Show simple item record

dc.contributor.authorGaleckas, Augustinas
dc.contributor.authorKarsthof, Robert Michael
dc.contributor.authorGana, Kingsly
dc.contributor.authorKok, Angela
dc.contributor.authorBathen, Marianne Etzelmüller
dc.contributor.authorVines, Lasse
dc.contributor.authorKuznetsov, Andrej
dc.date.accessioned2023-02-21T14:46:09Z
dc.date.available2023-02-21T14:46:09Z
dc.date.created2022-11-28T18:18:46Z
dc.date.issued2022
dc.identifier.citationPhysica Status Solidi (a) applications and materials science. 2022, 2200449.en_US
dc.identifier.issn1862-6300
dc.identifier.urihttps://hdl.handle.net/11250/3052844
dc.description.abstractThe carrier lifetime control over 150 μm thick 4H-SiC epitaxial layers via thermal generation and annihilation of carbon vacancy (VC) related Z1/2 lifetime killer sites is reported. The defect developments upon typical SiC processing steps, such as high- and moderate-temperature anneals in the presence of a carbon cap, are monitored by combining electrical characterization techniques capable of VC depth-profiling, capacitance–voltage (CV) and deep-level transient spectroscopy (DLTS), with a novel all-optical approach of cross-sectional carrier lifetime profiling across 4H-SiC epilayer/substrate based on imaging time-resolved photoluminescence (TRPL) spectroscopy in orthogonal pump-probe geometry, which readily exposes in-depth efficacy of defect reduction and surface recombination effects. The lifetime control is realized by initial high-temperature treatment (1800 °C) to increase VC concentration to ≈1013 cm−3 level followed by a moderate-temperature (1500 °C) post-annealing of variable duration under C-rich thermodynamic equilibrium conditions. The post-annealing carried out for 5 h in effect eliminates VC throughout the entire ultra-thick epilayer. The reduction of VC-related Z1/2 sites is proven by a significant lifetime increase from 0.8 to 2.5 μs. The upper limit of lifetimes in terms of carrier surface leakage and the presence of other nonradiative recombination centers besides Z1/2, possibly related to residual impurities such as boron are discussed.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/pssa.202200449
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleCross-Sectional Carrier Lifetime Profiling and Deep Level Monitoring in Silicon Carbide Films Exhibiting Variable Carbon Vacancy Concentrationsen_US
dc.title.alternativeCross-Sectional Carrier Lifetime Profiling and Deep Level Monitoring in Silicon Carbide Films Exhibiting Variable Carbon Vacancy Concentrationsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Authorsen_US
dc.source.pagenumber7en_US
dc.source.journalPhysica Status Solidi (a) applications and materials scienceen_US
dc.identifier.doi10.1002/pssa.202200449
dc.identifier.cristin2083113
dc.relation.projectNorges forskningsråd: 245963en_US
dc.relation.projectNorges forskningsråd: 325573en_US
dc.relation.projectNorges forskningsråd: 251131en_US
dc.relation.projectNorges forskningsråd: 274742en_US
dc.relation.projectSigma2: NN9136Ken_US
dc.source.articlenumber2200449en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal