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Executive Summary 

The Alliance for IoT and Edge Computing Innovation (AIOTI) Strategic Research and Innovation 

Agenda (SRIA) aims both at identifying key Internet of Things (IoT) and edge computing 
technologies and applications research priorities and at providing a vision on how the future of 
the IoT domain will look like, up until the 2030 timeframe.  

The AIOTI SRIA is a roadmap (2023-2030) for future IoT and edge computing research and 
innovation actions in Europe, proposing specific themes, sub-themes, and priorities, which help 
identifying gaps and areas where research and innovation advancements are most needed.  

The identified research priorities form the reference for concrete actions to be implemented in 
different research programmes by various stakeholders, such as industry, researchers, small-and-
medium enterprises, academia, entrepreneurs, the public sector, and the overall society. 

The SRIA delivers a direct contribution in aligning with the United Nations Sustainable 
Development Goals (SDG) needs and the European Green Deal objectives, while developing 
international cooperation to solve global challenges using IoT and cloud computing 
technologies. 

The research and innovation efforts in IoT and edge computing require to be based on a long-
term programming approach that provides continuity across technology and applications 
efforts over several years. The AIOTI SRIA introduces a mission-oriented research and innovation 
approach that answers societal and market needs, maintains, and extends industrial leadership, 
protects the environment, ensures security, privacy, safety, and energy efficiency solutions, while 
prioritising research and innovation capabilities and education. 

The AIOTI SRIA addresses research and innovation priorities for future IoT and edge computing 
technologies and applications that will drive changes across industrial sectors, the European 
economy, and society. The priorities include convergence with next-generation Tactile IoT, 
decentralised and distributed architectures, IoT knowledge-driven edge processing, artificial 
intelligence (AI) and trustworthiness. 

The IoT and edge computing technologies have evolved rapidly in addressing the grand 

challenge of developing human centred IoT technologies and applications, which require 
increased communication and coordination amongst policy makers, end-users, and experts in 
the IoT and edge computing fields. 

The extensive use of IoT and edge computing in different industrial sectors and the move from 
cloud to edge processing must be accompanied by new distributed architectures and end-to-
end (E2E) IoT security. The convergence of connectivity, IoT, edge computing, AI, and 
Distributed Ledger Technologies (DLT) will be essential to next-generation Internet applications 
and advancements. 

The topics presented in the AIOTI SRIA are aligned with the issues addressed by other European 
partnerships to improve the European IoT ecosystem's sustainability and manage human well-
being, particularly for developing safe, secure, and trustworthy IoT and edge computing 
technologies. 
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1. Vision, Mission, and Objectives 

The vision of AIOTI is “to lead, promote, bridge and collaborate in IoT and edge computing and 

other converging technologies research and innovation, standardisation and ecosystem 
building providing IoT and edge computing deployment for European businesses creating 
benefits for European society. We co-operate with other global regions to ensure removal of 
barriers to development of the IoT and edge computing market, while preserving the European 
values, including privacy and consumer protection”. 

In this context, the AIOTI mission is “to drive on behalf of our members business, policy, research 
and innovation development in the IoT and edge computing and other converging 
technologies across the Digital Value Chain to support digitization in Europe, and 
competitiveness of Europe”. 

The AIOTIA SRIA reflects the needs of the European IoT and edge computing community and 
the members of the AIOTI to achieve the above vision and mission. Contributions from the AIOTI 
Work Groups (WGs) form the basis of the AIOTI SRIA. This document presents some leading IoT 
and edge computing challenges the European ecosystem will face in the forthcoming years. It 
introduces evolving activities that may inspire future research and innovation programmes and 
calls in the European Research and Innovation Framework Programme Horizon Europe (HE). 
Cooperation and alignment with the new European partnerships and initiatives is essential in this 
context. 

The vision for the AIOTI SRIA is to foster a dynamic IoT, and edge computing European ecosystem 
based on heterogeneous technology integration into digital value chains across several 
industrial sectors. 

The AIOTI SRIA mission is to support, enhance and strengthen Europe’s IoT and edge computing 
research and innovation capabilities to advance the digital and green transformation, based 
on sustainable and trustworthy technologies and applications development. 

The structure of the 2023 AIOTI SRIA builds on IoT and edge computing technologies trends. It 
extends the technologies convergence aims to industrial sector vertical areas, which 

correspond to the different elements of the IoT/edge continuum architectural stack and to IoT 
and edge computing applications across the different industrial sectors. 

The AIOTI SRIA identifies technological development, key trends, issues, and challenges within 
different thematic areas related to next-generation IoT and edge computing advancements, 
while providing several selected research priorities over the 2023-2030 period. The goal is to 
accelerate the technological developments in these thematic areas to unlock the potential of 
IoT and edge computing in Europe.  

The AIOTI SRIA objectives are to support the IoT and edge computing technologies and 
applications to evolve into an integrated digital ecosystem, characterised by distributed 
architectures and mesh topologies for advancing hyperautomation in all-industrial sectors. 
Leveraging digital technologies aims to transform the industrial sector and to deliver scalable, 
trustworthy, and dependable IoT and edge computing systems for automated and autonomous 
applications based on heterogeneous technology integration. 
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Addressing the IoT and edge computing key challenges presented in the AIOTI SRIA requires 
increased efficiency, scalability, resilience, and interoperability for the provided IoT and edge 
computing solutions. At the same time, the cycle of change must be made more efficient and 
shortened, rapidly identifying the most promising solutions, and promoting new ideas, concepts, 
and advanced technologies. 

The AIOTI SRIA describes some major research and innovation topics that the AIOTI stakeholders 
have identified and can be used as a basis to define next steps of the various European 
partnerships and research programmes across Europe. 

The AIOTI SRIA is composed of sixteen chapters focusing on the current technology layers and 
their technical challenges along the IoT/edge continuum. The chapters address the key 
technology building blocks as essential ingredients for the next generation edge IoT systems. 
These technology components, as part of integrated advanced heterogenous edge IoT 
systems, will provide some needed and unique features of future applications across industrial 
sectors. The intelligent connectivity, mesh networking, AI, digital twins, and software 
technologies are all part of the IoT edge continuum for implementing edge IoT systems of 
systems. The addressed topics are an integrated part of the IoT/edge continuum layered 
architecture to build the capabilities to advance the digital and green transformation in the 
future for the benefit of the whole society. 

The AIOTI SRIA is designed to be application domain and funding programme agnostic and can 
be utilised as a foundation for different industrial vertical applications and as input to the various 
cooperative work programmes across Horizon Europe, Digital Europe and the European 
partnerships. 
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2. IoT and Edge Computing Technological Research and Innovation 

IoT and edge computing research and innovation address IoT/edge continuum distributed 

architectures, intelligent connectivity, E2E security, heterogenous IoT edge mesh, IoT digital 
twins, AI, IoT swarm systems, Internet of Things Senses (IoTS), trustworthiness, verification, 
validation, testing, standardisation, and the convergence of all the above into the Internet of 
Intelligent Things.  

IoT and edge computing will see innovation and broad adoption in consumer and industrial IoT 
vertical sectors, enabling better security practices and reducing connectivity costs. 

The overall topics addressed by the AIOTI SRIA document are illustrated in Figure 1. 

 

 

Figure 1 Edge IoT research and innovation topics 

 

The IoT devices, mobile computing units, and fleets of these interconnected devices are 
evolving, and the information generated and exchanged by these devices grow significantly 
at the network edge. Consequently, the constraints due to extremely high latency and network 
bandwidth usage will limit the transfer of these massive volumes of data to the cloud. Using AI 
processing capabilities at the network edge can unleash the potential of data generated by 
sensors and devices. 

Processing data at the edge brings several benefits, such as reducing latency, needed 
bandwidth, deployment and equipment costs, power consumption and memory footprint, as 
well as increasing security and data protection. 
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The increased computing capabilities at the edge require newly advanced, efficient, and 
specialised processing architectures, in the mid-long term made of a heterogeneous mix of 
different computing modules interacting together on demand (Field Programmable Gate 
Arrays (FPGA), x86-based, ARM-based, neuromorphic-based, Graphic Processing Unit (GPU)-
based, AI-based-chips)1,2,3 to improve edge computing performances by several orders of 
magnitude and drastically reduce power consumption, and costs of maintenance and 
deployment. 

Digital transformation is advancing hyperautomation, which allows for automating the process 
in the all-industrial sectors. The adoption of hyperautomation aims to streamline processes across 
the operations using edge processing, IoT, AI, robotic process automation, and other 
technologies to run with minimum or without human intervention. 

Hyperautomation enables the use of multiple tools that allow intelligent automation, including 
Machine Learning (ML) and connected autonomous IoT systems to scale automation 
application. The resulting systems are both cross-functional and scalable. 

The advancement in edge IoT systems is accelerated by the developments in connectivity mesh 
that provides local network topologies in which the infrastructure IoT nodes connect directly, 
dynamically, and non-hierarchically to other nodes and cooperate with them to route efficiently 
data to and from the networked IoT devices. This topology allows for implementing distributed 
edge IoT processing capabilities, and the lack of dependency on one node allows for every 
node to participate in the relay of information.  

Mesh networks dynamically self-organise, self-heal, and self-configure, thus drastically reducing 
installation and maintenance overheads. The ability to self-configure enables the dynamic 
distribution of edge AI workloads, particularly when a few IoT devices fail, contributing to fault 
tolerance and reduced maintenance costs. Mesh networking increases the overall range of 

communication of every command sent back and forth to the objects in the network. This 
directly translates into an increasingly comprehensive range of possible action for the edge IoT 
devices. 

The IoT mesh networking advantages are the increase in the quality of communications 
proportionally with the density of nodes and the increase in the distance of communications 
from the gateway. The deployment topology can optimise the number of devices as each IoT 
node acts as a router and automatically commissions new nodes within the network space while 
implementing network auto-repairs. 

The evolution of IoT systems from centralised, cloud-based to decentralised and distributed 
edge-based brings new trends in implementing the concept of cybersecurity mesh developed 
alongside edge IoT technologies, to provide a holistic approach to network and IoT applications 
security that integrates different, independent security services into a flexible distributed 
architecture. Edge AI devices are independently protected using security solutions tailored to 
their processing capabilities, providing more local control and better overall protection.  

  

 

 

1 T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta and D. Sabella, "On Multi-Access Edge Computing: A Survey of the Emerging 5G Network Edge Cloud 
Architecture and Orchestration," in IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1657-1681, third quarter 2017, doi: 
10.1109/COMST.2017.2705720. 

2 P. Ramachandran, S. Ranganath, M. Bhandaru and S. Tibrewala, "A Survey of AI Enabled Edge Computing for Future Networks," 2021 IEEE 4th 5G World 
Forum (5GWF), Montreal, QC, Canada, 2021, pp. 459-463, doi: 10.1109/5GWF52925.2021.00087. 

3 F. Shirin Abkenar et al., "A Survey on Mobility of Edge Computing Networks in IoT: State-of-the-Art, Architectures, and Challenges," in IEEE Communications 
Surveys & Tutorials, vol. 24, no. 4, pp. 2329-2365, Fourth quarter 2022, doi: 10.1109/COMST.2022.3211462. 
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The design and adoption of potentially new access technologies, in additional to the several 
ones that already exist at the edge (LoRA, Zigbee, SigFox, Wi-Fi, and Cellular), and of optimized 
protocols for distributed and device-to-device communications, will be needed to allow for the 
support of an always increasing heterogeneity of types of devices deployed at the edge. 

To that extent, successful alignment within the broad ecosystem of standardization of such 
technologies and protocols, like the Multi-Access-Edge Computing (MEC) standard driven by 
ETSI, or other standards from 3GPP and IEEE just to mention a few Standard Developing 
Organizations (SDOs), will be a key aspect for a successful adoption of forthcoming technologies 
for the benefit of the broader society. European associations like AIOTI will be instrumental in 
playing a pivotal role in creating this consensus, thanks to the work done in pre-standards Work 
Groups like AIOTI Standardization. 

Future developments in wireless communication technologies are opening the door for more 
advanced edge IoT devices and data traffic. The trend accelerates the adoption of edge 
computing processing in IoT applications, making it easier to process data faster and closer to 
the data collection and action infrastructure functions, requiring processing enhancements 
through edge AI. The AI algorithms can leverage ML and more advanced techniques like DL 
and continuous learning4, allowing the IoT applications to extract more value from their large 
volumes of data. 

AI is more and more a fundamental ingredient of edge IoT, supporting IoT data analysis in data 
preparation, discovery, streaming, time series accuracy, predictive and advanced analytics, 
and real-time localisation and processing. 

Edge IoT DT technology will further develop into an edge metaverse by integrating new virtual 
and soft sensor concepts, thus rapidly becoming an essential technology enabler for needed 
improvements in several important vertical sectors, e.g., making manufacturing more efficient 

and profitable. DTs will become an integrated part of the edge industrial IoT solutions using data 
integration and analysis, mostly needed in interconnected manufacturing processes5. 

The advances in edge processing capabilities require that sensors are increasingly improved 
with key IoT sensor technology innovations, including increased computing capacity and the 
ability to detect signals from multiple sensing elements. The increased processing capabilities 
and edge AI techniques allow the sensors to process signals directly (e.g., validating and 
interpreting the data, displaying the results, or running specific analytics applications). Edge IoT 
devices are more and more broadly incorporating AI into their design. They are used for AI 
inference, allowing decisions to be made immediately and sensitive data to be processed 
locally thus also increasing security protection and system robustness to external attacks. 

The edge IoT devices will make more efficient use of edge computing, as the technology that 
distributes the processing load and moves it closer to the edge of the network and in the 
proximity of the sensors that collect data. This will further minimise latency, conserve network 
bandwidth, securely collect large amounts of data, and process the data closer to the sources, 
thus allowing for better analysis and insights into local data. 

  

 

 

4 R. Hadsell, et Al., "Embracing Change: Continual Learning in Deep Neural Networks,", Trends in Cognitive Sciences, Volume 24,  Issue 12, 2020, 

https://doi.org/10.1016/j.tics.2020.09.004. 
5 A. Arora and R. Gupta, "A Comparative Study on Application of Artificial Intelligence for Quality Assurance in Manufacturing," 2022 4th International 

Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 2022, pp. 1200-1206, doi: 10.1109/ICIRCA54612.2022.9985522. 
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Edge computing furthermore makes on-edge device AI more attractive for different 
applications by leveraging real-time datasets6. This trend will facilitate a balance between the 
cloud and more distributed edge processing for most IoT services and applications. 

This trend will be strengthened by the fact that HW manufacturers are starting to build specific 
infrastructure for the edge, designed to be more physically rugged and secure. At the same 
time, security providers offer endpoint security solutions to existing services to prevent data loss, 
give insights into network health and threat protection, include user control, and that accelerate 
the adoption and spread of edge computing implementations by IoT applications. 

Security issues are becoming increasingly important, and IoT applications will have to ensure 
security and compliance on various levels, including data encryption, active consent, multiple 
means of verification and other mechanisms7. These enhancements will allow collecting data 
at the edge legitimately and keep the burden of operations like access, processing, and 
storage to a minimum, anyway, dictated by the running IoT application. 

Energy harvesting and energy efficiency will continue to be IoT edge system design priorities. 
Once deployed, they will lead to changes in sensor design, AI algorithms, processing, and 
communication units, making the edge IoT devices more power-efficient by using small ultra-
low-powered microcontrollers. This trend will also improve the overall signal-to-noise ratio, by 
including signal processing components that manage to filter out noise or adding interferences 
that make the signal processing much more energy efficient. 

Another interesting research vector is represented by the integration of different types of soft 
and virtual sensors into the edge IoT DTs8. The soft sensor will implement computational 
algorithms that estimate the value of a desired quantity based on other existing physical sensors 
and algorithms/computational models, that infer the value of the measured quantity. The virtual 
sensors will provide estimated values based on the data from physical sensors, combined with 

novel algorithms and computational models. 

As the mesh wireless technology advances, there will be a shift from the intelligent edge onto 
the intelligent mesh and security mesh, embedded in the edge architecture allowing the 
implementation of more responsive edge IoT systems. 

.  

 

 

6 Dhiraj Joshi; Nirmit Desai; Shyama Prosad Chowdhury; Wei‐Han Lee; Luis Bathen; Shiqiang Wang; Dinesh Verma, "AI at the Edge: Challenges, Applications, 

and Directions," in IoT for Defense and National Security, IEEE, 2023, pp.133-160, doi: 10.1002/9781119892199.ch9. 
7 M. Caprolu, R. Di Pietro, F. Lombardi and S. Raponi, "Edge Computing Perspectives: Architectures, Technologies, and Open Security Issues," 2019 IEEE 

International Conference on Edge Computing (EDGE), Milan, Italy, 2019, pp. 116-123, doi: 10.1109/EDGE.2019.00035. 
8 L. Cristaldi, A. Ferrero, M. Macchi, A. Mehrafshan and P. Arpaia, "Virtual Sensors: a Tool to Improve Reliability," 2020 IEEE International Workshop on 

Metrology for Industry 4.0 & IoT, Roma, Italy, 2020, pp. 142-145, doi: 10.1109/MetroInd4.0IoT48571.2020.9138173. 
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3. IoT and Edge Computing Granularity 

The concept of data processing, analysis and storage using the centralised cloud computing 

paradigm, comprising of a set of technologies, infrastructure, services, and applications, is no 
longer aligned with the always increasing demand of cellular, e.g., massive Machine Type 
Communication (mMTC), services and wireless intelligent connectivity usage scenarios9. Such 
scenarios aim at ensuring that the always growing number of IoT devices connected to the 
network can operate according to their specification, do not operate under conditions limiting 
the capabilities, and fulfil the expected Quality of Service (QoS). A new approach is therefore 
looked for, so to avoid creating silos and issues regarding both connectivity and real-time data 
processing and storage. 

Edge computing provides the mechanisms for distributing data processing and redefines the IoT 
landscape by moving data processing and analytics at the edge by using AI/ML techniques 
and ensuring an advanced level of embedded security.  

Edge computing allow an effective deployment of real-time applications, considering that the 
processing is performed close to the data source. It also reduces the order of magnitude of 
transmitted data, by not transmitting the extensive amount of raw data created by IoT devices, 
rather just sending smaller amount of data, thanks to storage and local processing capabilities.  

Several benefits can be derived by this approach, e.g., a decrease in needed communication 
bandwidth and data storage requirements, as well as in the data attack surface, thus Improving 
security, privacy data protection, and finally also reducing the overall energy consumption. 

Edge computing solutions are implemented through different deployment forms such as 
cloudlet10, dew11, mobile edge12, fog computing13, etc., that have been developed over the 
last few years. 

3.1 Technological developments 

Edge computing is defined as a paradigm that can be implemented using different 
architectures built to support an IoT distributed infrastructure of data processing (signals, image, 
voice, etc.) with edge IoT devices operating close to the points of collection (data sources) and 
utilisation. The edge computing distributed paradigm provides computing capabilities to the IoT 
nodes and devices of the edge of the network (or edge domain) to improve the performance 
(energy efficiency, latency, etc.), operating cost, security and reliability of applications and 
services. Edge computing performs data analysis by minimising the distance between IoT nodes 
and devices and reducing the dependence on centralised resources that serve them while 
minimising network hops.  

  

 

 

9 B. Raaf et al., “Key technology advancements driving mobile communications from generation to generation”, in Intel Technology Journal 18 (1), 2014. 

10 D. Bhatta and L. Mashayekhy, "Physics-Inspired Mobile Cloudlet Placement in Next-Generation Edge Networks," 2022 IEEE International Conference on 
Edge Computing and Communications (EDGE), Barcelona, Spain, 2022, pp. 159-168, doi: 10.1109/EDGE55608.2022.00031. 

11 Z. S. Ageed, S. R. M. Zeebaree, M. A. M. Sadeeq, R. K. Ibrahim, H. M. Shukur and A. Alkhayyat, "Comprehensive Study of Moving from Grid and Cloud 
Computing Through Fog and Edge Computing towards Dew Computing," 2021 4th International Iraqi Conference on Engineering Technology and Their 
Applications (IICETA), Najaf, Iraq, 2021, pp. 68-74, doi: 10.1109/IICETA51758.2021.9717894. 

12 J. Lee and W. Na, "A Survey on Mobile Edge Computing Architectures for Deep Learning Models," 2022 13th International Conference on Information 
and Communication Technology Convergence (ICTC), Jeju Island, Korea, Republic of, 2022, pp. 2346-2348, doi: 10.1109/ICTC55196.2022.9952954. 

13 I. Martinez, A. S. Hafid and A. Jarray, "Design, Resource Management, and Evaluation of Fog Computing Systems: A Survey," in IEEE Internet of Things 
Journal, vol. 8, no. 4, pp. 2494-2516, 15 Feb.15, 2021, doi: 10.1109/JIOT.2020.3022699. 
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IoT edge computing capabilities include a steady operating procedure across different 
platform infrastructures to deliver processing services to remote IoT devices, application 
integration, orchestration, and service delivery requirements. The edge computing technologies 
are meant to properly consider hardware (HW) limitations and cost constraints, to effectively 
handle limited or intermittent network connections, and to implement methods to satisfy the 
most diverse requirement sets, e.g., IoT applications requiring low latency or greatly differing in 
data rates. 

For intelligent IoT applications, the edge computing concept is mirrored in the development of 
different edge computing levels (micro, deep, meta), that incorporate the computing and 
intelligence continuum from the sensors/actuators, processing units, controllers, gateways, on-
premises servers to the interface with multi-access, fog, and cloud computing. 

Edge IoT devices and their functions cover the edge computing, communication, and data 
analytics capabilities, so to make it possible to call such devices smart or intelligent. An edge IoT 
device is designed around the computing units (CPUs, GPUs/FPGAs, ASICs platforms, AI 
accelerators/processing), communication network, storage infrastructure and the applications 
(workloads) that run on it. 

The edge domain can scale from a few IoT devices to tens of thousands of IoT devices, 
distributed in different locations with a unique identity. The IoT devices in the edge computing 
environment are physically separated and connected using wireless or wired connections in 
different kinds of topologies, e.g., by using a mesh network14. The IoT edge devices can even 
operate semi-autonomously, especially in the case of sensors spread in remote locations, using 
remote management administration tools. 

The edge devices can be optimised based on different aspects, like processing, memory, 
energy, connectivity, size, cost. Their performance and capabilities are of course constrained 

by these parameters.  

A description of the micro-, deep- and meta-edge concepts is provided in the following sections 
and aligned with other European partnerships15. The granularity of the edge computing 

environments is illustrated in Figure 2. 

 

Figure 2 Edge computing granularity across the computing continuum 

The micro-edge describes the intelligent sensors, machine vision, and IoT devices that generate 
insight data and are implemented using microcontrollers built around processors that can well 

 

 

14 Karthika K.C, "Wireless mesh network: A survey," 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), 
Chennai, India, 2016, pp. 1966-1970, doi: 10.1109/WiSPNET.2016.7566486. 

15 Vermesan, O., Pétrot, F., Coppola, M., Schneider, M. and Höß, A. (Authors). Industrial AI Technologies for Next-Generation Autonomous Operations with 
Sustainable Performance, in "Intelligent Edge-Embedded Technologies for Digitising Industry" (Chapter 1), River Publishers Series in Communications, June 
2022. ISBN: 9788770226110, e-ISBN: 9788770226103. Online at: https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770226103C1.pdf 

https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770226103C1.pdf
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cope with costs and power consumption constraints. The distance from the data source 
generated by the sensors is minimised. The compute resources process this raw data in line and 
produce insight data with minimal latency. The HW devices of the micro-edge physical 
sensors/actuators generate from raw data insight data and/or actuate based on physical 
objects by integrating AI-based elements into these devices and running AI-based techniques 
for inference and self-training. Intelligent micro-edge allows IoT real-time applications to 
become ubiquitous and merged into the environment where various IoT devices can sense their 
environments and react fast and intelligently with a very low power budget energy-efficient 
gain. AI capabilities integrated into IoT devices significantly enhance their capabilities 
(functionality, performances, low latency, low power consumption, high processing power) and 
usefulness, especially when the full power of these networked devices is harnessed – a trend 
called AI on edge16,17,18.  

The deep-edge comprises intelligent controllers like Programmable Logic Controllers (PLC), 

Supervisory control and data acquisition (SCADA) elements, machine vision connected 
embedded systems, networking equipment, gateways and computing units that aggregate 
data from the sensors/actuators of the IoT devices that generate data. Deep edge processing 
resources are implemented with performant processors and microcontrollers such as Intel i-
series, Atom, ARM M7+, etc., including CPUs, GPUs, Tensor Processing Units (TPU), and ASICs. The 
system architecture, including the deep edge, depends on the envisioned functionality and 
deployment options considering that these devices' cores are controllers: PLCs, gateways with 
cognitive capabilities that can acquire, aggregate, understand, react to data, exchange, and 
distribute information19. 

The meta-edge integrates processing units, typically located on-premises, implemented with 
high-performance embedded computing units, edge machine vision systems, edge servers 
(e.g., high-performance CPUs, GPUs, FPGAs, etc.) that are designed to handle compute-
intensive tasks, such as processing, data analytics, AI-based functions, networking, and data 

storage20. 

This classification is closely related to the distance between the data source and processing, 
impacting overall latency. A high-level representation of the edge cloud continuum is 

represented in Figure 3 and a rough estimation of the communication latency and the distance 
from the data sources are presented below. 

 

Figure 3 Edge cloud continuum representation 

• Micro-edge latency below 1 ms, range from mm to 15 m. 

• Deep-edge latency below 2-5 ms, range up to 1 km. 

 

 

16 Vermesan, O., Pétrot, F., Coppola, M., Schneider, M. and Höß, A. (Authors). Industrial AI Technologies for Next-Generation Autonomous Operations with 
Sustainable Performance, in "Intelligent Edge-Embedded Technologies for Digitising Industry" (Chapter 1), River Publishers Series in Communications, June 
2022. ISBN: 9788770226110, e-ISBN: 9788770226103. Online at: https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770226103C1.pdf 

17 Dhiraj Joshi; Nirmit Desai; Shyama Prosad Chowdhury; Wei‐Han Lee; Luis Bathen; Shiqiang Wang; Dinesh Verma, "AI at the Edge: Challenges, Applications, 
and Directions," in IoT for Defense and National Security, IEEE, 2023, pp.133-160, doi: 10.1002/9781119892199.ch9. 

18 A. Munir, E. Blasch, J. Kwon, J. Kong and A. Aved, "Artificial Intelligence and Data Fusion at the Edge," in IEEE Aerospace and Electronic Systems Magazine, 
vol. 36, no. 7, pp. 62-78, 1 July 2021, doi: 10.1109/MAES.2020.3043072. 

19 Vermesan, O., Pétrot, F., Coppola, M., Schneider, M. and Höß, A. (Authors). Industrial AI Technologies for Next-Generation Autonomous Operations with 
Sustainable Performance, in "Intelligent Edge-Embedded Technologies for Digitising Industry" (Chapter 1), River Publishers Series in Communications, June 
2022. ISBN: 9788770226110, e-ISBN: 9788770226103. Online at: https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770226103C1.pdf 
20 Vermesan, O., Pétrot, F., Coppola, M., Schneider, M. and Höß, A. (Authors). Industrial AI Technologies for Next-Generation Autonomous Operations with 
Sustainable Performance, in "Intelligent Edge-Embedded Technologies for Digitising Industry" (Chapter 1), River Publishers Series in Communications, June 
2022. ISBN: 9788770226110, e-ISBN: 9788770226103. Online at: https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770226103C1.pdf 

https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770226103C1.pdf
https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770226103C1.pdf
https://www.riverpublishers.com/pdf/ebook/chapter/RP_9788770226103C1.pdf
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• Meta-edge latency below 10 ms, range up to 50 km. 

• MEC latency 10-5 ms, range up to 75 km. 

• Fog latency 10-20 ms, range up to 100 km. 

• Far-edge latency 20-50 ms, range up to 200 km.Cloud and data centres latency 50-100 
ms, range up to 1000 km.  

IoT application deployments at the edge can provide more energy-efficient processing 
solutions by integrating various computing architectures at the edge (e.g., neuromorphic 
chips, CPUs, GPUs, ASICs, FPGAs), reducing data traffic and data storage.  

Edge computing reduces the latency and bandwidth constraints of the communication 
network and Internet connectivity by processing locally and distributing computing resources, 
intelligence, and software stacks among the computing network IoT devices. 

3.2 Main Trends, Issues and Challenges 

Edge computing moves service provisioning closer to producers and users of such services. It 
provides low-latency, mobility support, data analytics close to the data source, and reduced 
energy consumption. 

In IoT, there are many expectations for AI-based applications. AI processing happens mainly in 
the cloud.  

With the improvement of AI enabling technologies, AI processing is moving into IoT devices. 
Intelligent edge devices will integrate software to train the AI model for different applications 
and executable software that runs the AI algorithms on the IoT devices. 

Machine Learning (ML) and Deep Learning (DL) will have unique roles for intelligent IoT devices 
at the edge.  

As a subset of AI, ML enables machines to recognise patterns and make predictions by analysing 
data instead of using explicit programming. For a higher level of accuracy, ML can be 
upgraded to DL. 

DL is a class of ML algorithms that progressively uses a hierarchy of multiple layers to extract 

higher-level features from the raw input.  

With DL, a computer can train itself with an extensive data set collected for this purpose. The 
result is an Artificial Neural Network (ANN) that contains all the information to carry out the task. 
The ANN uses the knowledge acquired in training to infer data features from new incoming 
data. 
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Achieving a middleware architecture that integrates all the levels of the edge granularity and 
manage to effectively handle heterogeneous IoT resources, including networking and 
computing, is a new challenge for IoT/edge computing, leading to a unified networking and 
computing architecture. 

Deployment of DL at the IoT edge has several challenges such as identification of leading 
performance indicators of edge DL algorithms, exploitation of trade-offs between the indicators 
to improve the efficiency of the algorithms, effective combination of the simplified DL models 
at the IoT edge with the DL model in the cloud, coordination between training and inference 
and energy-efficient deployment of DL at the IoT edge. 

3.3 Research Priorities Timeline 

Table 1 IoT and edge computing research priorities 

Topic 
Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

AI 

Develop effective AI-based 
solutions that can exploit the 
benefit of DL and Federated 
Learning In different ways for 
the different needs of the Edge 

Granularity 

How to deliver an IoT/edge-
cloud continuum that takes 
care of all the specificities of all 
the Involved layers in a smooth 

way. 

Distinction of the several Edge 
Granularity totally transparent 
to both systems and humans 
(final users). 

Accelerators 

Adapt, by using dedicated 
accelerators like ASICs or 
reconfigurable ones like FPGAs 
(depending on the constraints 
and requirements in focus), the 
different needs of the different 
edge granularity. 

Exploit the smaller technology 
node so to embed in edge 
devices advanced 
accelerators functionalities. 

No distinction possible anymore 
between FPGA and dedicated 
HW. 

New HW 

architectures 

Promising new pre-commercial 
architectures (like 
neuromorphic computing ones) 
will be assessed against existing 
traditional architectures based 
on CPU/GPUs or vector 
processors. 

Edge devices containing novel 
HW architectures that can run AI 
algorithms so to achieve better 
results than the currently existing 
HW architecture based on CPU 
and GPU. 

Synergy between legacy and 
novel architectures and usage 
of one or the other according to 
the real-time needs of the use 
case in focus, taking into 
consideration also real-time self-
adaptation to the different 
workloads. 

Security 

Design a secure-by-
construction distributed 
architecture that can impact all 
the different granularities of the 
Edge. 

Deploy such architecture across 
different verticals and industrial 
domains. 

Take on board quantum and 
post-quantum novel approach 
to ensure the highest possible 
security level at all layers and 
kind of devices in a transparent 
way for final users. 
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4. IoT Edge and X-Continuum Paradigm 

Distributed IoT digital platforms and infrastructures for collecting, processing, computing, 

communicating, and running analytics are evolving towards an interconnected ecosystem 
allowing complex applications to be executed from IoT edge to high-performance computing 
capabilities.  

The IoT digital continuum includes computing resources placed at optimal processing points in 
the IoT system from the cloud data centre to edge IoT systems and endpoint devices that 
integrate E2E capabilities such as sensing, processing, connectivity, computing, storage, 

intelligence, security, safety, and privacy as illustrated in Figure 4. 

 

Figure 4 X- continuum paradigm 

Implementing IoT E2E capabilities in such a distributed continuum is challenging and requires 
reconciling different application requirements and constraints with IoT infrastructure design 
choices including the energy consumption continuum. 

One main challenge in this domain is how to accurately reproduce relevant behaviours of IoT 
applications workflow and representative settings of the IoT physical infrastructure, including AI-

based learning/training and inferencing underlying the complex distributed continuum from 
micro-, deep-, meta-edge to cloud. 

4.1 Technological developments 

IoT data processing, computing and communication no longer lean only on traditional 
approaches that send all data to centralised cloud facilities for processing, rather leverage on 
the distributed resources close to where the data is generated, so to extract insights in real-time 
while keeping efficient resource usage and preserving security and privacy constraints.  

The IoT digital continuum seamlessly combines resources, processing, and storage capabilities, 
and services at the centralised cloud, IoT edge, and in-transit, along the distributed data path.  
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The development of different dedicated systems for data processing on each component of 
the continuum lacks a holistic approach and a trustworthy architecture for implementing future 
IoT ubiquitous computing systems. One of the main challenges in this context is related to the 
complexity of deploying large-scale, real-life IoT applications on such heterogeneous 
infrastructures, which breaks down to configuring many system-specific parameters and 
harmonising many requirements or constraints regarding processing, communication latency, 
storage, energy, network efficiency, interoperability, mobility, security, and data privacy.  

The IoT digital continuum requires an IoT digital infrastructure jointly used by complex application 
workflows, commonly combining real-time data generation, processing, computation, and 
analytics. 

The combined edge-cloud infrastructures deliver IoT applications' virtual distributed-centralised 
computing and storage resources to perform stream and batch analytics on comprehensive 
historical data, AI model training, and complex simulations. IoT edge infrastructures complement 
these virtual resources with distributed computing and storage capabilities close to IoT intelligent 
devices that sense the environment. 

The IoT elements include nodes, programable logic controllers, gateways, routers, micro-servers, 
and embedded high-performance units distributed across the edge continuum and used for 
final or in-transit processing on data aggregated from multiple IoT edge devices to reduce 
further data volumes that need to be transferred and processed in the clouds and data centres. 

Lightweight frameworks, based on message brokers using IoT lightweight protocols, enable 
distributed and hierarchical processing and intelligent aggregation, minimising latency, and 
bandwidth usage. 

The IoT digital continuum requires an efficient architecture that focuses on both horizontal and 
vertical resource distribution in the IoT edge-to-cloud continuum to secure seamless E2E services 

across the whole continuum. As a result, IoT system architectures and management 
mechanisms are needed to seamlessly encompass computing, storage, and networking. 

4.2 Main Trends, Issues and Challenges 

The implementation of IoT continuum-X requires research that integrates ideally open-source 
intelligence tools, HW and SW platforms, and systems, thus addressing the non-functional 
aspects of IoT systems with multiple elements as part of the continuum-X. 

Another issue is how to guarantee embedded interoperability into continuum-X with transparent 
aggregation, distribution and logging of participants and system activities when using IoT 
distributed edge computing services.  

The research effort must address how to collect simultaneously a huge amount of data from a 
very disperse, heterogeneous and numerous numbers of sources when real-time decisions are 
to be taken. 

Future research activities include addressing the resource management for continuum-X 
capabilities by managing the resources on the processing points and identifying the optimal E2E 
capabilities and their relevance, depending on the IoT application context. 

Work is required on providing solutions for dynamic placement of edge computing platforms 
to minimise the network access delay depending on the context, IoT activity at the edge and 
IoT application scalability requirements. 
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Further research is needed to provide collaborative and hierarchical computing to distribute 
the IoT devices' workload among various distributed processing/computing points and allocate 
optimal resources to each device based on the continuum-X capabilities and requirements. 

The research in the following years should address the infrastructure edge and the device edge 
together and provide solutions for optimising the integration of the two. 

Research in context-aware, scalable heterogeneous continuum-X optimisation for IoT 
applications is required due to the tremendous diversity of workloads and applications being 
run across a variety of different IoT edge devices. 

Security, safety, and monitoring of critical E2E capabilities of IoT systems are essential for many 
IoT applications. The integration of solutions for addressing these elements of the continuum-X 
holistically into IoT platforms should be prioritised. 

To provide continuum-X implementation flexibility on different IoT platforms, new research 
directions should address developing and deploying containers at the edge that address 
challenges related to connectivity, distribution, and synchronisation, and leverage the different 
IoT architecture to deploy new solutions and applications. Developing edge AI for IoT 
applications requires offloading AI models learning/training to IoT devices to retrain the AI 
models locally with near real-time data collected by the IoT devices for efficient data 
processing.  

Future research is required to identify how the computational tasks, AI models, inputs, 
parameters, and weights, are instantiated on IoT devices considering the specific requirements 
for the continuum-X elements and how their allocation changes during execution.  

Addressing IoT distributed AI and federated learning/training considering the continuum-X 
elements requires defining a new generation of tools and mechanisms that enable fine-
granularity computation, processing, communication, coordination, and mobility management 

across the edge. 

Finally, new research approaches are required to address the fragmentation in IoT to tackle the 
E2E challenges, by providing several interoperable, integrated HW, software, and services 
approaches to address the continuum-X. 

4.3 Research Priorities Timeline 

Table 2 IoT edge and X-Continuum research priorities 

 

  

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Continuum 

refinement 

High-level IoT-edge-Cloud 
continuum solutions for basic 
services, protocols, and 
resource allocation. 

More refined continuum support 
of functionalities and lower 
layers management. 

Fully supported and smooth 
management of all the edge 
granularities, types, services 
resources, and functions, in a 
fully heterogeneous ecosystem. 

Common shared 

data space 

Definition of domain-specific 
edge IoT applications aligned 
to common European data 

spaces. 

Definition and implementation 
of common European data 
spaces. 

Fully compatible interwork of 
data spaces with all 
geographical areas. 

Instantiation 
Piecewise and vertical-specific 
instantiation of all kinds of 
resources. 

Coherent and homogeneous 
instantiation of all kinds of 
resources. 

No distinction between the 
kinds of resources, all are 
treated as If they were 
homogeneous and available 
everywhere. 
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5. Intelligent Connectivity 

Networks and connectivity are becoming more heterogeneous and IoT devices use more and 

more a variety of equipment with different wireless access technologies. With the constant 
increase of the numbers of users (new contracts) and especially of things (sensors, metering 
systems, mobile/static robots, vehicles, drones, etc.) joining each day the communication 
network, the need for a smarter and more effective way of handling the related growing data 
created by those devices is becoming more and more an issue that needs the attention of the 
IoT community. 

To handle such complexity and to manage in a smart way how the communication system can 
properly manage such an increasing amount of data (scalability problem), there’s the need to 
define and elaborate on the intelligent connectivity concept, to optimise the usage of the 
networks but also to decrease the overall energy consumption of the overall IoT system. 

Intelligent connectivity can be seen as the smooth synergy of different technologies and 
domains, so to offer final users of a communication system the best possible QoS, according to 
the given resource, available technology, and energy constraints. 

5.1 Technological developments 

With the technology miniaturization that still proceeds at almost yearly cadence, and recent 
advancements in battery technology, and the more effective use of out-of-device processing 
capability services and applications, it is possible to increase the number of functions and the 
communication capabilities of terminals, so to properly handle most of the issues described 
above and make intelligent connectivity finally a reality. 

The next wave of IoT devices at the edge will therefore use a kind of intelligent connectivity that 
relies on the consolidation and synergy of different communication technologies. Whereas the 

Internet is today the largest worldwide communication network, such intelligent connectivity for 
IoT still requires further development to allow high demand in bandwidth and quality in signals 
and protocols, in support of more critical content and data exchange.  

The requirements of real-time response may be, amongst others, safety and mission-critical (like 
in telemedicine, for example) and, consequently, IoT communications solutions are numerous 
and diverse: 

• Artificial Intelligence, especially when declined in distributed AI at the edge of the network, 
but also as a set of methods to more intelligently manage the huge and diverse amount of 
data created and consumed by terminals. 

• Advanced communication protocols: to accommodate the different needs of the different 

verticals that make use of the communication network, dedicated and always improving 
communication protocols are to be defined and deployed. Standards bodies constantly 
update and add new features to each new generation of the network they define. 

• Edge Processing: the need for low latency of several applications and the complexity of the 
data to be managed request that always more data shall be handled and processed as 
close as possible to the source and destination of that data, i.e., at the edge. The Multi-

Access Edge Computing (MEC) concept, in constant evolution, and its related features can 
be seen as a cornerstone in the quest for a more efficient data management at the Edge. 
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• Energy Consumption: this is a system parameter that becomes more and more important at 
each new generation of the communication network. Reason for that is not only the need 
for CO2 reduction to tame the disruptive climate change consequences, but also sheer 
economic reasons, as increasing the number of servers and chips needed to handle the 
raising amount of data exchanged in the world, implies a constant and steep raise of the 
energy demand to accommodate the needed QoS and reliability of such communications. 
Therefore, it is key that in the forthcoming Intelligent Connectivity paradigm low energy 
consumption is taken as a key design constraint for all new chips, platforms, and SW suites. 

• Spectrum management: with the introduction of several access technologies (LoRa, Wi-Fi, 

cellular, etc.) and the commercial availability of new spectrum bands for new application 
(mmWave bands under and above 100 GHz in addition to the standards sub-6 GHz bands), 
there is the need to make effective use of all the different bands now made available. That 
effective use has the advantage not only to increase the coverage, the resiliency, and the 
performance, but also, to enable offering the lowest energy consuming access technology 
in a specific vertical use case, also reducing in a dynamic way the energy consumed to 
deliver a specific service. Dynamic usage of different kind of spectrum, of non-adjacent 
bands, and even mixing different bands coming from different access technologies, based 
on local availability, will change the way services can be delivered from the cost and from 
the quality points of view. Finally, it is worth mentioning that also drones and satellite accesses 
and related bands will soon be broadly available for commercial use, and the availability of 
coverage everywhere will change the way we think of connectivity and related services. 

• Multi-Access capable devices: to deliver higher QoS, to handle the communication 

bottlenecks (both in the front- and the back-haul) in highly densely populated areas, and to 
fulfil Key Performance Indicators (KPI) of the applications requesting a huge amount of 
bandwidth, e.g., for Augmented Reality / Virtual Reality (AR/VR) services, the need of a 
handset capable of making use of the most suitable available access technologies and 
bands is becoming more and more important. 

• Seamless connectivity broker: that is needed to optimise the connectivity to a specific 

network, according to several technical and business parameters. The seamless roaming 
should avoid that data get lost during the switching procedure; AI/ML technologies should 
also contribute to make the most relevant choice. 

An essential characteristic of the next generation IoT is the requirements range from high 
reliability and resilience in the communication network to ultra-low latency and increased 
capacity at the communication channel. IoT Intelligent Connectivity solutions are also very 
dependent on the context in which they are applied and whether it is necessary to respond to 
strict energy efficiency constraints or cover large outdoor areas, deep indoor environments or 
vehicles moving at high speeds. 

5.2 Main Trends, Issues and Challenges 

The next-generation IoT must address the convergence between different cells and radiation 
and develop new management models to control roaming while exploiting the coexistence of 
many different cells and radio access technology (RAT). New management protocols to handle 
user assignments regarding cells and technology will have to be deployed in the mobile core 
network to access network resources more efficiently.  
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Satellite communications is becoming a commercial reality and is to be considered as a new 

RAT, especially in remote (white spot/blind spot/not spot) areas. With the emergence of safety 

applications, minimising latency and various protocol translations bring tangible benefits to E2E 

latency. 

AI/ML will bring significant disruption to future networks from impacting the design of air 
interface, data processing, network architecture and management towards computing for 
achieving superior performance. It will become essential for E2E network automation dealing 
with the complexity of orchestration across multiple network domains and protocol layers. 

Network intelligence will help to improve energy efficiency and ensure service availability by 
performing optimisations challenging for traditional algorithms with AI/ML approaches and 
carrying out system management tasks autonomously with AI/Machine Reasoning (MR). 

An autonomous system can only be successful if trusted by humans and can be understood 
and explained. It is highly critical to establish suitable mechanisms for explainable AI and 
trustworthy AI.  

For example, the system needs to be able to explain its actions and why it ended up in its current 
state; the intelligent system should i) act lawfully, respecting all applicable laws and regulations, 
ii) be ethical, respecting the right principles and values, and iii) be technically robust while 
considering its impact on the social environment. 

At the edge of network coverage, a temporary network coverage extension might be required 
to provide connectivity between several autonomous vehicles during operation. The 
connectivity should remain even when the vehicle platoon leaves the network coverage 
entirely while still in operation. 

Industrial vehicle manufacturers can have fleets of shop-floor vehicles deployed in a factory. 

While all or some of them are connected to the wide-area network, the application may require 
having reliable networking solutions between the vehicles not using the local network, i.e., using 
a non-public-network (NPN), a local private infrastructure-less network being established.  

This network might have authorised access to the spectrum of a local NPN or a public network; 
thus, external network control should be enabled. an important part of this scenario is also 
Device-to-Device (D2D) communication, a feature which exists in 5G, and will be further 
enhanced in the forthcoming generation of standards. 

Mesh networks, multi-D2D might be different options for implementation. In many scenarios, 
temporary, ad-hoc security solution deployments are required. Networking islands of several 
devices re-joining the cellular networks shall be seamlessly re-integrated. D2D could be seen as 
a first step, and Data Management Object (DMO) solutions are known from several standards. 

The mesh wireless networks provide simpler topology using direct communication between 
edge IoT devices, increase stability as single points of failure don't damage the whole network 
and increase the range. The mesh topology ensures better security with lower power 
consumption for each edge IoT node. 
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The challenges that need to be addressed in developing the next-generation wireless mesh 
technologies are related to cost, scalability, latency, and complexity. 

In this context more research effort must be spent in finding new solutions for providing 

interoperability between edge IoT devices and platforms in the direction created by Matter21 

and Thread22.  

Matter allows the edge IoT devices to work offline without requiring continuous access to the 
cloud and different cloud services. Matter strengthens the wireless connectivity landscape 
covered by protocols such as Zigbee, Z-Wave, Bluetooth, and Wi-Fi. This is an important 
development considering the evolution of Wi-Fi 6, Wi-Fi 6E and Wi-Fi 7and the use of 2.4/5/6 GHz 
bands. 

 

Figure 5 Matter and Thread edge IoT connectivity. 

Wi-Fi is based on the IEEE 802.11ax or 802.11ax-2021 specification and branded as Wi-Fi 6 by the 
Wi-Fi Alliance and can operate in license-exempt bands at 2.4 GHz, 5 GHz, and 6 GHz.  

Further improvements gave room to a newer release, called Wi-Fi 6E23 (where E stand for 
Extended), the main innovation of which is to leverage the 6 GHz band for unlicensed operation, 
the availability of which strongly depends on country-specific regulations. 

Wi-Fi 7, Wi-Fi Extreme High Throughput, based on the IEEE 802.11be standard is bringing further 
improvements such as increased throughput: from 9.6 Gbps of Wi-Fi 6 to 46 Gbps, support of 320 
MHz channels, Multi-Resource Unit (RU) (also known as puncturing), allowing to exploit non-
contiguous spectrum bands and deterministic low latency.  

  

 

 

21 https://csa-iot.org/  

22 https://www.threadgroup.org/  

23 https://www.wi-fi.org/  

https://csa-iot.org/
https://www.threadgroup.org/
https://www.wi-fi.org/
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Wi-Fi 7 continue the work to enhance support for IEEE TSN (Time-Sensitive Networking) 
capabilities. Existing Time Sensitive Networks (TSN) features, such as time synchronisation and 
scheduling, will be improved in the future with a higher degree of determinism and higher 
reliability. 

Thread is a low-powered mesh-based wireless protocol that complements Matter by creating a 
low-latency offline environment that instantly sends and receives data across devices. The 
Thread wireless protocol into the mix can also achieve complete offline computing within your 
local mesh network of IoT devices. 

A future connectivity challenge for edge IoT is to facilitate seamless roaming between available 

connectivity (5G, Wi-Fi, LoRa, etc.). A device should be able to connect to the most suitable 

network given the connectivity requirements (latency, bandwidth, security, energy 

consumption, etc.) but also the cost, the location, and the end user preferences. 

The concept should be optimised and aligned with the approach proposed by 3GPP called 
access network discovery and selection function (ANDSF) that should be extended to IoT 
Networks. Such connectivity broker / ANDSF should take advantage of AI/ML technologies to 
optimise the choice and avoiding extensive roaming. 

5.3 Research Priorities Timeline 

Table 3 Intelligent connectivity research priorities 

  

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Mesh 

connectivity 

Extend the mesh connectivity to 

different protocols e.g., LoRA  
2.4GHz and dual-band 
transceivers, low-power and 
higher data rates. 

Wi-Fi development and 
enhance support for TSN for 

industrial environments. 
 
AI-based cognitive solutions for 
mesh network management 
and mesh topology scalability. 

Mult-protocol, multi frequency 
modules for autonomous edge 
IoT devices and vehicles. 
Seamless wireless/cellular 

connectivity for autonomous 
distributed systems. 
 
Ultra-low power, higher data 
rate mesh heterogenous mesh 
network architectures. 

Interoperability 

Seamless roaming between 
available wireless (including 

cellular) connectivity. 
Interoperability solutions for 
edge IoT connectivity in 
heterogenous applications and 
across industrial sectors. 

E2E network automation and 
orchestration across multiple 

network domains and protocol 
layers. 
 
Interoperability solution for self-
configuration, self-healing 

Interoperability solution for high 
precision location and 
positioning services across 
heterogenous wireless networks. 

Satellite  

Advance the development on 
nanosatellites for IoT 

applications and the 
integration with terrestrial edge 
IoT infrastructure. 

Research on management 
protocols deployed in the 
mobile core network to increase 

the efficiency of accessing 
network resources and reduce 
the energy consumption. 

Satellite-cellular-wireless 

continuum for edge IoT 
applications. 
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6. Energy-Efficient Intelligent IoT and Edge Computing Systems 

The number of IoT applications is constantly increasing, due to the fact that more and more IoT 

devices are being deployed in different industrial sectors.  

Such IoT applications are consuming increasing amounts of energy, and new technologies and 
methods need to be developed to increase the energy-efficiency of the IoT devices, AI 
algorithms, architectures and IoT systems to reduce the overall power consumption. 

Next-generation IoT edge applications and networks need greater flexibility to implement edge 
utilisation mechanisms to maximise energy-efficiency, latency, processing, data transfer, and 
dependability. 

From the IoT system architecture perspective, the technological trend is to move the data 
processing and analysis from cloud to edge. This shift requires that the edge IoT devices in the 
edge micro-, deep- and meta-edge domains (e.g., sensors/actuators, microcontrollers, end-
devices, gateways, edge servers) become more energy-efficient and support AI techniques at 
low power consumption to ensure high autonomy/longer battery life, system availability and 
reliability. 

To make such shift happen, a new generation of more performant processing units and new 
architectures (e.g., neuromorphic and hybrid) are needed, which can guarantee the best 
trade-off between communication power and ultra-low power consumption and increased 
intelligent processing needs. 

6.1 Technological developments 

The move of the data processing to the edge and the implementation of distributed IoT 
computing architectures require optimising the location of processing and the transfer of 
intelligence where the application needs it (e.g., micro-, deep, meta-edge). 

Energy-efficient and green IoT requires a holistic E2E strategy through the IoT architectural layers 
across the information value chain to address the entire edge IoT systems energy-efficiency 
continuum and energy management. This energy-efficient design optimisation is required for 
green IoT components and algorithms at each IoT architectural layer level.  

Combining energy-efficient AI and IoT technologies at the edge can maximise the IoT 
capabilities across the architectural layers and optimise the whole IoT system, including the 
application domain. 

Edge IoT and AI green designs (e.g. advanced and adequate semiconductor technologies, 
efficient design, energy-efficient SW/HW platforms) are needed for providing environmentally 
reliable components at all IoT architectural layers and functions, energy-efficient and low CO2 
footprint at IoT infrastructure and technical solutions (edge, hybrid edge-cloud, AI-based 
learning/training, etc.), and finally also allowing the deployment of green manufacturing (e.g. 
manufacture IoT electronic components, HW/SW platforms, and IoT systems with minimal or no 
impact on the environment). 

The implementation of green IoT and AI energy-efficient techniques and methods (optimisation, 
trade-off analyses among crosscutting functions/system properties vs. energy, green IoT/AI 
metrics, performance, measurement, testbeds, energy harvesting, wireless power transfer, etc.) 
depends on the functions performed by different HW/SW/algorithms components integrated 
into the IoT architectural layers. 
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These techniques include energy management, wake-up scheduling mechanism and selective 
sensing, HW/SW partitioning, energy-efficient methods/algorithms, communication techniques 
and distribution of task, efficient IoT nodes and resources on multi-core, minimisation of data 
path length, data buffer delivery, wireless communication, processing of trade-off 
communication.  

6.2 Main Trends, Issues and Challenges 

More edge IoT devices and applications are deployed together with intelligent edge IoT 
platform solutions used to collect, process, analyse the IoT device-collected data while making 
decisions and taking actions. AI is applied to most of these edge IoT devices to implement the 
future Internet of Intelligent Things. 

Wireless and cellular communication technologies enable for collection of even more 
significant amounts of data from intelligent edge IoT devices. 

The increase in the connected edge IoT devices, combined with the distributed computing 
model introduced by edge computing, reduce latency and the amount of data that needs to 
be sent between the central cloud and the edge IoT devices, saving bandwidth costs. 

The IoT edge model extends security benefits, and the localised edge processing allows 
autonomous control of devices when the communication networks are jammed, or the 
connection is lost. 

The capabilities, performance, responsiveness, and energy-efficiency of the IoT edge 
processing models are increased due to reduced data transmission and distributed processing. 

The next-generation IoT and AI edge solutions should focus on novel energy management 
techniques to select energy sources, energy harvesting techniques, HW/SW/algorithms 
optimisation for data sensing, monitoring, filtering, prediction, and compression. 

Processing combined with sleep/wake-up techniques, energy-efficient task scheduling 
algorithms, selection of Quality of Information (QoI), allocation of workload distribution at the 
edge are used together with wireless communication optimisation (send/receive), power down 
mechanisms to improve the energy-efficiency of IoT systems. 

The dynamic wireless network behaviour (e.g., IoT devices-move-in and IoT devices-move-out) 
is monitored, and the cooperation/information exchange between the edge IoT devices (with 
optimised green and energy profiles) is optimised to increase the overall IoT system energy-
efficiency. 

The integration of ML and AI methods support the optimisation of IoT/edge computing-based 
green and energy-efficient functions providing solutions for moving the processing optimally 
from cloud to the edge and decarbonising the whole value chain of IoT information. 

The optimisation for energy-efficiency and green IoT requires the use of federation and 
orchestrations techniques that create dynamic and distributed energy control frameworks for 
edge IoT applications. 

The implementation of energy efficient IoT intelligent search engines, cooling systems, and 
energy harvesting techniques and renewables must be considered when the HW/SW/algorithms 
components of the IoT application layer are evaluated. 

New IoT applications, including AR/VR, DTs, virtual simulations, real-time searching engines and 
discovery services, bring new challenges to optimising energy-efficiency as the virtual simulation 
and the AI, learning/training algorithms, are increasing the energy consumption of the whole IoT 
system that will have two components one physical and one digital/virtual. 
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The complexity of intelligent IoT applications at the edge requires designing, analysing and 
optimising the energy-efficiency at the IoT system level by considering the aggregation, over 
the technology stack, of the functions required to fulfil a given IoT task. This includes estimating 
the energy used for learning/training of different algorithms implemented in various IoT 
architectural layers, both during inference and learning by employing real data sets from 
different databases, the energy consumption of the edge IoT devices (micro-, deep-, meta-
edge), the energy consumption of the communication networks and the other processing and 
storage units by the IoT application, for performing different tasks and services. 

Currently, most of the embedded IoT devices and as well low-power IoT sensors are powered 
by batteries which need to be replaced every few years due to their limited lifespans. Usually, 
the replacement of these batteries can be costly and therefore solutions on enabling energy 
efficiency for communicating IoT devices and embedded systems can be very beneficial for 
the energy footprint of future IoT systems.  

One of the most promising approaches to remove the dependency of batteries is the harvesting 
of energy from naturally or artificially available environmental resources.  

Another approach is to increase the energy efficiency by decreasing the battery power 
needed by IoT devices and embedded systems. 

Further needed research activities include improved energy management approached to 
reduce the energy footprint of IoT devices and embedded IoT devices by enabling the use of 
both mentioned approaches: energy harvesting and increasing energy efficiency. 

6.3 Research Priorities Timeline 

Table 4 Energy-efficient intelligent IoT and edge computing systems research priorities 

  

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Energy 

harvesting 

Research on hybrid solutions 
combining ultra-low power 
connectivity with energy 

harvested from ambient radio 
frequencies (RF), thermal, 
kinetic, and photovoltaic (e.g., 
solar, and indoor/outdoor 
lighting) energy sources. 

Multi energy harvesting, wireless 

power for edge IoT devices. 
Energy harvesting solutions at 
mesh network edge IoT devices. 

Energy harvesting for edge IoT 
devices integrating positioning 

and sensing.  
Cognitive energy 
management orchestration in 
edge IoT systems for data 
processing energy optimisation. 

Energy-efficient 

hardware 

Research on the next-
generation of energy 
harvesting ultra-low-power 
devices with on-demand wake-
up feature integrated into edge 
IoT applications 

Edge IoT devices base on 
printed electronics (e.g., 
conductive inks, metal etching, 

laser-direct structuring (LDS) for 
printable circuits and batteries) 
to be embedded in objects and 
products. 
Energy harvesting for edge IoT 
devices integrating machine-
vision camera systems using AI 
and ML.  

Research on energy-harvesting 
interfaces for kinetic energy 
harvesting from heterogenous 
generators (piezoelectric, 
triboelectric etc.). 

Energy-efficient 

data 
processing 

System-level optimisation 
techniques combining lower 
power consumption and 
energy harvesting 
technologies. 
E2E energy methods and 
models for data compression 
and exchange in edge-cloud 

IoT platforms. 

Benchmarking methods for 
energy-efficient and low CO2 
footprint of edge IoT 
infrastructure and technical 
solutions. 

Energy-efficient data 
aggregation mechanisms in 
intelligent edge IoT systems 
considering the associated 
processing capabilities across the 
computing continuum. 
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7. Heterogeneous Cognitive Edge IoT Mesh 

IoT edge can be formed by a mesh network of intelligent IoT devices using edge IoT platforms, 

including AI model training and ML inference that process, analyse, store information locally 
close to the data sources, and communicate and exchange information with other edge 
devices, computing units and across the computing continuum, made of cloud platforms and 
data centres. 

Cognitive compute continuum applied in decentralised environments, including edge mesh 
infrastructures, can operate efficiently and reliably without a central entity for full knowledge 
and management about available resources and current workloads. 

Autonomous computing techniques and ML should be broadly applied, so to be able to adapt 
to unforeseen situations and anticipate future circumstances, such that the cognitive edge IoT 
devices become self-aware, self-managed, self-protected, self-healing, and self-optimising. 

7.1 Technological developments 

IoT and edge computing systems evolve around the fundamental context management 
processes: acquisition, modelling, reasoning, and distribution, while distributing the processes 
based on the context information.  

Novel IoT and edge computing designs bring innovative adaptive and behavioural-awareness 
capabilities to the IoT, so to set the foundations for developing the next-generation cognitive 
and self-adaptive IoT systems. 

The huge number of heterogeneous edge IoT devices need to be integrated into mesh 
networks, in which the infrastructure nodes connect directly, dynamically, and non-
hierarchically to other nodes and cooperate with one another to efficiently route data to and 
from edge IoT devices. 

The mesh network topologies allow multiple routes for exchanging information among 
connected nodes. The mesh approach increases the network's resilience in case of a node or 
connection failure.  

More extensive edge IoT mesh networks may include multiple routers, switches and other IoT 
devices operating as nodes. In heterogenous cognitive IoT networks, context-awareness is 
becoming critical for IoT systems as the processing is moving towards pervasive, swarm 
evolutionary computing. 

Resources and services are remotely accessed by edge IoT devices from anywhere in the 
network at any time. The environment in which data is exchanged and processed can change 
dynamically as different ad-hoc heterogenous networks are created.  

Creating self-configured mesh IoT networks, where things integrate self-perception and 
automated response, can support this. 

Embedding appropriate plug-and-play intelligent and autonomous edge IoT devices facilitate 
the transition into IoT networks with self-X capabilities (self-configuring, self-healing, self-
optimising, self-protecting, etc.). 

Such self-configured mesh IoT networks form a flexible architecture where things are active and 
locally integrate almost every functional and operational requirement.  
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The IoT end-devices can manage critical aspects such as security, safety, and trustworthiness 
and embed federated, decentralised ML and decision-making mechanisms, enabling 
disruptive cross-domain applications with high complexity and scale. 

The security techniques used by edge IoT devices can be crucial for obtaining contextual 
information from other end devices using a lightweight and E2E approach based on current 
standards (e.g., IETF OSCORE24). The process is linked to an initial bootstrapping by which a 
legitimate device can be successfully and securely deployed in the network.  

The modelling of context information should be based on current standards that guarantee the 
representation format's interoperability using flexible approaches (e.g., JSON-LD25, or additional 
representations based on CBOR26). In this case, the primary purpose is to achieve a trade-off 
between lightness and expressiveness to represent the dependencies among devices' 
contextual information. 

7.2 Main Trends, Issues and Challenges 

The evolution of IoT and edge computing system will be based on the integration of AI-based 
mechanisms. Moving part of the system intelligence down to the end devices brings a range of 
advantages and allows a widespread collective-intelligence web.  

The use of intelligence on the device (e.g., TinyML27 and other similar embedded ML 
applications, algorithms, HW, and SW) boosts the evolution of end devices to intelligent IoT 
objects that can offer, among other advantages, a much more autonomous behaviour. 

Integrating AI within edge IoT devices is one step towards developing cognitive and evolutive 

IoT systems. The integration of cognitive self-evolution capabilities in the entire E2E network chain 
(edge, dew, fog, and cloud) goes beyond the current limits of AI by permitting end devices 
and, by extension, the whole system to grow and refine its intelligence. 

The development of evolutive artificial cognitive mechanisms and their integration with the self-
x concepts pave the way for designing IoT devices and systems with increased intelligence that 
will permit them to meta-learn from new situations, scenarios, and environmental changes. 

The cooperation among individual meta-smart IoT objects can create a higher intelligence layer 
for tackling large-scale issues. The decision process is not isolated but starts from a complete 
view of the scenario and gathers collaborative efforts. 

The heterogeneous cognitive and mobile IoT edge mesh solutions utilise low-level IoT devices for 
the decision-making process, the gateway devices and the micro servers distributed across the 
edge continuum. The data collection, processing, and decision-making tasks are distributed 
among these edge devices within heterogeneous networks.  

The computation tasks and data are shared using a cognitive mesh network of edge IoT 
devices, gateways, and micro servers. Heterogeneous cognitive and mobile IoT edge mesh 
systems offer distributed processing, low latency, fault tolerance, better scalability, security, and 
privacy. These features are essential for critical applications that need higher reliability, real-time 
processing, mobility support, and context awareness. 

  

 

 

24 https://datatracker.ietf.org/doc/rfc8613/  

25 https://json-ld.org/  

26 https://cbor.io/  

27 https://www.tinyml.org/  

https://datatracker.ietf.org/doc/rfc8613/
https://json-ld.org/
https://cbor.io/
https://www.tinyml.org/
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Distributed computations on edge IoT systems imply addressing heterogeneous cognitive 

features for IoT applications and developing a fault-tolerant robust collective computing 

framework suited for multi-IoT device systems that include decentralised operations applied to 

dynamic environments. 

Mobile IoT edge mesh characteristics, such as scalability, heterogeneity, mobility, and 
ubiquitous networking, require a robust cooperative and cognitive computing framework that 
addresses the edge IoT systems characteristics, including new security solutions adequate to 
these new IoT-based systems. 

The research needs to provide IoT platform-agnostic solutions with scalable edge IoT devices in 
a self-healing and self-organising network. In a heterogeneous mesh network environment, 
communication and cognitive coexistence are critical to allow maximum robustness to RF 
disturbances and minimize negative effects due to the co-existence of various wireless and 
cellular networks. 

The cooperation between edge IoT devices and the dynamic communication infrastructures of 
the edge and swarm systems create the heterogeneous cognitive and distributed intelligence 
framework needed to optimally support edge IoT mesh applications. 

The heterogeneous cognitive and mobile IoT edge mesh research must address topics at the 
intersection between IoT, AI, connectivity, and edge computing. These topics relate to context 
awareness, autonomous control, ambient intelligence, semantic reasoning, and cognitive IoT 
to enable distributed intelligence in IoT. 

The edge IoT distributed intelligence must be addressed holistically by developing cognitive 
platforms integrating features such as distributed data collection, data analytics, networking, 
data management, edge IoT device management, resource management, service 

management, orchestration, and federated learning. 

Several research questions are related to defining the distributed mesh network and the 
cognitive computing model, the distribution of data processing, and the global optimisation 
(energy, processing, time, etc.) of communication and computation. New computation 
algorithms must be developed for distributed computing to be performed by the various 
heterogeneous, resource-constraint edge IoT devices operating with dynamic communication 
and intermittent connectivity. 
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7.3 Research Priorities Timeline 

Table 5 Heterogeneous cognitive edge IoT mesh research priorities 

 

  

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Architecture 

Architectural models and meta-
embedded operating systems 
with integrated stack for wireless 
mesh networking. 

AI-based cognitive mesh 
architectures that integrate 
components and modules 
addressing context awareness, 
autonomous control, ambient 
intelligence, semantic 
reasoning, and federated 

learning. 

Dynamic cognitive mesh 
architectures with AI and 
context-based configuration 
capabilities integrating features 
for swarm intelligence and 
distributed processing 
capabilities. 

Cognitive 

Capabilities 

Evolutive artificial cognitive 
mechanisms for edge IoT 
systems and the integration with 
mesh networks topologies. 

Development of new algorithms 
and SW/HW self-X capabilities. 

Integration of cognitive self-
evolution capabilities in the 
entire mesh network and across 
the edge granularity including 
scalable AI capabilities across 
the continuum. 

Computing 

Models 

Computation algorithms for 
distributed computing applied 
to different heterogeneous, 
resource-constraint edge IoT 
devices across the edge 
continuum. 

Heterogeneous cognitive edge 
IoT mesh frameworks integrating 
features such as distributed 
data collection, data analytics, 
networking, data 
management, edge IoT device 
management, resource 
management, service 

management, orchestration, 
and federated learning. 

Meta-mesh computing models 
for global optimisation (energy, 
processing, time, etc.) of 
distributed systems. 
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8. IoT Digital Twins, Modelling and Simulation Environments 

An IoT DT is a virtual representation of an IoT device that models the device's characteristics, 

properties, environmental conditions, behaviours, and functions over the operational lifetime, 
based on real-time data and information synchronised automatically and bi-directionally at a 
specified frequency and accuracy. An IoT DT uses simulation, ML, and reasoning to simulate 
various scenarios in different IoT applications and help optimise and improve the overall IoT 
system functionalities and services. 

The real-time feature represents a vital characteristic to define IoT DTs, considering that the real-
time instances vary according to IoT applications. In many IoT applications, time values are not 
defined identically, and such issue should be carefully considered when designing IoT DT 
instances. The synchronisation between the physical IoT device and its virtual representation in 
the simulation environment and the synchronisation of the events and scenarios in the simulation 
platform is critical for the performance of the whole IoT system. 

8.1 Technological developments 

IoT DTs support optimal decision-making and effective and efficient actions of the IoT devices in 
IoT applications, using real-time and historical data to represent the past and present and 
simulate predicted activities tailored to use cases based on domain knowledge, and 
implemented in Information Technology / Operation Technology (IT/OT) systems. The IoT DTs can 
expose a set of services to execute certain operations and produce data describing the 
physical activity of the IoT devices that they virtualise. 

How to choose and optimize characteristics, properties, environmental conditions, behaviours, 
and functions over the operational lifetime of an IoT device that are mapped to the IoT DT is a 
matter that needs further research; moreover, further analysis is needed also to properly develop 

IoT DT user interfaces that can connect the IoT DTs with other devices, with humans, and with 
other DTs coming from different domains (e.g., telco DTs or connectivity DTs). 

The lifecycle evolution of the IoT DTs must take into consideration the updatability and 
upgradability of the IoT devices, including new features addressing the dependability 
characteristics. 

Operational intelligence is used to build IoT DTs as it supports digitising the IoT and edge 
computing infrastructure, monitoring operations in real-time, predicting events, taking actions 
based on intelligence and engaging with different stakeholders. 

The virtual representation of an IoT DT reflects all the relevant dynamics, characteristics, critical 
components, and essential properties of the IoT physical device throughout its life cycle. The 
creation and update of IoT DTs rely on timely and reliable multi-sense wireless sensing, while the 
cyber-physical interaction relies on timely and dependable wireless control over many 
interaction points, where wireless interfaces of the IoT device are embedded. 

In future networks, IoT DTs will be a valuable tool to create novel and disruptive solutions, 
especially for vertical industries, that are enabled by a large scale of real-time, robust, and 
seamless interactions among, for example, machines, humans, and environments. 

IoT DTs need to be scaled up in IoT applications, thus enabling for the broadest possible 
population a sustainable living with systematic climate mitigation measures, improving society's 
resilience in crises by actively monitoring and simulating a huge number of future scenarios, and 
potentially helping transform the whole societal structure, so to make it more robust and 
capable of addressing the environmental (but not only) challenges of the future. 
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IoT DTs must possess a minimum set of attributes to be integrated into IoT applications and 
platforms to optimise the functions and services of these applications. These IoT DT attributes are 
summarised below: 

• Abstractness – free from details which are specific to implementations. 

• Correctness – give a correct replication of the IoT ecosystem and its devices. 

• Completeness – updated vis a vis the functionality in the real-world system. 

• Expandability – adapt easily to emerging technologies and applications. 

• Parameterised – accessible for analysis, design, and implementation. 

• Reproducible – be able to replicate the same result for the same input as the real system. 

• Scalability – must be able to operate at any scale. 

• Soundness – exhibit only the functionality available in the real-world system. 

IoT DTs will continue to grow in industrial and production environments, leading to the new 
designing approach called massive twinning. It will enable to go beyond the current levels of 
agility of production, thus allowing more efficient interaction of production means to 
encompass a more significant extent of the respective processes, and achieve the transfer of 
massive volumes of data, as well as, often, reach unprecedented performance and reliability 
levels. The evolution of edge IoT digital twin technology is illustrated in Figure 6. 

 

Figure 6 Edge IoT digital twin technology evolution 

IoT DTs, as part of IoT technologies and applications, are being expanded to support more 
applications, use cases and vertical industries, as well as combined with more technologies, 
such as speech, augmented reality for an immersive experience and AI capabilities, enabling 

to look inside the IoT DT by eliminating the need to go and check the physical IoT device. 
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8.2 Main Trends, Issues and Challenges 

The research today focuses on developing the virtual model representation of an IoT device, 
the evolving data sets relating to the IoT domain, the mechanisms to dynamically synchronise 
and adjust the virtual representation following the changes into the physical IoT device, and the 
simulation environment in which the IoT DTs will operate. 

The IoT DT mapping of the physical environments into the digital world is facilitated by IoT 
simulation platforms and SW leveraged to create a digital model and a virtual representation of 
the physical IoT device. IoT digital virtual representation can be used to manipulate and control 
the real-world IoT device through a teleoperation DT modelling solution. 

The research areas for IoT DTs must consider the scope and augmentations of the IoT DT and the 
operational environment combined with the functions needed to realise the IoT DTs' 
communication capabilities, and the update frequency required for providing the optimal 
precision of the IoT DT, based on data measured and acquired during the operation and use of 
physical IoT devices. 

Further research needs to investigate the different levels of IoT and edge computing intelligence 
through cognitive functions, implemented in the physical/digital and virtual devices. 

Understanding, defining, and designing the simulation capabilities of the future IoT platforms, 
which will be able to provide different fidelity levels of simulation tuned by input parameters, 
time dependency, behaviour, and prediction aspects, intelligence, and IoT device complexity, 
are very challenging tasks, which require further investigation. 

8.3 Research Priorities Timeline 

Table 6 IoT Digital Twins, Modelling and Simulation Environments research priorities 

  

Topic 
Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

IoT DT Models 
Aggregation of heterogeneous 
IoT DT models. 

Energy-efficient models. 

E2E features and optimisation. 

Horizontal and vertical 
integration of IoT DT models. 

IoT DT that is capable of 
modelling and simulating the 
future state and behaviour of 

the IoT device. 

IoT DT Modelling 

and Simulation 

Platforms 

IoT DT platforms at the edge. 

Virtual sensing and actuation 
functions and simulations. 

Predictive modelling platforms. 

Modelling and simulation of 
energy efficiency. 

Integrated IoT platforms with 
virtual simulation environments 
including XR. 

IoT DT Security 
IoT DT security features 
integrated. 

IoT DTs counterfeiting 
identification and mitigation. 

Automatic recognition of fake 
DTs and their isolation or 
elimination. 

IoT DT 

Connectivity 

Simulation and modelling of the 
communication channels. 

Define influence of the 
environments on the 
communication parameters of 
the IoT DTs. 

Virtual platforms for the 
connectivity of IoT devices. 
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9. IoT Swarm Systems 

Swarm intelligence for edge IoT systems deals with various IoT devices coordinated using self-

organisation, decentralised and distributed control. It consists of simple autonomous edge IoT 
devices and agents that come as emergent collective intelligence.  

Swarm intelligence addresses the area of IoT system collective behaviour and is inspired by 
social swarms in nature such as bird flocks, ant colonies and honeybees. 

Swarm and edge computing combined with IoT are used to implement the collective behaviour 
of physical and virtual AI decentralised and distributed IoT systems.  

From that concept new terms such as "artificial intelligence of things", "internet or intelligent 
things" are derived and are emerging to address collective intelligence in IoT systems with no 
centralised control infrastructure. 

These new developments create new "Internet of Robotic Things", "Internet of Intelligent Mobile 
Things" and "Intelligent IoT Devices Colonies" applications that apply the principle of swarm and 
edge computing to fleets and groups of edge IoT devices, supporting an always increasing 
number of items as the technology improves. 

9.1 Technological developments 

The future edge IoT swarm systems bring fundamental research challenges in cross-domain IoT 
resource orchestration. For instance, in designing new multi-intelligent-agent-based edge IoT 
frameworks. Each IoT device could be associated in the future with an agent or a DT at the 
edge. The agents could utilise swarm intelligence to jointly optimise the operations and 
information flow for their respective IoT devices. 

The move towards collective intelligence in edge IoT systems requires intelligent orchestrators 
for heterogeneous systems leading to swarm computing concepts.  

To achieve that, new intelligent programming orchestrations for distributed and decentralised 
open architectures and methods for updating/upgrading over-the-air (OTA) IoT smart devices 
are required.  

Collaborative functions ask for leveraging edge IoT swarm systems to improve network 
connectivity, enhancing information collection ability through each edge IoT device and intra-
networking issues for a swarm of edge IoT devices. 

The energy spent on edge IoT devices during swarm task execution is a key aspect to be 
considered. Total energy consumption includes static energy consumption and dynamic 
energy consumption during different tasks and the connectivity to other IoT devices and edge 
processing. 

The development of collaborative edge IoT swarm systems raise the issue of vulnerability to 
attacks by hackers from other fleets or via the interface with the cloud. The inherent distributed 
architecture for edge IoT swarm systems makes them more robust and secure and implies that 
the information is shared, stored, exchanged, and analysed locally and inside the swarm fleet, 
making it harder for hackers to access sensible data. 
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The real-time processing and response of edge IoT swarm systems make it hard for malicious 
attackers to detect devices' sensitive information. ' 

The edge IoT systems interfaces to other edge-cloud infrastructure derive several security 
problems that have to be considered (swarm identity (ID) leakage, forgery, tampering, spam, 
jamming, swarm IoT device impersonation). 

The distributed nature of edge IoT swarm systems require new efficient service discovery 

protocols to design such that IoT devices and users can identify and locate the relevant swarm 

services and providers to satisfy the application requirements. 

Real-time optimisation protocols for edge IoT swarm systems are required as future mobile IoT 
applications are dynamic and involve using online edge resource orchestration capabilities and 

provisioning to continuously handle dynamic edge IoT swarm devices workloads and tasks. 

The distributed edge computing architecture for edge IoT swarm systems shifts the research on 
how trust and security are addressed. The development of decentralised trust solutions with 
services provided by different secured and trustworthy edge IoT entities is part of the new E2E 
implementations. 

New efficient security mechanisms for edge IoT swarm systems are required to ensure IoT device 
authentication, data integrity, and mutual IoT swarm platform verification and validation. New 
secure routing schemes and trust network topologies are key for edge IoT swarm systems. 

The development edge IoT swarm systems must consider the balance between the HW and SW 
constraints for edge IoT swarm devices combined with the level of intelligence implemented in 
the edge devices and their connectivity capabilities to perform in a swarm fleet adequately. As 
a result, developing SW, HW, and AI-based algorithms for handling computation offloading from 
edge to the IoT swarm device is a critical issue to be addressed. 

The inherent distributed architecture of future edge IoT swarm systems consider interoperability, 
collaboration as part of the system, and the platforms operating these systems include efficient 
algorithms to facilitate collaboration. 

Edge IoT swarm systems may display a considerable level of heterogeneity in terms of IoT 
devices, level of intelligence, connectivity, and processing capabilities and, therefore, efficient 
IoT platforms that deal with this heterogeneity are highly desired.  

The collaborative intelligent interaction among the IoT swarms requires further research on 
federated learning to execute or train ML models in edge IoT devices as part of a swarm fleet. 

9.2 Main Trends, Issues and Challenges 

The research in IoT edge swarm systems complements the traditional AI approach to cognition 
and combines individual reasoning, collaborative intelligence, and mobile and sensing 
intelligence. 

