from completed projects [1, 3, 6, 13, 25, 27
and 29], while the others are from pilot studies or ongoing projects at the time of
reporting, and one is from a terminated project [ABB Robotics in 26].

When it comes to publication channels, 13 papers are published in the proceedings
of conferences (especially the ECMDA-FA conference), 9 papers in workshops and
satellite activities of conferences, two are online reports and only one is published in a
journal.

3 Where and why is MDE Applied (RQ1)?

A broad range of companies in various domains report their experience from
investigating or applying MDE. To name some, the papers cover:

• Telecommunications domain [2, 3, 16, 21, 26, 28 and 29].
• Business applications and financial organizations [1, 7, 8, 16 and 24].
• Defense / aerodynamics / avionic systems [5 and 11].
• Web applications [6 and 14].

We found examples of safety-critical and trustworthy systems [5, 11 and 27] and
embedded systems [23 and 27]. MDE approaches are also applied to software product
lines as in [2, 10 and 27]. In connection with legacy systems, Bloomfield reports
successful remodeling of a component [5] and Raistrick reports developing new
components that were integrated with existing components [22]. On the other hand,
ABB Robotics refrained from adopting MDE due to the base of legacy code [26].

Regarding motivations for evaluating or applying MDE, the papers discuss:

• Increasing productivity and shortening development time: as in [12, 14, 16, 25,
Ericsson in 26 and 29].

• Improving quality: improving the quality of the generated code [25, 27 and 29],
improving the quality (assurance) of system requirements [4] and managing
requirement volatility [22], improving the quality of intermediate models [4], and
earlier detection of bugs [12, 27 and 29].

• Automation: generating code and other artifacts and introducing automation into
the development process [1-3, 6, 7, 8, 11-13, 16, 21, 23 and 27], and model-based
simulation and testing [3].

• Standardization and formalism: providing a common framework for software
development across the company and phases of the lifecycle [2, 24 and 25],
formalize and organize software engineering knowledge at a higher level of
abstraction [29], and common data exchange format [20].

• Maintenance and evolution concerns: maintaining the architecture intact from
analysis to implementation [25], evolution of legacy systems [12], concerns over
software method and tool obsolescence [5], verification of system by producing
models from traces [28] and that PIMs have long lifespan [14].

• Improved communication and information sharing: between stakeholders [18 and
24] and within the development team [12, 26 and 27] and ease of learning [27
and 29].

Additional motivations are traceability throughout software development artifacts
[17 and 26], early assessment [22 and 26], promoting reuse [2, 18, 24 and 29],
porting of solutions to new platforms [12 and 13], and the ability to estimate costs
based on the models [22 and 26].

On the above list, increasing productivity (and shortening development time) and
improving quality may be regarded as the ultimate reasons for applying MDE. The
other items, on the other hand, are basically means towards these two ends.

4 What is the Experienced Maturity of MDE (or, the-State-of-
MDE) (RQ2)?

In this section we present findings related to the current state of practicing MDE. It
covers automation as a key means to achieve the MDE benefits. We also discuss the
state of software development processes and tools for MDE.

4.1 Level of Automation

By using transformations the MDE approach emphasizes generating models, code and
other artifacts from models, in addition to verification and validation on the model
level. In this section we analyze to what extent this is possible in the presented
contexts and with the current state of tools

Automatic generation of code. While some papers report generating all or most
of the code from the models [5 and 6], others report that only part of the code could
be generated. Motorola evaluates the potential of MDE in generation to be between
65 to 96 percent depending on the type of the code (low level code is not captured in
the design and is unlikely to be generated), and perceives the status of code generators
as satisfactory in producing code with no introduced defects [3 and 29]. Automatic
generation of code required developing Domain Specific Languages (DSLs) or UML
profiles and own code generators in several cases, as in [1, 3, 7, 10, 21 and 29].

Generating XML schemas. In [20] a metamodel was implemented as a UML
profile and the needed XML schemas were generated directly from the marked PIM
models. [2]’s toolset also includes an XML schema generator, a code generator using
the schemas and other outputs. In the case of [10], the developed framework included
a XML schema generator, HTML documentation generator and a model browser.

Automation of Testing. In Motorola, by using TTCN scripts, 90% of the tests are
automated which has led to a 30% reduction in box-test cycle time [29].

Executable models. A few papers have discussed that developing executable
models is still a challenge. Deng et al. write that they used Visio as a static design
tool, while a dynamic provisioning tool is desired to make the blocks executable [8].
MacDonald et al. report difficulties in specifying behavior using Telelogic Tau and
that they could not develop executable models [12].

4.2 Software Processes

The importance of utilizing a defined process in software engineering has been known
for several years. However, most “tried and tested” processes are not tailored for
MDE, which does not make any assumptions on the software development process or
the design methodology. Baker et al. report that many teams in Motorola encountered
major obstacles in adopting MDE due to the lack of a well-defined process, lack of
necessary skills and inflexibility in changing the existing culture [3]. Also,
MacDonald et al. write that there is no well-defined process for developing non-trivial
MDE components, especially when these are part of legacy systems [12]. Staron

means that there are two reasons for why they currently find it unrealistic to purely
use a MDE process [26]:

1. Software engineering methods are not fitted to use models as main artifacts, i.e.
activities such as analysis and evaluation is still largely done at the code level.

2. Software engineering environments are not mature enough.

Some have attempted to apply pre-existing software processes to MDE, such as
using a modified version of the Rational Unified Process (RUP) [24], and combining
agile methods and MDE [23, 27 and 30]. Others have attempted defining processes
for MDE. Firstly, THALES has defined a MDE process by extending the IEEE 1471
standard [11]. Secondly, Biffl et al. propose an iterative software development
lifecycle, which includes creating models with explicit stakeholder requirements, a
first quality assurance (QA) step with type checking and semantic validation and
transforming these into intermediate models, and a second QA step with static
validation of models [4]. Thirdly, Staron et al. discuss that raising the abstraction
level and employing automatic code generation moves the complexity of software
development to transformations [25]. An MDE process should consequently prioritize
defining transformations before defining profiles, since profiles are considered a
means of making the transformations automated. The importance of developing
transformations early is further supported by [21]. None of the studies report using
any of the already existing – although few – model-based methodologies, e.g. KobrA2
or COMET3.

4.3 Tools

Supporting MDE with a comprehensive tool environment is crucial, as many of the
techniques promoted as necessary in MDE strongly depend on proper tool support. A
survey performed among industry participants (presented in [26]) showed that, when
considering whether or not to adopt MDE, the availability of tools was perceived as
the most influential factor. However, a tool chain has to integrate the various tools for
software development (e.g., requirements management, modeling, model
transformations, traceability, simulation, validation and testing [15]), support multiple
platforms and domain-specific design [12] and the possibility to generate correct code
by adding constraints and rules [1, 13, 27 and 31].

Integrating a tool suite that satisfies these requirements into a coherent
environment is evidently a challenge. In the MODELWARE project, a wide range of
tools were used, but all partners experienced problems with instability of the tools and
their integration [15 and 17]. Also according to Motorola, third-part MDE tools do not
scale well to large system development [3]. Safa writes that using third-party tools
raises questions of suitability for the product, adaptability to new platforms,
availability over time, and loss of differentiation factors since competitors may use
the same tools [23].

2 www.old.netobjectdays.org/pdf/02/papers/node/0308.pdf
3http://www.uio.no/studier/emner/matnat/ifi/INF5120/v05/undervisningsmateriale/COMET_M

ethod_v2-4.pdf

The vendor lock-in problem persuades some users to use open source tools such as
the Eclipse framework. Others combine third-party products with self-developed tools
[27 and 29], or develop their own tools [2, 4 and 10]. Having to invest time and effort
into the development and maintenance of an MDE tool chain raises issues of cost.
France Telecom calculated that the cost for creating their tool chain in
MODELWARE was approximately one person-year in terms of resources, in addition
to approximately 0.4 person-year for maintenance [15].

5 What Evidence do we have on the Impact of MDE on
Productivity and Software Quality? (RQ3)

Productivity and software quality gains are often given as main motivations for
selecting new technologies, and most papers in this review include discussion of
either one or both of the aspects. In this section, we present the reported data,
observations and explanations on observations.

5.1 MDE Impact on Productivity

Three of the papers in the review report results from comparative studies on
productivity (i.e., developing a product twice or comparing with company baseline
data), although the studies are of small-scale.

Firstly, in a report from 2003, the Middleware Company, on behalf of Compuware,
conducted a comparative case study on the productivity of MDA [14]. Two teams
developed the same application, one using MDE and the other using a non-MDE
approach. The result was that the MDE team developed their application 35% faster
than the other team – needing 330 hours compared to 507,5. It is worth noting that the
MDE team used a tool with pre-made transformation mappings, which relieved them
of potential work. On the other hand, this was the developers’ first experience with
MDE and related tools, which would presumably hamper their productivity. Issues
like application performance and maintenance were not evaluated.

Secondly, we have the results of the EU IST project MODELWARE4 [16]. In
September 2006, results from six small-scale case studies and (quasi)experiments
performed by five industrial partners were disseminated. When it comes to
productivity, the results are differing:

• In WM-Data (desktop business applications), two developers re-implemented a
subset of requirements and the effort was compared to some baseline data. The
productivity gain was on average 24% using MDE.

• WesternGeco (oil and gas exploration) performed an experiment with 24
developers who were given four tasks – two involving a traditional development
process and two involving MDE. Only eight subjects finished the experiment due
to problems with the MDE tooling and complexity of the tasks. The results show
no difference in productivity between the two approaches.

4 http://www.modelware-ist.org

• A team of two developers from Enabler (specialist in creation and integration of
IT solutions for retailers) developed a module twice over a period of
approximately 300 hours. The results show an overall loss in productivity when
using MDE by 27%. When discounting the problems with the use of immature
tools, the loss in productivity was 10%.

• France Telecom measured the effort needed to specify, implement and change
five different functional units, normalized by the weight of their complexity, and
compared to the data on effort spent in a non-MDD approach. A productivity
gain of 20% was measured during design activity and 69% during coding. This
observed productivity gain does not take into account the cost of the development
of tool chain.

The third paper reports redevelopment of a small component of a legacy system
using MDE [12]. The authors report that there is no proof that development speed is
improved, especially with the workarounds required to integrate with legacy systems.

A few other papers have reported productivity gains in single projects when
applying MDE, without having a clear baseline or providing detailed data. Firstly,
Motorola has employed a MDE approach for more than 15 years and has shipped
millions of lines of code based on MDE [3]. All in all, they have experienced a 2X–
8X productivity improvement when measured in terms of equivalent lines of source
code. These numbers are all approximates, as Motorola is lacking a common baseline.
Also, an experience report by Trask et al. deals with the application of a combination
of software product line and MDE techniques to the “software defined radio” domain
[27]. The programmers reportedly experienced a 500% productivity gain, minimum,
by utilizing their domain-specific modeling tool. These results are based on
experiences and are not validated by data or experiments. And finally, Thales Air
Traffic Management (TATM) in the MODELWARE project estimated 5 to 25%
productivity gains based on the assumption that a certain type of defect (interface
mismatch) cannot occur because of the MDE process.

The industrial papers that reported productivity gains accredited the improvement
to automatic code generation [3, 14, 27 and 29], model-based simulation and testing
[3, 15 and 29], automatic test generation [3, 29], avoiding defects [27 and TATM in
16], domain-specific languages [27], and reuse of design and test between platforms
or releases [29].

As discussed above, there are also reports of productivity loss. The main reasons
are mentioned to be immature tools and high start up costs [Enabler in 18], and that
modeling can be at least as complex as programming with a traditional third
generation language [12].

5.2 MDE Impact on Software Quality

Among industry adopters discussing improvements in software quality due to MDE,
the key experienced benefit is a drastic reduction in the number of software defects.
However, there are not much quantitative data presented in the papers.

Firstly, we discuss the Motorola case. Weigert and Weil write that with MDE,
there are fewer inspections required to ensure the quality of the developed code than
using conventional development. In addition, inspection rates are higher and have

increased from 100 source lines per hour to in between 300 and 1000 source lines per
hour [29]. Motorola data also shows that simulation is about 30% more effective in
catching defects than the most rigorous inspections, and that defects are detected
earlier in the software development lifecycle. They expect a 3X reduction in defects,
which is backed up by an earlier Motorola study, experiencing “a 1.2X–4X overall
reduction in defects and a 3X improvement in phase containment of defects”. Baker
et al. write that it is not unusual to see a 30X–70X reduction in the time needed to
correctly fix a defect by detecting and correcting the problems at the model level [3].

That models are verified through simulation (or other techniques) and checked for
completeness also improves quality significantly according to [15 and 29]. In [15],
France Telecom writes that being able to validate the specification using simulation,
allows them to “to eliminate uncomfortable ergonomics that would be difficult to
detect otherwise”.

6 Summary and Conclusions

This review examined experiences of applying MDE in industry published since
2000, showing the status as it is and identifying gaps for future research. Validity
threats are identified to be:

• The low number of studies is the main threat to the external validity of the
results (i.e., generalization to a population or theory).

• Success cases are more likely to be published than failures.
• Some companies may refrain from publishing their results to keep their

competitive advantage.
• Projects with external financing, such as EU projects, may report biased results.

However, in the case of the MODELWARE project, we know the details of the
studies and do not consider this as a threat to the validity of the results.

• There are few results of large-scale studies and the scalability of MDE to large
system development should be evaluated in more cases.

• There is a lack of baseline data in most companies, which results in subjective
evaluations.

• Most studies do not include enough quantitative data or the metrics are not
properly defined.

Due to the low number of experiments, we do not discuss experimentation validity
threats in more details. Finally, we mainly searched journals and conferences that
have a review process and are considered relevant to our subject, in addition to
including two on-line reports [14 and 16]. Additional search in other publication
channels may add new papers which can extend the results of this review.

We asked three research questions and the findings are summarized here:

• RQ1-Context and motivation. MDE is applied in a wide range of domains;
including safety-critical systems and product lines. MDE is assumed to lead to
higher productivity (by increased automation in the development process),
increased standardization and formalism, and improved communication within

development teams and with external stakeholders, to name the most frequently
given benefits. Labor-intensive and error-prone development tasks are automated
and best-known solutions can be integrated in code generators, resulting in
reducing defects and improving software quality.

• RQ2-State-of-the-MDE. The current state of MDE is far from mature. There is a
varying degree of automation and it is mostly applied for code generation.
Examples of using models for simulation and test generation are also given.
Tools are improved during the recent years but several papers still discuss the
lack of a coherent MDE environment and tool chain. Tools should scale to large-
scale development and support the domain-specific approach more effectively.
Software processes should also be adapted to MDE. Other challenges in adopting
MDE are the complexity of modeling itself, developing PIMs that are portable to
several platforms and using MDE together with legacy systems.

• RQ3-MDE impact on productivity and software quality. We found some
quantitative evidence on productivity gains in the Motorola context [3 and 29],
from a domain-specific environment [27], and three small-scale comparative
studies and quasi-experiments described in [14 and 16]. The Motorola studies are
the only ones providing some quantitative data on software quality
improvements. Software quality benefits are discussed in several papers but are
not backed up with data.

Modeling should be easier and faster than code writing to promote MDE.
Appropriate tools and processes and increased expertise on modeling are areas for
improvement in most cases. Combining MDE with domain-specific approaches and
in-house developed tools has played a key role in successful adoption of the approach
in several cases. One of promises of MDE in increasing portability of solutions to
multiple platforms has not often been feasible, mainly due to the fact that tools are
bound to specific platforms. However, most papers evaluate models as useful for
improving understandability and communication among stakeholders.

It is a challenge to collect convincing proof on any technology – MDE included.
Future work for evaluation of MDE should focus on performing more empirical
studies, improving data collection and analyzing MDE practices so that success and
failure factors and appropriate contexts for MDE can be better identified. Future
research should also cover evaluating Return-On-Investment (ROI) of MDE in
various contexts and for different project scales. We only found an estimation of ROI
in France Telecom which provided an estimation based on costs related to the training
and tool chain setup and the measured productivity gain [15]. High initial investment
and unsure benefits were one of the issues influencing the decision of the non-
adopters [26]. In the MODELPLEX project5, we continue the MODELWARE
approach in combining research with industrial application and evaluation and will
report the results of research on applying MDE in large and complex system
development on the project website and in future publications.

