Vis enkel innførsel

dc.contributor.authorZhang, Dongqing
dc.contributor.authorWallace, Stein William
dc.contributor.authorGuo, Zhaoxia
dc.contributor.authorDong, Yucheng
dc.contributor.authorKaut, Michal
dc.date.accessioned2022-09-01T12:55:01Z
dc.date.available2022-09-01T12:55:01Z
dc.date.created2021-09-09T14:11:58Z
dc.date.issued2021
dc.identifier.citationTransportation Research Part E: Logistics and Transportation Review, 2021, 152, 1-25.en_US
dc.identifier.issn1366-5545
dc.identifier.urihttps://hdl.handle.net/11250/3015186
dc.descriptionThis is the authors’ accepted and refereed manuscript to the article. This manuscript version is made available under the CC-BY-NC-ND 4.0 license. The manuscript will be open access from 3 July 2024.en_US
dc.description.abstractStochastic shortest path (SSP) computations are often performed under very strict time constraints, so computational efficiency is critical. A major determinant for the CPU time is the number of scenarios used. We demonstrate that by carefully picking the right scenario generation method for finding scenarios, the quality of the computations can be improved substantially over random sampling for a given number of scenarios. We study extensive SSP instances from a freeway network and an urban road network, which involve 10,512 and 37,500 spatially and temporally correlated speed variables, respectively. On the basis of experimental results from a total of 42 origin–destination pairs and 6 typical objective functions for SSP problems, we find that (1) the scenario generation method generates unbiased scenarios and strongly outperforms random sampling in terms of stability (i.e., relative difference and variance) whichever origin–destination pair and objective function is used; (2) to achieve a certain accuracy, the number of scenarios required for scenario generation is much lower than that for random sampling, typically about 6–10 times lower for a stability level of 1% in the freeway network; and (3) different origin–destination pairs and different objective functions could require different numbers of scenarios to achieve a specified stability.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectStabilityen_US
dc.subjectNumber of scenariosen_US
dc.subjectRandom samplingen_US
dc.subjectScenario generationen_US
dc.subjectSpatial and temporal correlationen_US
dc.subjectStochastic shortest pathen_US
dc.titleOn scenario construction for stochastic shortest path problems in real road networksen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber25en_US
dc.source.volume152en_US
dc.source.journalTransportation Research Part E: Logistics and Transportation Reviewen_US
dc.identifier.doi10.1016/j.tre.2021.102410
dc.identifier.cristin1932869
dc.relation.projectNorges forskningsråd: 308790en_US
dc.source.articlenumber102410en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal