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ABSTRACT. Identifying the underlying dynamics of physical systems can be
challenging when only provided with observational data. In this work, we con-
sider systems that can be modelled as first-order ordinary differential equations.
By assuming a certain pseudo-Hamiltonian formulation, we are able to learn
the analytic terms of internal dynamics even if the model is trained on data
where the system is affected by unknown damping and external disturbances.
In cases where it is difficult to find analytic terms for the disturbances, a hybrid
model that uses a neural network to learn these can still accurately identify
the dynamics of the system as if under ideal conditions. This makes the mod-
els applicable in some situations where other system identification models fail.
Furthermore, we propose to use a fourth-order symmetric integration scheme in
the loss function and avoid actual integration in the training, and demonstrate
on varied examples how this leads to increased performance on noisy data.

1. Introduction. Ever since the concept of describing physical systems by differ-
ential equations was introduced with the invention of calculus, humans have sought
to identify the differential equations that most accurately describe a given system.
The identification of the correct mathematical terms to include has historically been
based on a combination of qualitative analysis, i.e. assumptions about the forces
and physical laws that affect the system, and quantitative analysis, i.e. evaluation of
data collected from experiments. As the capabilities of computers to store and han-
dle large quantities of data increase, together with decreasing costs of sensors and
computers, quantitative analysis can take an increasingly dominant role in system
identification.

Two clear and important advantages of identifying analytic terms for a system,
rather than learning a black-box model, stand out: For one, analytic terms can
give insight into the process under consideration that may increase understanding
and spur further developments. Secondly, accurate analytic models are less likely
to suffer from the poor extrapolation abilities that make most machine learning
models not applicable outside the range of the training data.
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Recently, there has been a number of works on neural network models for dy-
namical systems. These aim at training a model to approximate the right-hand side
of a first-order ordinary differential equation (ODE) system

i=g(x,t), zcRY teR. (1)

Physics-informed machine learning is a field motivated by the idea that prior as-
sumptions and knowledge should be imposed on the machine learning model so
that it does not have to be relearned [46, 31, 56]. This is especially relevant for
learning dynamical systems. Much of the literature has focused on Hamiltonian
or Lagrangian formulations of (1), beginning with [23, 8, 10]. In [17, 20], it is
demonstrated how a pseudo-Hamiltonian formulation can be utilized in the model
structure to separate the internal dynamics and external forces acting on the system.
This pseudo-Hamiltonian formulation is a generalization of the port-Hamiltonian
formulation [54], which is again a generalization of the Hamiltonian formulation.
The key innovation of these pseudo-Hamiltonian neural networks (PHNN) is their
ability to learn a model for the full dynamical system (1) from data while simulta-
neously learning models for the external forces acting on the system. The external
forces can be removed from the model after training, and thus a model trained un-
der suboptimal conditions learns the properties of the system itself and hence can
be used to model the system as if under optimal conditions.

This addresses a major limitation of system identification. Most frameworks
struggle to learn a system when the data is sampled under suboptimal conditions,
e.g. when there is some external disturbance affecting the dynamics; the frameworks
cannot disentangle the disturbances from the system itself. The motivating idea
behind this paper is to use the pseudo-Hamiltonian formulation to separate out
external forces while identifying analytic terms for the internal dynamics. This can
make system identification applicable for more complicated and realistic systems
than those frequently studied in the literature.

Moreover, we tackle the problem of how to learn models of systems described
by differential equations when we cannot assume to have data on derivatives. This
has been extensively studied for neural network models [28, 39, 62], but less so for
system identification models. We propose here to train on a numerical integration
scheme without actually integrating so that we can even out the noise by including
two data points in the discretization of (1).

This paper aims to advance the field of system identification toward a wider
applicability to real-world problems through two main contributions:

e By assuming a pseudo-Hamiltonian formulation of the system, we propose
models that can be used to learn conservation laws, damping and external
forces simultaneously, where external forces can be learned by a neural network
model if they are difficult to express analytically.

e We argue for using symmetric numerical integrators in the training of the
model and demonstrate superior performance over existing methods, espe-
cially on noisy data.

The implementation of the PHSI models is done in Python and builds on the
phlearn package introduced in [20]. Code to reproduce numerical experiments
from the paper is published at https://github.com/SINTEF/PHSI.

2. Related work. This paper stands on two broad shoulders: The first is the
long history of and extensive literature on system identification, see e.g. [36], and
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especially recent developments that involve applying machine learning techniques
and sparse representations, as made popular by the sparse identification of nonlinear
dynamics (SINDy) framework [4]. The second consists of recent developments in
data-driven models of dynamical systems informed of a certain structure and studies
on numerical integrators in the training of these models, where most of the literature
to date has been on neural network models.

The SINDy approach for system identification has been extensively studied and
extended to a wide area of applications [45, 32]. These include areas where (pseudo-
JHamiltonian formulations are of interest, like control theory [30, 21] and partial
differential equations [47, 48, 29], and hence our methodology could also be appli-
cable here. The SINDy approach leverages Li-regularized regression to prune the
space of terms to include in the analytic expression for (1). This makes it less de-
pendent on large amounts of data and more applicable for nonlinear systems than
genetic algorithms [33] and symbolic regression [49]. However, there has been re-
cent advances exploiting symbolic regression in different ways such as using filters
for the derivatives and combining with a symbolic neural network [37], learning a
graph neural network before applying symbolic regression [11], and AI Feynman
[51], which provides a framework for system identification in a step-wise and recur-
sive procedure that involves detecting structures in the system to reduce the search
space. Although terms involving derivatives are not considered in [51], this could
be incorporated to allow for discovering differential equations. Hence our proposed
method could be integrated as a step in a framework similar to AI Feynman, where
the identified pseudo-Hamiltonian structure would indicate which terms to include
in the search space. In that case, it could be the next step after detecting con-
servation laws and neural network models of conserved quantities, e.g. as done in
[35, 1, 40].

Hamiltonian neural networks (HNN) have received considerable attention since
their introduction in [23], resulting in several extensions and generalizations [8, 22,
27]. Especially relevant for this paper are the generalizations of the Hamiltonian
formulation allowing for damping, disturbances acting on the system, or interac-
tion with other systems. In addition to those that use the term port-Hamiltonian
[15, 17] or pseudo-Hamiltonian [20, 19], several papers consider a specific general-
ization of Hamiltonian systems that fall under the definition of pseudo-Hamiltonian
systems applied in this paper, whether they aim to learn external forces [18] or not
[60, 59, 58]. Our motivation for the pseudo-Hamiltonian formulation comes from
the long history of modeling mechanical systems by studying the conservation of
energy, momentum, mass, and other quantities [2, 38, 24]. Thus we consider sys-
tems with external forces of arbitrary form. This marks a slight distinction from
the port-Hamiltonian formulation, which in addition involves some structure on the
external forces, called interaction and control ports in that setting. The term port-
Hamiltonian has its origin in control theory, where this formulation is viewed as a
special realization of passive systems [55, 53, 54]. There are several recent works on
system identification of the port-Hamiltonian formulation of passive systems specif-
ically [3, 9, 42], which take a more classical approach to system identification than
we do here, and assume the Hamiltonian to be quadratic.

Among the literature on HNN, several papers have proposed using symplectic
integrators during training, since these will preserve the Hamiltonian within some
time-independent bound when used for integration [8, 28, 13, 14]. It has been argued
that using symplectic integrators in the training may allow for extracting qualitative
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properties e.g. through obtaining the Hamiltonian from the so-called inverse mod-
ified equation given perfect training [61, 62, 44]. However, convincing theoretical
or numerical results on improved accuracy of the resulting models are lacking (see
Appendix A). A study of symplectic integrators for learning pseudo-Hamiltonian
systems is to our knowledge non-existing as of yet, but in this paper, we argue that
symmetry is a more important property than symplecticity for integrators used for
system learning, and is particularly well-suited for dealing with noisy data. We
propose to use a fourth-order method, partly motivated by the convincing results
from using higher-order methods for neural network models [14, 20, 43].

The works most closely related to ours are the recent papers on system identi-
fication of Hamiltonian systems, or a generalization of this, based on approaches
similar to SINDy. When applicable, we compare our model to that of [16], which
considers the identification of separable Hamiltonian systems. [34] also considers
a port-Hamiltonian formulation, but only in the case where the external force is
known a priori. Both these references apply a training algorithm that involves in-
tegrating the learned system as proposed for Neural ODEs [7]. By contrast, we use
the integration scheme directly in the loss function, as is done for neural network
models in [39, 28, 13, 20, 43].

3. Background. In the experiments presented later in this paper we consider spe-
cific Hamiltonian and port-Hamiltonian formulations. However, to demonstrate the
broader applicability of our approach, we first introduce a generalized framework,
relevant for all systems that can be described by an ODE (1). Therefore we con-
sider a more general formulation of energy-preserving systems than the canonical
Hamiltonian formulation

(1%):(—[ 0>(8H§8§> ¢,p € R", H :R" x R" — R, (2)

considered in e.g. [23, 16, 34]. Furthermore, for non-preserving systems we consider
a more general formulation than the port-Hamiltonian formulation of e.g. [3, 15].
Following [20, 19], we call this formulation pseudo-Hamiltonian.

3.1. Hamiltonian systems. The most general class of energy-preserving systems,
encompassing canonical and non-canonical Hamiltonian systems, is given by

i = S(z) VH(z), (3)

where z denotes the generalized coordinates, S : R? — R? x R? is such that S(z) is
an antisymmetric matrix for any x, and H : R? — R is the Hamiltonian. We con-
tinue to call it the Hamiltonian, although it can be any conserved quantity; given ini-
tial conditions x°, it will be preserved at all subsequent times, i.e. H(z(t)) = H(z").
This property follows directly from the formulation (3) and the antisymmetry of .S:

H=VHT:=VH"(z)S(z) VH(z) = 0. (4)

Even when H is not energy in the physical sense, (3) is still usually called an energy-
preserving system [24]. Moreover, an ODE system may have several preserved
quantities and can be written on the form (3) for different H’s and corresponding
non-unique S’s [41]. If S is the symplectic matrix given in (2), (3) is a canonical
Hamiltonian system; if S(z) defines a Poisson bracket satisfying the Jacobi identity,
it is a Poisson system [24]. In all experiments in this paper, we assume that S is
constant and known.
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3.2. Pseudo-Hamiltonian formulation. We desire a generalization of the Hamil-
tonian system formulation that allows for energy dissipation and external forces
affecting the system. Thus we consider what we call pseudo-Hamiltonian systems:

&= (S(z) - R(x)) VH(z) + F(,1), (5)

where R : RY — R% x R? is such that R(x) is a positive semi-definite matrix defining
the dissipation for each coordinate of z, and F : R? x R — R? denotes the external
forces. If we imposed certain conditions on F'(z,t), this would be equivalent with
the port-Hamiltonian formulation from control theory [53, 54]. The formulation
(5) is completely general and non-unique; e.g., we can set S(z) = R(z) = 0 and
F(x,t) = g(x,t) and recover (1). However, a model based on (5) sets up a framework
for imposing assumptions about the system that will make the formulation less
general, as we will demonstrate in Section 5.

3.3. Numerical integration of ODEs. When an analytic solution of (1) is not
available, the evolution of the system from time ¢" to time t"*! = " + At can be
estimated by the use of a numerical integration scheme

anrl — "

At

where ¥ depends on the chosen integrator. If ¥ is explicitly given by z” and ", we
say that it is an explicit integrator; we have e.g. Ua¢(g, 2™, -, t") = g(z™,t") for the
forward Euler method. Implicit integrators depend on z"*! or intermediate steps,
and thus a system of equations has to be solved by some root-finding algorithm when
these are used for propagating non-linear ODEs. The main drawback of this class
of integrators is generally considered to be their computational inefficacy compared
to explicit integrators. However, a large class of implicit integrators is explicitly
given by 2" and 2" t!; e.g.

= \I/At(gaxn»xn+1atn)7 (6)

" 4 gt At
- tn -
S B @)

for the implicit midpoint method. These methods are thus well-suited for training
models from data where ™ and 21! are available, as they are then computation-
ally efficient while coming with properties that cannot be achieved with explicit
integrators.

\IjAt(gvxn7In+1ﬂtn) = g(

3.4. System Identification. The system identification approach of [4] consists of
assuming a general form (1) and searching for the terms on the right-hand side,
thus ideally obtaining the governing equations. That is, given data on & and x, we
assume that g can be expressed by terms from a library of nonlinear functions of x,
and search for a minimal linear combination §g(z) of these that minimizes & — jg ().
In the absence of data on &, [4] suggest to approximate this from z. In [16, 34], a
modified variant of this approach is used to learn the terms of the Hamiltonian and
obtain the governing equations by assuming the system has a canonical Hamiltonian
formulation. The Hamiltonian function for most conservative dynamical systems
will only include a few terms, which means that a small function space may suffice
for determining the governing equations. In this paper, we generalize the approach
by assuming a pseudo-Hamiltonian formulation, thus also having to learn damping
coefficients and external forces. Furthermore, in contrast to [16], we do not assume
separability of the Hamiltonian into potential and kinetic energy, or that the matrix
S has the canonical form as in (2).
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A clear advantage of the system identification approach compared to a black-box
model such as neural networks is interpretability. Although a neural network may be
accurate in prediction given sufficient data and a sufficiently large network [12, 26],
it does not reveal the governing equations of the system. System identification
models also hold an advantage over black-box models when predicting on data that
is drawn from outside the domain of training data; or in other words, they can
perform robust data extrapolation [4].

4. Methodology. Our procedure for system identification is to define function
spaces for the Hamiltonian H and possibly the external forces F', and train coef-
ficients for each of the terms in the function space while also training coefficients
of the damping matrix R. Given these search spaces, we will use system identifi-
cation models to learn the governing equation of dynamical systems with pseudo-
Hamiltonian structure. In our implementation, we have included polynomial and
trigonometric terms in the function spaces, allowing for a variety of different dy-
namical systems.

4.1. Pseudo-Hamiltonian system identification. We define the most general
PHSI model by

go(w,t) = (Sy(x) — Ro(x)) VHy(z) + Fy(x,1), (8)

where 5“9, R@, fIg and Fg are each modelling their corresponding term in (5). The
main advantage of pseudo-Hamiltonian system identification is thus its ability to
learn the true equations of a Hamiltonian system that is disturbed by both damping
and external forces. Learning the true equations of the inner dynamics of a system
can be difficult if it is affected by external forces with a complex form that we have
little or no prior knowledge of. Separating out the forces by modeling them with
Fy will make this possible, as we will show in the numerical experiments. Fy can
be modeled either by a system identification model or a neural network, depending
on the complexity of the true external forces F. We will demonstrate learning Fy
through a system identification model in Section 5.3 and through a neural network
in Section 5.4. In the most general case, the matrices S(z) and R(x) in (5) would
be learned with only the assumption that they are antisymmetric resp. positive
semi-definite. For the numerical experiments in this paper, we assume to know S
exactly and R up to some learnable friction coefficients. This reduces the full PHSI
model (8) to

Ggo(x,t) = (S — diag(7e)) VHe(x) + Ey(z,t), (9)

where diag(7g) is the matrix with the trainable elements of 7y € R% on the diago-
nal. Assuming that the structure matrix S is known gives both an advantage and
a disadvantage: On one hand, knowing S allows us to impose the physical law of
energy conservation through the Hamiltonian framework. On the other, our ap-
proach is restricted to learning models where S is prior knowledge, something that
other system identification models such as [4] are not. However, in the systems we
will consider, S is either of canonical form, as is assumed in the many recent works
on Hamiltonian neural networks [23], or a non-canonical form that can be obtained
from engineering knowledge.



PSEUDO-HAMILTONIAN SYSTEM IDENTIFICATION 7

4.2. Pruning. We have constructed a simple pruning algorithm for excluding terms
during training: For every Pth epoch, every coefficient whose absolute value has
taken on values smaller than a threshold € for the last p epochs will be set to zero and
disregarded for the rest of the training. The pruning thus narrows the search space,
making it easier to find the relevant terms and accurate coefficients. The optimal
choices of € and p are highly problem dependent. In the numerical experiments of
Section 5, we have used p = 1 and found this to work well, and it is this special
case that is shown in Algorithm 1. In Section 6 we discuss the danger of pruning
away terms with small coefficients if € is not wisely chosen.

4.3. Regularization. To be able to separate the Hamiltonian system, the damping
effects, and the external forces from each other, it is often necessary to implement
regularization, especially on the forces. As discussed in Section 3.2, there is gen-
erally not uniqueness in the separation of the pseudo-Hamiltonian system into the
internal and external parts. In practice, if S is known and additional structure
is imposed on R so that the system would be uniquely defined in the absence of
external forces, the model tends to learn the most natural representation, where
only the dynamics that do not fit within the Hamiltonian structure with damping
are attributed to external forces. We have observed this effect from repeated exper-
iment, and attribute it to it being easier to learn a Hamiltonian H that conforms
to the expected structure of a Hamiltonian system than to learn the entirety of dy-
namics represented by the force function f. However, depending on the underlying
dynamics and the assumptions imposed on the model, it is often expedient or even
necessary to implement regularization, especially on F. This is particularly rele-
vant when the external forces are state-dependent and modeled by a neural network,
which does not assume any specific form of the term.

We have used Lj-regularization on the coefficients of the Hamiltonian to promote
sparsity of the search space, following the SINDy approach [4]. However, the reg-
ularization can negatively affect the accuracy of the trained non-zero parameters.
Therefore, we choose to drop the regularization during the second half of training.
The idea is that sparsity will be promoted during the first half of training, and then
the remaining coefficients will be better tuned during the second half. A study of
how regularization affects the structure of the learned PHSI model is provided in
Appendix D.

4.4. Loss function. Several earlier works on system identification and HNN have
assumed that the true derivatives of the system are known or can be approximated
by e.g. finite differences [4, 23, 15]. Other works rely on an explicit integrator to
propagate the learned system and evaluate the loss by comparing to available data
on state variables [8, 14, 16]. In this paper, we train on an integration scheme (6),
which to our knowledge has not previously been proposed for system identifica-
tion. The main advantage is that we can use data from two successive points, thus
partly averaging out the noise at no extra computational cost. We propose to use
symmetric non-partitioned integrators, which depend equally on z" and z"*! when
evaluating U, in (15). E.g., if the data points 2™, n = 1,..., N, have independent
Gaussian noise with standard deviation o, the standard deviation of the noise of
(2" +2"*1)/2in (7) is 0/+/2. The midpoint method is however only a second-order
integrator. For all experiments, we train the PHSI models using the fourth-order
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Algorithm 1 Training algorithm

Input variables: input data X = [z1, ..., Z,,], number of epochs E, integrator ¥,
learning rate 7, batch size b, pruning interval P, pruning threshold e
for ein (1,...,F) do
Create a new permutation of p = {p1, ..., pm fof{1, ...,m}
for i in (1,...,m/b) do
Select b samples from the shuffled dataset Xpaten = {[xpj]}y:ii)b
Compute gradients of the loss with respect to the model parameters through
backpropagation:

dL(g i Xbatch, ¥
° Gz, = (gpust; Xbaten, V)

= H
° G=  — dL(grusiXpaten,¥)
=F d=p
dL(grust; Xbatcn,¥)
[ ] L=
GR dR
Update model parameters: Zy,ZEp, R < (Eg,Ep, R) — n(G=,,G=z,,Gp)

end for
if e//P =0 then
for ¢ in {2y,Zp, R} do
if |¢] < € then
& = 0 for the rest of the training
end if
end for
end if
end for

symmetric integration scheme introduced in [20]. Appendix A includes the defini-
tion of this integrator and a discussion of properties that can influence the choice
of the integrator, like symmetry, symplecticity, and order.
When the numerical integrator ¥ has been chosen, the loss function is evaluated
on the corresponding integration scheme:
mn—&-l — "

L:H At —\IJAt(gg,.’I}n,.’I}

+Aall0xlr + Ar0F(1 + Ar|IOR],

n+17tn>||§ (10)

given for one data point ™. Here Ay, Ap, and Ag are regularization parameters,
and 0y, O and O denote the vectors of trainable parameters in ﬁg, Fy and Ry. If
F is modelled by a neural network and not a system identification model, the term
Ar||0F||1 is replaced by )\FHFQ(LSCWH)Hl As noted above, Ay, Ap, and Ag may
be set to zero midway during training. Pseudocode for how the loss is computed
and how the model is trained is shown in Algorithm 1.

4.5. Initializations and hyperparameters. When initializing the model, all co-
efficient parameters are set to 0.2. We want to avoid initial values of the parameters
near zero, as this increases the risk of terms being removed by the pruning algo-
rithm too early. We use the Adam optimizer and have to specify the learning rate,
batch size and number of epochs to run. The other hyperparameters that have to be
specified are parameters for regularization on the external forces and the damping,
and the pruning parameters P and p. These are given for the specific experiments
in Section 5.
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4.6. Baseline system identification model. To evaluate the effect of impos-
ing a pseudo-Hamiltonian structure on our model, we have tested the PHSI model
against a baseline system identification (BSI) model trained with a similar strategy,
including the same integrator, but without assuming a pseudo-Hamiltonian struc-
ture. This model learns a sparse representation of ¢ in (1) from a function space
similar to that used for learning H in the PHSI model, albeit with a constant term
and one degree lower polynomials to reduce the search space. If we for instance
want to learn a system with a Hamiltonian of polynomial terms of degree n, the
search space for system identification of the Hamiltonian has (d;”) — 1 terms. A
system identification model directly learning a representation of g will have a search
space of d - (dj_’;l), which is more than ﬁ—”n times as many terms. Since this term
can grow large for large values of d and n, the search space of g can be much larger
than that of the Hamiltonian H, making it more difficult to learn through system
identification. This difference in structure can give the BSI model a disadvantage
compared to the PHSI model.

5. Experiments. To assess the performance of the PHSI model, we compare it
against three other models: the SINDy model of [4], learning ¢g in (1); the sparse
symplectically integrated neural networks (SSINN) of [16], which learns a separable
Hamiltonian, assuming the structure in (2); and the baseline model (BSI) presented
in Section 4.6, learning g in (1). For each test, we train the relevant models on two
data sets: one noise-free and one with Gaussian noise: z’ ;. = ' + ¢’ for all 27,
where €/ ~ N(0,02). When choosing the polynomial degree of the search space,
SINDy and BSI will use one polynomial degree lower than PHSI, since they train
on the derivative terms of the Hamiltonian. The data sets consist of trajectories
with random initialization.

The Adam optimizer is used with a weight decay constant of 10=%. The learning
rate is chosen from the following search space: {1072,3-1073,1073}. The training
data is shuffled for all experiments, and the integrator is the fourth-order symmetric
integration scheme introduced in [20]; see Appendix A for details on this. The batch
size is 32. For the PHSI and BSI models, polynomial coefficients have an initial value
of 0.2, and trigonometric coefficients (amplitude and frequency) have an initial value
of 1.

5.1. Learning a separable Hamiltonian system. We first test our methodology
on data obtained from a pure Hamiltonian system. Thus we can benchmark against
existing methods while demonstrating how our proposed framework facilitates as-
sumptions being imposed. We consider the Hénon-Heiles system for describing
the two-dimensional chaotic motion of stars around a galactic center [25]. Tt is a
canonical system of the form (2) with n = 2, and the Hamiltonian is defined as

1 1
H(g,p) = 5(ai + 3 +pi +3) + ¢ia> 5(13.

Because this is a separable Hamiltonian system, it can be modeled by SSINN.

To ensure a fair comparison, we train on the data generated and used in [16],
although with more noise. The data consists of 3000 pairs of g, p at ¢t = 0 and
t = 0.1. The noisy data have ¢ = 0.02, which corresponds to approximately 3%
of the maximum absolute values in the data. For the results reported here, the
learning rate is 3 - 1073, and regularization is not used. The PHSI and BSI models
are each trained for 60 epochs. The P-value and e-value in the pruning algorithm
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F1GURE 1. Comparison of simulated trajectories for the Hénon—
Heiles system, with initial value (¢,p) = (0.1,—-0.2,0.4,0.5), from
t =0 tot=10.

(1) are set to 5 and 0.05, respectively. The search space for PHSI and SSINN is
third-degree polynomials, while for SINDy and BSI it is second-degree polynomials.
Figure 1 shows example trajectories obtained from integrating the different learned
systems in time. When training on noise-free data, all models learn the true coeffi-
cients up to 1072, while noise affects the different methods to different degrees. On
the noisy data, PHSI outperforms SSINN by one order of magnitude when com-
paring the Ls-error of the trajectories, as depicted in Figure 2. PHSI and BSI
both perform better than SSINN and SINDy, suggesting that the fourth-order sym-
metric integrator handles the noise well. The superior performance of PHSI over
BSI suggests that imposing the Hamiltonian structure gives better performance yet.
The SINDy and BSI models could not be converted to Hamiltonian functions when
trained on noisy data, and the solution of the SINDy model tends to become unsta-
ble over long time periods. Table 1 compares the coefficients learned from training
on the noisy data set for the two models imposing a Hamiltonian structure.

0.5

o o o
N w IS

Lo-error of trajectory

°
i

o
<)

FIGURE 2. The average Lo-error of the trajectories obtained with
10 different random initial conditions, from the different models
of the Hénon—Heiles system trained on noisy data with o = 0.02,
compared to trajectories simulated from the exact system,
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TABLE 1. Learned coefficients in the Hamiltonian for the Hénon—
Heiles system.

a G de @ pi 3
True Value 0.5 0.5 1 —0.333 0.5 0.5
PHSI 0.509 0.495 1.009 -0.338 0.501 0477
SSINN 0.421 0.378 0.569 —0.195 0.484 0.443
Q2p% q2 q192 P2 pP1p2
True Value 0 0 0 0 0
PHSI 0.124 0 0 0 0
SSINN N/A 0.004 0.002 —0.006 —0.006

5.2. Learning a non-separable Hamiltonian system. A strength of PHSI is
that it can learn non-separable Hamiltonians as well. We demonstrate this by testing
its ability to learn a finite-dimensional nonlinear Schrédinger system, as considered
in [50]. This is a canonical system (3) with d = 2 and the Hamiltonian

1 1
H(q,p) =7 +p1)* + (¢ +p3)°

— 41 q5 — Pips + 4ip3 + 43Pt — Aq1qapips.

We use two sets of training data: one clean and one noisy with ¢ = 5 - 1074
The training sets consist of 30 trajectories consisting of 100 points with step size
0.01, each randomly initialized from a uniform distribution between 0 and 1. We
have trained the PHSI, SINDy and BSI models, and compare the performances
of these. For the PHSI model, the learning rate is 0.01, and regularization is not
used. The model is trained for 100 epochs. We use P = 20 and € = 0.05 in the
pruning algorithm. The search space for PHSI is fourth-degree polynomials, while
for SINDy and BSI it is third-degree polynomials.

PHSI and SINDy are able to learn the true equations of the system on the noise-
free data up to a precision of 10, while BSI is able to learn to a precision of 1073,
On the noisy data, PHSI learns the true equations up to a precision of 10~! and
excluding 53 out of 58 terms correctly by the pruning algorithm. SINDy only learns
the terms up to a precision of 1, and BSI does not even achieve this precision and also
exclude many terms incorrectly during pruning. Figure 4 confirms a more accurate
representation of the true system equations in the PHSI model than SINDy when
trained on noisy data. Neither the coefficients learned by SINDy nor BSI could be
converted to a separable Hamiltonian.

5.3. Learning a pseudo-Hamiltonian system. Consider a mass-spring system
with damping and external forces. The Hamiltonian is given by

k 1
H _ 2 =2
(4,0) = 54"+ 5",
where k is the stiffness constant of the spring and m is the mass. Furthermore,
we have damping and an external force affecting the momentum, so that a pseudo-

Hamiltonian formulation (5) of the system is given by

L?’] B [01 10] [jf:;] + [asir?(wt)} ’ (11)
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Truth BSI SINDy
0.5 1 1 b
& 00 ] 1
—0.5 1 I I I 4 I . I I 4
a1 a1
0.5 A k E
& 0.0 . -
—0.5 1 4 4
-0.5 010 0j5 -0.5 OjO 0j5 -0.5 OjO 0j5 -0.5 OjO 0j5
g2 g2 q2 q2
---- 0=0
—— 0=>5e-4

FicUurRE 3. Phase portraits showing the trained models’ tra-
jectories next to the ground truth trajectory, for the nonlinear
Schrédinger system. All models are trained on the two training
sets, one clean data set and one noisy with ¢ = 10~*. The initial
values are (¢,p) = (—0.3,0.5,—0.2, —0.4).

Welet k=m =1, a=2,w=0.5 and ¢ = 0.3. The data consists of 50 trajectories
from time 0 to 10, with time step 0.1, and the noisy data set has o = 0.2.

We train three system identification models, PHSI, BSI, and SINDy, and also
a PHNN model as described in [15]. For the PHSI model, we train a third-degree
polynomial function space for the Hamiltonian, while the function space for the
external force is a third-degree polynomial as well as trigonometric functions where
both amplitude and frequency are trainable parameters, and the force is assumed to
be strictly time-dependent and only directly affecting the momentum. In addition,
we assume that damping only directly affects the momentum, so that learning the
matrix R in this case reduces to learning the friction coefficient c. Both the BSI
and SINDy models are trained on a third-degree polynomial (including a constant)
plus trigonometric functions. The SINDy model has a disadvantage as it can only
learn autonomous systems. To still be able to use it, we convert the system into
an autonomous one by adding time as a variable to (11): £ = 1. The PHSI, BSI,
and PHNN models are run for 150 epochs, with a learning rate 5 - 1073. We set
P = 20 and € = 0.05 in the pruning algorithm. L;-regularization is used for the
PHSI model on the forces and the Hamiltonian function: Ag = 0.1 and Ar = 0.01
in (10). The external force of the PHNN model has a regularization parameter of
0.1.

Predictions resulting from the models are shown in Figure 5 and coefficients are
given in Table 2. From Figure 6 we see that PHSI clearly outperforms PHNN on
predictions beyond the time period of the training data, which is expected since the
external force is time-dependent. Even on noisy data, the PHSI model is able to
separate the inner dynamics, the damping effects and the external forces from each
other, while the BSI model did not learn terms that can be separated into inner
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!
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g

FIGURE 4. The trained coefficients of the PHSI, BSI, and SINDy
models of the nonlinear Schrodinger system, plotted against the
respective true values. A perfectly trained model will only have
points along the dotted line. The models are trained on the noisy
data set. Note that PHSI learns the Hamiltonian function while
SINDy learns the right-hand side g of (1) and hence they will not
learn the same coefficients for corresponding terms.

and outer dynamics in any obvious way. This provides a qualitative argument for
using a model that assumes a pseudo-Hamiltonian formulation.

Truth PHSI BSI SINDy PHNN
5.0 1 1 1 ]

2.5 1 1

0.0 1 h h

—2.54 B 4

FIGURE 5. Comparison between the phase portraits obtained from
integrating the exact forced and damped mass-spring system and
the learned models from time 0 to 10. The initial value is (¢, p) =
(=3.4,-1.9).

5.4. Hybrid model combining system identification with a neural net-
work. In reality, many systems will be affected by external forces for which it can
be difficult to find analytic terms. The final system to be studied consists of N
tanks connected by M pipes, also considered in [20], with leaks that can be viewed
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TABLE 2. Learned coefficients for the forced and damped mass-
spring problem. ¢ and p are multiplied with the trained coefficients
while ¢, a,w and const. are themselves the trainable parameters.
Empty entries mean that the model does not learn that term.

Trained PHSI parameters

2 2

q p c « w
True value 0.5 0.5 0.3 2 0.5
H 0.473  0.484
R 0.300
F 0 0 0  1.984 0.505
Trained BSI and SINDy parameters
q D const. o w
Trueq 0 1 0 0 0
BSI¢ O 0.991 0 0 0
SINDy ¢ 0 0.983 0 0 0
Truep  —1 —0.3 0 2 0.5
BSIp  —0.980 —0278 0  1.999 0.506
SINDy p  —0.548 0 0.241
j 10
5 s 7 N__

0.0 2.5 5.0 7.5 100 125 150 175 20.0
t

—— PHSI —— PHNN —— SINDy BSI

F1GURE 6. Average Lo-error of 30 simulated trajectories of the
forced and damped mass-spring system, with random initial con-
ditions.

as external forces. The incidence matrix B € RM*¥ describes how the pipes and
tanks are connected. The friction in the pipes is assumed to depend linearly on the
flow, and the total energy is given by

N Y gp
H(¢,pn) = Z TJ,@Q + 72A»u?’ (12)
i v j J

where ¢; is the flow in pipe 4 scaled by a factor J; depending on the density of the
fluid and the dimension of the pipe, 1, is the volume of the fluid in tank j, g is the
gravitational constant, p is the density of the fluid, and A; is the footprint of tank
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7. We thus have the pseudo-Hamiltonian formulation

9-[5 £

%

(13)

]

where r, € RM contains the friction coefficients relating to each pipe. When sim-
ulating the system to generate the training data, we set p = 1, J; = 0.02 Vq,
A; =1VYj, r, =(0.03,0.03,0.09,0.05,0.05). A leak in the fourth tank is described
by f(é,u) = (0,0,0, —10min (0.3, max (p4,0.3))). Initial conditions are uniformly
drawn, —1 < 2% < 1, for all i.

We compare SINDy and BSI against a hybrid PHSI model that only aims to
find analytic terms for the internal dynamics. It assumes that the external force
only affects the fourth tank, and models this by a neural network. This consists of
three hidden layers, 100 nodes per layer, and the ReLU activation function in each
layer. The training data consists of 60 trajectories from ¢ = 0 to ¢ = 0.5, with time
step 0.01. The PHSI and BSI models are trained for 100 epochs, with learning rate
3-1072 and P = 10 and € = 0.05. For the PHSI model, L; regularization is used
on the external forces and the Hamiltonian with Ay = 0.5, \p = 0.001 in (10). The
search space for Hy is second-degree polynomials. The BSI and SINDy models has
a search space of first-degree polynomials.

Figure 7 provides example trajectories obtained from the models and Figure 8
shows the error averaged over predictions from 30 random initial conditions. The
PHSI model learned the true Hamiltonian up to 10~! precision, as well as learning
a precise neural network model of the leak. The learned PHSI parameters are
shown in Table 3. BSI and SINDy did not learn terms that could be converted to
a Hamiltonian function and have no clear separation of the internal system from
the external forces. This indicates that they are not able to accurately learn the
true system, and instead learn polynomial approximations that approximate the
system well only within the domain of the training data. The lower plots in Figure
7 confirm this. When testing the learned models on initial conditions well outside
the range of the training data, PHSI greatly outperforms the other models.

TABLE 3. Learned coefficients for the tank system on the noisy

data. 2%,..., 23 are multiplied with the trained coefficients while
r1,...,75 are themselves the trainable parameters.
2 a3 a3 a2 a2 2R a2
True value 25 25 25 25 25 4.905 4.905

PHSI 24.94 2498 2498 2495 2497 4.930 4.960

.’1?% .Z'g 1 T9 T3 Ta Ts5

True value 4.905 4.905 0.03 0.03 0.09 0.05 0.05
PHSI 4.890 4.930 0.031 0.029 0.086 0.051 0.041

6. Pruning and small coefficients. The pruning technique outlined in Section
4.2 and Algorithm 1 introduces the hyperparameters P, € and p. These parameters
can greatly affect the training, and they should therefore be set with care and
depending on the problem. In particular, no coefficent smaller than e can be learned,
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FIGURE 7. Simulations of the tank system. Left: The volume of
the fluid in the leaky fourth tank simulated from the exact sys-
tem and the different models. Right: The leak approximated by
the neural network in the hybrid PHSI model, compared to the
exact solution. The upper plots have initial conditions within the
distribution of the training data: (¢,u) = (—0.4,0,0.5,0,0.2,0 —
0.6,—0.5,0.5). The lower plots show extrapolation in time and
space; time from 0 to 1 and initial state values (¢, u) =
(10,19,4,19,7,9,17,9,11).
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FIGURE 8. Average Lg-error of 30 sets of simulated future tank
volumes and pipe flows in the tank system, trained on noisy data
with o = 0.005.

so it should not be set too high. On the other hand, the pruning becomes more
challenging with lower values of e.

Thus it is clear that the PHSI method, like other system identification methods,
will struggle to learn terms with small coefficients. To test this, we apply the same
methods as in Section 5.3 on a slightly skewed mass-spring system with the same
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damping and external force. That is, we modify the Hamiltonian to be

1 1
H(q,p) = 5(12 + 51?2 + vqp, (14)

for v = {0.1,0.07,0.05,0.03,0.01,0.007,0.005,0.003,0.001} and train and test the
methods on the resulting system. We try e = {0.05,0.01,0.001}, and use otherwise
the same hyperparameters for the pruning as in Section 5.3, where ¢ = 0.05 and
v = 0. When ¢ = 0.05 or ¢ = 0.01, the PHSI method prunes away all terms
that should be zero, whether it trains on exact or noisy data, for all choices of ~.
However, when € = 0.001, it fails to prune away some of the terms that should be
zero when training on the noisy data. E.g., when v = 0.003 we get

Hy(q, p) = 0.4987¢% + 0.5004p> + 0.0028¢p,
&= 0.2078,

fo(t) = 1.9767sin (0.4993¢)

on the noise-free data, but

Hy(q, p) = 0.0044p® + 0.4845¢2 + 0.5075p% — 0.0196¢p + 0.0012¢ — 0.0098p,
é = 0.2709,

fo(t) = 1.93345in (0.4951¢)

on the noisy data.

As we see in Table 4, the PHSI model learns a non-zero approximation of v when
it trains on noise-free data and vy > €, with the sole exception v = 0.005, ¢ = 0.001.
When the data is noisy, we see in Table 5 that the method prunes away the gp term
when v = 0.07,¢ = 0.05 and v = 0.005,¢ = 0.001, but otherwise learns non-zero
approximations of v > e.

TABLE 4. The learned approximations of v in (14), for different ~
and different pruning tresholds e, trained on noise-free data.

e\'y‘ 0.1 0.07 0.05 0.03 0.01  0.007 0.005 0.003 0.001

0.05 | 0.1012 0.0718 0 0 0 0 0 0 0
0.01 | 0.1000 0.0717 0.0501 0.0310 0 0 0 0 0
0.001 | 0.1006 0.0711 0.0489 0.0301 0.0102 0.0051 0 0.0028 0

TABLE 5. The learned approximations of v in (14), for different
~ and different pruning tresholds e, trained on data with added
Gaussian noise with standard deviation o = 0.2.

e\’y‘ 0.1 0.07 0.05 0.03 0.01  0.007 0.005  0.003 0.001

0.05 | 0.0974 0 0 0 0 0 0 0 0
0.01 | 0.1001 0.0485 0.0515 0.0412 0 0 0 0 0
0.001 | 0.0833 0.0754 0.0372 0.0399 0.0034 0.0093 0 —0.0196 —0.0062
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7. Conclusion. This paper presents several advances in the identification of phys-
ical systems that can be modeled as ODEs. For one, we demonstrate improved
learning of Hamiltonian systems, compared to standard methods and a recent model
specifically developed for such systems. Secondly, we develop the methodology fur-
ther to be applicable to the much wider class of pseudo-Hamiltonian systems. Lastly,
we show how we can incorporate neural network models in our method to separate
out external forces that are difficult to identify by analytic terms. In all experi-
ments, the PHSI model performs especially well on noisy data. We attribute this
both to the model assumption of an internal Hamiltonian structure and a training
strategy that automatically averages out some of the noise.

We have not emphasized computational cost in our numerical examples, and
have not yet made a significant effort to optimize our implementation of PHSI
or BSI. Compared to SINDy, our models use significantly longer time to train to
convergence. This will be addressed in future research, as will extensions to more
complex systems, including partial differential equations.

Acknowledgments. The authors thank Vegard Antun and Alexander Stasik for
fruitful discussions and insightful comments.
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Appendix A. On numerical integration schemes for learning dynamical
system models. Consider a known ODE (1). A numerical integration scheme

xn—i—l — "

At = WAt(gvmn7mn+latn) (15)

can be used to find the approximate solution 2! ~ z(t+At) given 2" ~ z(¢). Such

a scheme is implicit if ¥ o, depends on T or intermediate steps and ezplicit oth-
erwise. E.g., we have the explicit (forward) Euler method by Wa¢(g, 2™, 2"+ ") =
g(z™,t") and the implicit (backward) Euler method by W (g, 2", "1, ") = g(z"+1,¢"+
At).

The main drawback of using an implicit integrator for numerical integration is
computational cost. An implicit scheme generally results in a system of equations
that have to be solved using a root-finding algorithm like Newton’s method. How-
ever, when we have available successive data points, other considerations should be
taken, and we argue that we should use the available data to alleviate the effect of
noise. Thus we suggest to use an integration scheme that relies equally on the two
successive data points, averaging out the noise from two measurements. To that
end, we consider a training strategy similar to that of [39, 28, 13, 20, 43], where we
use a loss function evaluated on the integration scheme:

anrl — "

L= At

LA (16)

2

- \IjAt(gea Invx

given for one data point ™ and barring regularization.
By contrast, works like [7, 8, 16, 14] use a loss function evaluating the difference
between a data point and what is obtained doing integration:

L= [ =3y = ™ — @ + AtA(G0, 2" ")) o (1)

Note that the approaches are equivalent if the same explicit integrator is used and
only one integration step is done between the data points so that " = ™ in (17).

When wishing to approximate the ODE (1) using two available successive data
points 2" = z(t") and 2"*t! = z(#" + At), we say that a discretization method
(15) is explicit if Was(g, 2™, 2", t") depends explicitly only on the two points 2"
and z"*t! in addition to t” and At, i.e. without relying on implicit intermediate
steps. Note that this is different from the definition of an explicit integrator, which
cannot depend on 2”1, This class of explicit discretization methods includes the
methods that lead to explicit integrators, but also implicit integrators that do not
require numerical integration to obtain intermediate steps, like the implicit midpoint
method (7). Within the larger class of Runge-Kutta methods, explicit discretization
methods correspond to the class called mono-implicit Runge-Kutta methods [52,
6]. This class does not include higher-order symplectic methods like the Gauss—
Legendre methods of orders four and six, which require intermediate steps to be
found implicitly.

For our numerical experiments, we have used the fourth-order symmetric inte-
grator first proposed in [20], where it is formally given for time-independent g. Also
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including time-dependency, the method is given by

\IIAt(g? mny xn+1’ tn) =
1 " +$n+1 \/g
= —_— — — A " ntl yn At), t" At
5 9 < 5 5 g(c1z™ + cox + coAt) +c1 as)
1 n n+1 3
+ 59 (:c—i—; + %Atg(czx” + ez £ e AL, t7 + oAt |
for ¢y = % — % and ¢y = % + %. An equivalent definition can be represented by
the Butcher tableau
1B 1 0 _v3 1
2 6 1 6 1
1L V3|1 V3 0 1_ V3
N e
1 3|1
3t ol t 1 3 0 1+%
1 3 1 3 1
3t | 1 % O 1
1 1
2 0 0 2

We see that it satisfies the conditions for fourth order, as given in Table IIT.1.1
of [24] (since all symmetric methods have even order, it is sufficient to check the
third order conditions). We see also that it does not satisfy the conditions for
symplecticity, as given in Theorem VI.4.3 of [24].

Several papers have suggested using symplectic integrators for learning Hamil-
tonian systems [8, 16, 14], but a solid theoretical argument for this has to our
understanding not yet been provided. In numerical integration of a Hamiltonian
system, symplectic integrators are often viewed as favorable for long-term integra-
tion, since they guarantee exact preservation of an approximated Hamiltonian, and
preservation of the exact Hamiltonian within a bound [24]. This provides qualita-
tive properties, e.g. a guarantee for stability, that do not translate directly to the
inverse problem of learning a system from known data.

The integrator used in [16] is Yoshida’s fourth-order method, which is also sug-
gested for HNN in [14], although neither paper refers to it by that name or cite
the proper reference [57]. This method is a partitioned Runge-Kutta method that
is explicit for separable systems, but neither explicit nor mono-implicit for non-
separable systems. Thus it would not be a good choice if one cannot assume the
system to be separable, but [16, 14] do assume separability and argue for using
this integrator because it is a fourth-order symplectic method. An advantage of
using (17) with an explicit integrator is that one can do several steps between each
training data point without having to rely on a root-finding algorithm like Newton’s
method, and [16] do indeed take advantage of this to do several shorter integration
steps for each training step. This property means that given noise-free data, one
can achieve arbitrarily high accuracy on the integration from z™ to £"*!, limited
only by computational resources and time. However, it is generally less computa-
tionally efficient to use many steps than to use a higher-order integrator, and in the
presence of noise, using more steps does not alleviate the issue of getting the noise
from only one data point.

Appendix B. Numerical comparison of integration schemes. We set up
PHSI models with different integrators in the loss function (10) and everything else
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the same, to test how well different integrators with different properties affect the
results. The integrators are

the forward Euler method (Euler)

the implicit midpoint method (7) (Midpoint)

the classic fourth-order Runge-Kutta method (RK4)

the symmetric fourth-order Runge-Kutta method (18) (SRK4)

Cash and Singhal’s symmetric sixth-order Runge-Kutta method [5] (SRK6)
Yoshida’s fourth order partitioned Runge-Kutta method (PRK4)

and their properties are summarized in Table 6.

TABLE 6. Properties of integrators. PRK4 is explicit, mono-
implicit and symplectic for separable systems but not for non-
separable systems.

Integrator order g eval’s explicit mono-implicit symmetric symplectic

Euler 1 1 yes yes no no
Midpoint 2 1 no yes yes yes
RK4 4 4 yes yes no no
SRK4 4 4 no yes yes no
SRK6 6 5 no yes yes no
PRK4 4 7 yes/no yes/no yes yes/no

B.1. Hamiltonian system: Hénon—Heiles. We train the models on trajectories
from t =0 to t = 10 with

e sampling time 1 and 250 samples, i.e. 25 trajectories, without noise;

e sampling time 1 and 250 samples with moderate noise (Gaussian noise with a
standard deviation o = 0.03 added to the measurements of the states);

e sampling time 1 and 250 samples with much noise (standard deviation o =
0.05);

e sampling time 1/2 and 1000 samples, i.e. 50 trajectories, without noise;

e sampling time 1/2 and 1000 samples with moderate noise;

e sampling time 1/2 and 1000 samples with much noise.

We generally see a better performance from the symmetric mono-implicit Runge—
Kutta methods (Midpoint, SRK4, SRK6) than those that only rely on one data
point in the evaluation of Wa¢. This seems to define a more important property than
symplecticity; the symplectic PRK4 method performs consistently worse than the
non-symplectic SRK4 method. The implicit midpoint method is the only method
that is both symplectic and relies equally on ™ and z"*!, and it does perform well
despite being only a second-order method.

Note that while we train on the integration scheme in a way that is equivalent
to performing one integration step, DiPietro et al. [16] perform several steps of the
PRK4 integrator between data points to increase accuracy. We assume that this is
a major reason for the superior performance over using the RK4 method reported
in that paper, and also note that a major improvement in performance by taking
many smaller integration steps will almost only happen if one trains on noise-free
data.
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FIGURE 9. The mean Lo error of PHSI models trained with the
different integrators on the Hénon—Heiles problem. The error is on
the predicted positions and momenta from ¢ = 0 to ¢ = 10 on 10
different random initial conditions.

B.2. Pseudo-Hamiltonian system: Tanks and pipes. We also test the per-
formance of the different integrators in the hybrid model used to learn the tank
system presented in Section 5.4. We do not test Yoshida’s 4th order method on
this problem, since the tank system is not a separable partitioned system, and so
Yoshida’s method is in this case an implicit method that would require a root-
finding algorithm like Newton’s method to be used in every iteration of the training
process. We have not implemented this in our models, as it would be prohibitively
expensive.
We train the models on trajectories from ¢ = 0 to ¢ = 1 with

sampling time 1/50 and 7500 samples, i.e. 300 trajectories, without noise;

e sampling time 1/50 and 7500 samples with moderate noise (Gaussian noise
with a standard deviation o = 0.03 added to the measurements of the states);

e sampling time 1/50 and 7500 samples with much noise (standard deviation
o =0.05);

e sampling time 1/100 and 30000 samples, i.e. 150 trajectories, without noise;

e sampling time 1/100 and 30000 samples with moderate noise;

e sampling time 1/100 and 30000 samples with much noise.

Figure 11 shows the Ly error of all the state variables from the predictions ob-
tained applying the methods on a test set of 10 different initial conditions sam-
pled from independent uniform distributions &(—1, 1). The symmetric higher-order
methods are more consistent in their performance than the lower-order methods
and the explicit fourth-order Runge-Kutta method. As for the Hénon—Heiles sys-
tem, we see no consistent improvement in going from fourth to sixth order, which
supported the choice of using the SRK4 method throughout this paper. The sym-
metric methods particularly predict the tank volumes very well, more so than the
pipe flows. An example is shown for the volume in the fourth tank, i.e. the one with
a leak, in Figure 12.
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FI1GURE 10. Prediction of ¢; by PHSI models trained with different
integrators on the Hénon—Heiles problem. The initial condition is
q=1(-0.2,0.2), p=(0.1,-0.2).

Table 7 shows how well the friction coefficients on the pipes are learned by the
different integrators. We see here, even clearer than on the Ly error, that the sym-
metric methods perform better than the explicit fourth-order Runge-Kutta method,
particularly on noisy data.

Appendix C. A study of promoting sparsity through regularization and
pruning. In sections 4.2 and 4.3, we argue that regularization and pruning will
help the PHSI model promote sparsity in search of the true governing equations. It
is also argued that since we know that the true governing equations are generally
sparse in the function space, promoting sparsity during training will help the PHSI
model better approximate the true system. To evaluate whether this claim has merit
or not, we train PHSI models where the amounts of regularization and pruning vary
and the rest of the hyperparameters are held constant. By the "amount” of pruning,
we mean how often the pruning algorithm is employed during training, i.e. the value
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FIGURE 11. The mean Lo error of hybrid PHSI models trained
with the different integrators on the tank system. The error is of
the predicted volume and flow in all tanks and pipes from ¢ = 0 to
t =1 on 10 different random initial conditions.

TABLE 7. Mean and standard deviation of the predicted friction
coefficients of the tank system, relative to the ground truth R, =
(0.03,0.03,0.09,0.03,0.03) (i.e. so that 1 corresponds to the correct
coefficient).

no noise o =0.03 o= 0.05

7500 training points

Euler 22.75+£7.20 23.59+7.04 25.27+£7.31
Midpoint 1.274+0.04 1.16+£0.14 1.01+0.11
RK4 1.04£0.04 1.70+£0.24 1.95£0.27
SRK4 1.16 £0.07 0.92+0.13 0.88£0.43
SRK6 0.95+0.07 085£0.19 0.94+£0.25

30000 training points

Euler 11.33+£3.31 12.31+£3.48 13.83+3.91
Midpoint 1.234+0.11  1.15£0.16 1.16 +0.25
RK4 1.20+0.06 1.97+0.29 4.18+0.70
SRK4 1.16 £0.04 1.11+0.13 1.00+0.23
SRK6 1.24+0.06 1.21+0.10 1.35+0.32

P in Algorithm 1. The lower value P has, the more frequent the pruning. By the
7amount” of regularization, we specifically mean the amount of [;-regularization
on the Hamiltonian H, i.e. Ay in (10). We evaluate the predictive performance
of each trained model by comparing their ”predictability score”, i.e. their average
error over simulated trajectories with random initialization compared to the true
trajectories, where the trajectories are not from the training set. The tests are done
for all of the four systems considered in the Section 5, and they are performed on
noiseless data.

C.1. Experiment 1: Hénon—Heiles system. The Hénon—Heiles system is a
purely Hamiltonian system, and this is assumed when training the PHSI model.
The models are trained on noiseless, simulated data with Ay € {0,0.05,0.5} and



28 SIGURD HOLMSEN, SOLVE EIDNES AND SIGNE RIEMER-SORENSEN

7500 training points, c=0.0 30000 training points, c=0.0

w

0000 training points, 0=0.03

w

0000 training points, o = 0.05

I I I I I I I I I I
0.00 0.25 050 0.75 1.00 0.00 025 0.50 0.75 1.00

Time Time
--- Exact tank level —— Midpoint —— SRK4
—— Euler —— RK4 —— SRK6

FIGURE 12. Volume of the fourth tank as predicted by hybrid
PHSI models trained with different integrators on the tank sys-
tem. The initial condition is ¢ = (—1,—1,0,%,—1), TR
(1,1,—3,-1).