ACKNOWLEDGMENTS. This research was done in the “Quality in Model-
Driven Engineering” project6 at SINTEF. We thank Dr. Arnor Solberg and Mr. Tor
Neple for their comments and constructive criticism.

5 European IST-34081, https://www.modelplex.org/
6 http://quality-mde.org/

References

1. Anonsen, S.: Experiences in Modeling for a Domain Specific Language. In: Satellite
Activities at the Unified Modeling Language, 7th International Conference (UML 2004),
LNCS, vol. 3297, pp. 187--197, Springer (2004)

2. Bahler, L., Caruso, F., Micallef, J.: Experience with a Model-Driven Approach for
Enterprise-Wide Interface Specification and XML Schema Generation. In: Seventh IEEE
International Enterprise Distributed Object Computing Conference (EDOC’03), pp. 288--
295 (2003)

3. Baker, P., Loh, P.S., Weil, F.: Model-Driven Engineering in a Large Industrial Context -
Motorola Case Study. In: ACM/IEEE 8th International Conference on Model Driven
Engineering Languages and Systems (MoDELS/UML 2005), LNCS, vol. 3713, pp. 476--
491, Springer (2005)

4. Biffl, S., Mordinyi, R., Schatten, A.: A Model-Driven Architecture Approach Using Explicit
Stakeholder Quality Requirement Models for Building Dependable Information Systems. In:
5th International Workshop on Software Quality (WoSQ'07) at ICSE’07, IEEE, 6 p. (2007)

5. Bloomfield, T.: MDA, Meta-Modeling and Model Transformation: Introducing New
Technology into the Defense Industry. In: 1st European Conference on Model Driven
Architecture: Foundations and Applications (ECMDA-FA’05), LNCS, vol. 3748, pp. 9--18,
Springer (2005)

6. Brambilla, M., Ceri, S., Fraternali, P., Acerbis, R., Bongio, A.: Model-Driven Design of
Service-Enabled Web Applications. In: ACM SIGMOD International Conference on
Management of Data, pp. 851--856 (2005)

7. Burgstaller, B., Wuchner, E., Fiege, L., Becker, M., Fritz, T.: Using Domain Driven
Development for Monitoring Distributed Systems. In: 1st European Conference on Model
Driven Architecture: Foundations and Applications (ECMDA-FA’05), LNCS, vol. 3748, pp.
19--24, Springer (2005)

8. Deng, G., Lu, T., Turkay, E., Gokhale, A., Schmidt, D., Nechypurenko, A.: Model Driven
Development of Inventory Tracking System. In: 3rd OOPSLA Workshop on Domain
Specific Modeling (DSM’03), 6 p. (2003)

9. Dybå, T., Kitchenham, B.A., Jørgensen, M.: Evidence-Based Software Engineering for
Practitioners. IEEE Software, 22(1), 58--65 (2005)

10. Jonkers, H., Stroucken, M., Vdovjak, R.: Bootstrapping Domain-Specific Model-Driven
Software Development within Philips. In: 6th OOPSLA Workshop on Domain Specific
Modeling (DSM’06), 10 p. (2006)

11. Jouenne, E., Normand, V.: Tailoring IEEE 1471 for MDE Support. In: Satellite Activities at
the Unified Modeling Language, 7th International Conference, LNCS, vol. 3297, pp. 163--
174, Springer (2004)

12. MacDonald, A., Russell, D., Atchison, B.: Model-Driven Development within a Legacy
System: an Industry Experience Report. In: Australian Software Engineering Conference
(ASWEC’05), pp. 14--22, IEEE (2005)

13. Mattsson, A., Lundell, B., Lings, B., Fitzgerald, B.: Experiences from Representing
Software Architecture in a Large Industrial Project using Model Driven Development. In:
2nd Workshop on SHAring and Reusing architectural Knowledge Architecture, Rationale,
and Design Intent (SHARK-ADI'07) at ICSE 2007, 6 p., IEEE (2007)