P € {1,2,4}, for 3 epochs. The predictive performances of models with different
combinations of regularization and pruning are shown in Figure 13. The figure shows
that for this particular system, the PHSI model trains best without /;-regularization,
and hence no regularization was used in the experiments in Section 5. The reason
for this may lie in that the PHSI model learns the relatively simple Hénon—Heiles
system in very few epochs of training. The pruning algorithm does not appear to
affect the average Lo-error in this experiment. However, it excludes the correct
terms, resulting in easier interpretability of the trained model. Figure 14 shows
that although the scores in Figure 13 differ by several orders of magnitude, all the
models achieve a relatively good predictive ability.

C.2. Experiment 2: Nonlinear Schrédinger system. The non-linear Schrédinger
system is also purely Hamiltonian, and this is assumed when training the PHSI
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FIGURE 13. Average Lo-error over 30 simulated trajectories of the
Hénon—Heiles system by PHSI models trained with different com-
binations of regularization parameter Ay and pruning parameter
P. The models are trained for 3 epochs, which means that when
P =4, there is no pruning.

model, in that we do not train damping coefficients or an external force. The mod-
els are trained with Ay € {0,0.05,0.5} and P € {1,5,10}, for 10 epochs. In Figure
15, we observe that the regularization improves the model performance drastically.
The model with P = 10 and Ay = 0 has an average Lo-error approximately 5 times
that of the model with P = 2 and Ay = 0.5, suggesting that the regularization
and pruning work well together. This effect being so evident here and not for the
Hénon—Heiles system may be due to the non-linear Schrédinger system being non-
separable and of a higher polynomial order, making the true solution more sparse
in the function space. Figure 16 illustrates the vastly superior performance of the
models with more regularization and pruning over those with less.

C.3. Experiment 3: Damped mass-spring system. The damped mass-spring
system described in Section 5.3 is a pseudo-Hamiltonian system. We have reg-
ularization on the Hamiltonian and the external forces, i.e. Ay and Ap in (10),
but not on the damping coefficients. The models are trained for 80 epochs, with
A € {0,0.1,0.5} and P € {20,40,80}. Ap is set to 0.01. Figure 17 indicates that
promoting sparsity helps the predictive performance of the PHSI model, especially
through [;-regularization. The superior predictive ability of the PHSI models that
promote sparsity is also seen in the plotted simulated trajectories in Figure 18.

C.4. Experiment 4: Tank system. For the tank system considered in Section
5.4, we choose the search-spaces Ay € {0,0.05,0.5} and P € {10, 40,80}, and train
the models for 80 epochs. As shown in Figure 19, the regularization and pruning
have a great impact on the performance of the model, and appear essential for
achieving an accurate PHSI model. The model with Ay = 0 and P = 80 has a
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P=1,A4=0.0 P=2,Ay=0.05 P=4,A4=0.5
05  Neo--- Exact solution
—— PHSI
s 0.0
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FIGURE 14. Simulated trajectories obtained for different PHSI
models and the exact solution, for the nonlinear Hénon—Heiles sys-
tem for three different combinations of regularization and pruning.

predictive score about 60 times that of the model with Ay = 0.5 and P = 10.
Figure 19 confirms that this assumption is true for the tank system.

In conclusion, promoting sparsity in the function space generally improves the
accuracy of the PHSI model. Since promoting sparsity in the PHSI model through
regularization and pruning improved results for three of the four models (it neither
improved nor worsened the performance when learning the Hénon—Heiles system),
the sparsity assumption made in sections 4.2 and 4.3 seems to be a good one. This
again implies that the PHSI model is in general well fit for finding true governing
equations. The experiments indicate that the regularization and pruning has more
of an impact when learning systems of high dimensionality and polynomial order. If
the PHSI model is to be applied to learning more complex and higher dimensional
systems than what has been done in this thesis, promoting sparsity will presumably
be vital for achieving an accurate model.

Appendix D. A study of regularization: learning a mass-spring system.
When learning dynamical systems of complex structures, regularization is important
not only to promote sparsity but to ensure the desired structure of the ODE. We
exemplify this by studying a mass-spring system, without damping or external
forces, and learning it through a pseudo-Hamiltonian structure (5). A simple-mass
spring system can be described through the following ODE:

-4
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FI1GURE 15. Average Lo-error over 30 simulated trajectories of the
nonlinear Schrodinger system by PHSI models trained with differ-
ent combinations of regularization parameter Ay and pruning pa-
rameter P. The models are trained for 10 epochs, meaning when
P =10, the pruning only occurs once.

We set weight m = 1 and spring stiffness £ = 1. The system then has the related
Hamiltonian function

1, 1
H(q,p) = 54"+ 50 (20)

which we can use to write the ODE as a Hamiltonian system with the canonical

formulation
R aﬁ] @)

The model will be trained assuming a pseudo-Hamiltonian formulation (5) without
damping, where the Hamiltonian and the external forces are trainable system iden-
tification models depending on the state only and the structure matrix is known:

i) = |y o] Vo) + Foto) (22)

As previously stated, the pseudo-Hamiltonian formulation is non-unique since a
general ODE can be equivalently represented by different combinations of H and
F. Since system identification models attempt not only to accurately predict future
states but identify the governing equations, we are interested in separating Hy and
Fp in a natural way. In this example, since there are no external forces present,
the desired solution is Hy as given by (20) and Fy = 0. We train system identi-
fication models with pseudo-Hamiltonian structures with different combinations of
regularization on Hy and Ey. Figure 21 shows trajectory plots of three randomly
initiated models compared to the ground truth. Every model trained predlcts T
accurately, but only the models that regularize Fy are able to separate Hy and F)
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FIGURE 16. Simulated PHSI trajectories along with a simulation
of the exact nonlinear Schodinger system, for three different com-
binations of regularization and pruning.

in the desired way. The models that regularize Hy learn the entire ODE through
}7—'97 and the models without regularization learn difficult-to-interpret combinations
between ﬁg and Fg that are non-unique due to the random initialization of the
model parameters. These results show how regularization affects the structure of a
trained PHSI model. How we set the regularization parameters of a PHSI model

reflects the prior assumptions we make about the system to be learned.
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FIGURE 17. Average Lo-error over 30 simulated trajectories of
the damped mass-spring system by PHSI models trained with dif-
ferent combinations of regularization-parameter Ay and pruning-
parameter P. The models are trained for 80 epochs, so that when
P = 80, pruning is only done after the last epoch.
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FI1GURE 18. Simulated PHSI trajectories along with a simulation
of the exact damped mass-spring system, for three different com-
binations of regularization and pruning.
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FIGURE 19. Average loss over simulated trajectories for PHSI
models trained with different combinations of regularization-
parameter Ay and pruning-parameter P. The models are trained
for 80 epochs, which means that when P = 80, pruning is only
done after the last epoch.
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FIGURE 20. Simulated PHSI trajectories along with the exact so-
lution of one of the leaking tanks in the connected tank system for
three different combinations of regularization and pruning.
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FIGURE 21. Phase plots of trajectories x = (g,p) obtained from
systems where & is given by different combinations of S (x)VH
and f. Each column is a different combination of regularization
parameters, where A1 and A\ are the magnitudes of [ regularization

on Hy and F‘g, respectively.
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