14. Middleware Company. Model Driven Development for J2EE Utilizing a Model Driven
Architecture (MDA) Approach. Productivity Analysis. Report by the Middleware Company
on behalf of Compuware, URL: http://www.omg.org/mda/mda_files/MDA_Comparison-
TMC_final.pdf (2003)

15. MODELWARE D5.3-4 France Telecom ROI, Assessment, and Feedback. Revision 1.1,
URL: http://www.modelware-ist.org (2006)

16. MODELWARE D5.3-1 Industrial ROI, Assessment, and Feedback- Master Document.
Revision 2.2, URL: http://www.modelware-ist.org (2006)

17. MODELWARE D5.3-5 Western Geco ROI, Assessment, and Feedback. Revision 0.3,
URL: http://www.modelware-ist.org (2006)

18. MODELWARE D5.3-2 Enabler ROI, Assessment, and Feedback. Revision 1.1, URL:
http://www.modelware-ist.org (2006)

19. Mohagheghi, P., Conradi, R.: Quality, Productivity and Economic Benefits of Software
Reuse: a Review of Industrial Studies. Empirical Software Engineering Journal, 12(5), 471--
516 (2007)

20. Pagel, M., Brörkens, M.: Definition and Generation of Data Exchange Formats in
AUTOSTAR. In: 2nd European Conference on Model Driven Architecture: Foundations and
Applications (ECMDA-FA’06), LNCS, vol. 4066, pp. 52--61, Springer (2006)

21. Presso, M.J., Belaunde, M.: Applying MDA to Voice Applications: an Experience in
Building an MDA Tool Chain. In: 1st European Conference on Model Driven Architecture:
Foundations and Applications (ECMDA-FA’05), LNCS, vol. 3748, pp. 1--8, Springer
(2005)

22. Raistrick, C.: Applying MDA and UML in the Development of a Healthcare System. In:
Satellite Activities at the Unified Modeling Language, 7th International Conference (UML
2004), LNCS, vol. 3297, pp. 203--218, Springer (2004)

23. Safa, L.: The Practice of Deploying DSM, Report from a Japanese Appliance Maker
Trenches. In: 6th OOPSLA Workshop on Domain Specific Modeling (DSM’06), 12p. (2006)

24. Shirtz, D., Kazakov, M., Shaham-Gafni, Y.: Adopting Model Driven Development in a
Large Financial Organization. In: 3rd European Conference on Model Driven Architecture:
Foundations and Applications (ECMDA-FA’07), LNCS, vol. 4530, pp. 172--183, Springer
(2007)

25. Staron, M., Kuzniarz, L., Wallin, L.: Case Study on a Process of Industrial MDA
Realization: Determinants of Effectiveness. Nordic Journal of Computing 11(3), 254--278
(2004)

26. Staron, M.: Adopting Model Driven Software Development in Industry- a Case Study at
two Companies. In: ACM/IEEE 9th International Conference on Model Driven Engineering
Languages and Systems (MoDELS/UML 2006), LNCS, vol. 4199, pp. 57--72, Springer
(2006)

27. Trask, B., Paniscotti, D., Roman, A., Bhanot, V.: Using Model-Driven Engineering to
Complement Software Product Line Engineering in Developing Software Defined Radio
Components and Applications. In: ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA'06), pp. 846--853
(2006)

28. Ulrich, A., Petrenko, A.: Reverse Engineering Models from Traces to Validate Distributed
Systems- an Industrial Case study. In: 3rd European Conference on Model Driven
Architecture: Foundations and Applications (ECMDA-FA’07), LNCS, vol. 4530, pp. 185--
193, Springer (2007)

29. Weigert, T., Weil, F.: Practical Experiences in Using Model-Driven Engineering to
Develop Trustworthy Computing Systems. In: IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (SUTC’06), pp. 208--217 (2006)

30. Wegener, H.: Agility in Model-Driven Software Development? Implications for
Organization, Process, and Architecture. URL:
http://www.softmetaware.com/oopsla2002/wegenerh.pdf (2002)

31. Wegener, H.: Balancing Simplicity and Expressiveness: Designing Domain-Specific
Models for the Reinsurance Industry. In: 4th OOPSLA Workshop on Domain Specific
Modeling (DSM’04), 12 p. (2004)