The IoT swarm computing must address the interaction with the environment in which the swarm 
IoT fleets operate, including research concerning federated learning processes and simple 
perceptions of forms, recognition of other IoT devices, and the swarm fleets' interaction with 
other fleets and humans. 
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The evolution of mobile edge IoT fleets that mimic complex behaviours must consider the 
development of techniques to model and simulate the interaction of simple edge IoT devices, 
to explore psychological ideas and the nature of collaborative intelligence in mobile IoT fleets.  

Research on expanding the concept of intelligent agents receiving real-time data combined 
with mesh computing applied to IoT edge swarm systems can support the advancement in 
collaborative intelligence for edge IoT. 

Edge IoT swarm-based intelligence assumes that a group of IoT swarm devices or intelligent 
agents can perform tasks without explicit representations of the environment, and the IoT swarm 
devices or agents operate combining planning with reactivity. 

The self-organisation of flow patterns in edge IoT swarms research is a challenge, especially in 

providing solutions for intelligent and efficient behaviour of the whole IoT swarm fleet when we 

combine the limited intelligence of the individual IoT devices. 

 Further research needs to study the essential elements of edge IoT swarm dynamics providing 
mechanisms for implementing such behaviours and HW, SW, algorithms for modelling, 
simulating, and integrating self-organisation agents into edge IoT devices. 

One of the major challenges of edge IoT swarm systems is to encode and deploy the collective 
behavioural characteristics of a fleet of edge IoT swarm-based fleets into the behaviour of the 
individual edge IoT devices.  

Research on complex adaptive behaviour is needed to provide HW, SW, and connectivity 
mechanisms to implement interactions between edge IoT devices as distinct from behaviour 
that directly results from the operations of individual edge IoT devices. 

The advances in edge IoT swarm systems are directly linked with the research in providing 
optimised mechanisms and techniques for providing the ability to mobile IoT swarm devices to 
separate, cohere, align, and avoid obstacles.  

Separation is the ability to operate with other IoT devices and keep a certain separation 
distance from different devices and avoid crowding too closely together in a fleet. The cohesion 
function allows the IoT devices to approach or form a group of edge IoT devices. 

The alignment feature supports the devices to identify the expected next movement and 
synchronise the movements of IoT devices relative to each other.  

Navigating and avoiding obstacles (e.g., perception and processing efficient collision detection 
algorithms) is another critical challenge to be addressed by research in IoT swarm-based fleets. 

The work in edge IoT swarm systems must be combined with the latest advances in 
neuromorphic computing with edge IoT devices using neuromorphic HW and collaborative 
neuromorphic operating systems (OS). 

The connectivity solutions in edge IoT swarm systems becomes critical in implementing 
collaborative intelligence. New ultra-low-power mesh communication protocols must be 

combined with neuromorphic architecture to provide self-X functions to edge IoT swarm 
systems. 
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A new approach to cognition must be considered for edge IoT swarm systems that include 
capabilities and mechanisms for remembering, forgetting, or continuous learning combined 
with search algorithms and strategies for performing exploratory analysis, interaction, 
communication, and exchanging information. 

The research combining edge IoT swarms and AI opens the opportunities to address the 
evolutionary computing capabilities of edge IoT devices and predict the continuous evolution 
and transformation of the edge IoT swarm systems based on their missions and applications. 

9.3 Research Priorities Timeline 

Table 7 Swarm systems research priorities 

 

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Swarm 

programming 

languages, tools, 

and OS 

Define applicability and 
requirements of different swarm 
system, coming out with a 
taxonomy that help in 
Identifying different category of 
swarm. 

Efficient implementation of 
languages, OS and tool for 
swarm managing and 
simulation. 

Coherent and homogeneous 
Integration of SW and tool that 
allow to treat swarm fleets as a 
legacy IoT device in the full IoT-
edge-cloud continuum 

Domain 

applicability of 

swarms 

Use case definition and Impact 
on verticals analysis. 

Integration of swarms in multiple 

verticals sectors and 
demonstrate added value. 

Swarms substitute in a seamless 

way for final users some of the 
currently existing IoT devices. 

Swarms AI-

fication 

Applicability of traditional AI 
methods to swarm systems. 

Implementation of advanced 
AI techniques in swarm system. 

Full integration of cutting-edge 
AI technologies in swarm 
management. 

Communication 

within and outside 

of the swarm 

New low-power and very low 
latency protocols for in-swarm 

communication. 

Smooth integration of delay 
sensitive networks surrounding 
the swarm with the in-swarm 

communication protocols. 

Fluent, low latency and self-
organizing communication of 
in-swarm and out-of-swarm 

protocols. 
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10. Internet of Things Senses 

Internet of Things Senses (IoTS) is an aspect of the IoT paradigm, by which unique sensing 

technologies are applied to replicate over the Internet the senses of sight, hearing, taste, smell, 
and touch, facilitated by AI, VR/AR, intelligent connectivity, and automation.  

IoTS developments are essential for IoT, considering the growing interest towards technologies 
related to the Metaverse28, which require cognitive decision-making capabilities of the edge 
devices, thanks to the use of AI algorithms implemented into such devices (e.g., robotic things). 

The IoTS technologies complete and expand the abilities and features of many edge IoT devices 
by including different senses, (e.g., the human senses plus mechanoreception-balance, 
temperature, and other ways to indicate situations in which an autonomous IoT device can be 
impeded to work, e.g., due to too high pressure or too high temperature ) and equipping the 
edge devices with new perception mechanisms and experiences, by integrating augmented 
intelligence and information across senses, time, and space. 

Digital sensory experiences introduced by IoTS provide new types of Human-Machine Interface 
(HMI) devices, replacing keyboards, mice, and joysticks by providing interactions with the 
senses, so to allow a radical re-shape of some industrial domains as well as new use cases and 
business models. 

10.1 Technological developments 

By the next decade, digital sound, and vision, complemented by the above-mentioned sensing 
technologies, will transform the current screen-based experiences into multi-sensory ones, 
practically indivisible from physical reality, as predicted by the Ericsson ConsumerLab report29.  

The report investigates what that could mean for consumers, with AR glasses as the entrance 
point. It presents what the consumers envisage as future developments driven by IoT sensory 

connectivity through AI, VR, AR, intelligent connectivity, and automation. 

The development of IoTS is supported by advances in sensing, signal processing, low-power and 
sustainable devices, and edge analytics to detect, analyse and monitor the deployed sensing 
technologies. 

Touch consists of several distinct sensations (e.g., pressure, temperature, light touch, vibration, 
and pain) that are integrated into tactile internet developments. For humans, touch feelings are 
part of the touch sense. They are attributed to different receptors in the skin, which are mimicked 
by sensors measuring the reaction to pressure, temperature, touch, vibration, etc. The Touch 
sense can be also used to allow bi-directional communication between IoTS devices and 
humans, for instance in case of blind and dumb people.  

  

 

 

28 Y. Wang et al., "A Survey on Metaverse: Fundamentals, Security, and Privacy," in IEEE Communications Surveys & Tutorials, 2022, doi: 
10.1109/COMST.2022.3202047. 

29 Ericsson ConsumerLab, "10 Hot Consumer Trends 2030 - Internet of the senses", December 2019, Online at: 
https://www.ericsson.com/4ac661/assets/local/reports-papers/consumerlab/reports/2019/10hctreport2030.pdf  

https://www.ericsson.com/4ac661/assets/local/reports-papers/consumerlab/reports/2019/10hctreport2030.pdf
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Sight is the ability to perceive items through the eyes that can be represented by different types 
of vision sensors, cameras, and AR glasses. Such devices can for instance sustain navigation, 
search for routes, identify places and recognise devices, objects, persons, and sights. 

Smell can detect different odours/scents/aromas, which can be represented by sensors that 

focus on specific odours. The remote smell integrated as an online experience for humans and 

things can enhance the abilities of edge IoT devices to smell scents in remote environments, 

deliver new services and improve the perception in these environments. 

Taste is the ability to sense tastes like salty, sweet, sour, bitter, and savoury. The different tastes 
can be detected by various sensors that provide a palette of tastes with a determined scale. 
Combining the information from the distinct taste sensors provides the experience of detecting 
a flavour. 

Hearing is the ability to recognise and decode sound waves and vibrations. The detection of 
sound, e.g., by using different types of microphones and vibration sensors, enhances the edge 
IoT devices' capabilities, thanks to new or recently enhanced techniques, e.g., for voice control, 
voice biometrics, and automatic language translation. 

In addition to the five standard human senses, one could consider in the IoTS domain an 

additional one, which is the sense of space (see Figure 7), based on merging and fusing the 
information from multiple sensor types and correlating them with the cognition process to better 
comprehend there surrounding environment where edge IoT devices are operating.  

The sense of space is essential in the mobile autonomous edge devices operating in fleets across 
various environments. These edge IoT devices can use other sensors to deliver complex 
behaviours, for instance to detect movement for balance control, tilt the body of an object, 
and sense the direction and acceleration to attain and maintain equilibrium. 

 

Figure 7 Internet of things senses 
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Moreover, the Tactile IoT paradigm30 integrates ultra-low latency with extremely high availability, 
reliability, and security. It enables humans and machines to interact with their environment in 
real-time, using haptic interaction with visual feedback while moving and within a specific 
spatial communication range. 

Finally, a new set of technologies and innovations are surfacing, all aiming at making a 

commercial reality the Metaverse, a topic on which attention is raising also in the European 

associations landscape, e.g., the new BDVA31 activities related to the Metaverse, for which IoTs 

can be seen as a key enabling technology. 

10.2 Main Trends, Issues and Challenges 

The development of IoTS, including Tactile IoT, requires reliable, robust and intelligent 
connectivity solutions and new edge-ready software and hardware for quickly and seamlessly 
managing, storing, analysing, and accessing the huge amount of data produces by sensors.  

Further research and development in hyperconnectivity are needed to take the metaverse, VR 
and AR to the next level for uniform video streaming and remote control/surgery, or tactile 
internet.  

The current network infrastructure cannot support the emerging IoTS applications in terms of 
reliability, latency, cost and sensibility of sensors and actuators, access networks capabilities, 
system architecture and mobile edge platforms.  

The design requirements of IoTS systems and devices to achieve real-time interactions are still 

dependent on the monitoring of the underlying system and environment, based on human (or 
human-like) senses limited by the perception processes.  

Research in autonomous monitoring of IoTS systems and identification of real-time adjustments 
of the connectivity and processing parameters are needed to control and optimise the IoTS 
loop processes. 

IoTS applications have ultra-low E2E latency and ultra-­high reliability design requirements. They 
need to guarantee data security, availability, and dependability of systems without infringing 
the latency requirements and considering the encryption delays and the E2E processing loop.  

Research on decentralised and distributed networks and IoT architectures based on mobile-
edge computing and cloudlets is needed to advance both Tactile IoT and IoTS applications 
across industrial sectors.   

Multidisciplinary research covering intelligent connectivity to increase bandwidth and capacity 
with the development of sensing and signal processing for 3D audio and holograms using 
volumetric video is also needed. 

Further research on sense-based intelligent connectivity includes the feel, taste, and smell of 
digital objects replicas of physical edge IoT devices and the development of platforms that can 
model and simulate the merging of digital and physical worlds into one another. 

  

 

 

30 N. Promwongsa et al., "A Comprehensive Survey of the Tactile Internet: State-of-the-Art and Research Directions," in IEEE Communications Surveys & 
Tutorials, vol. 23, no. 1, pp. 472-523, Firstquarter 2021, doi: 10.1109/COMST.2020.3025995. 

31 Big Data Value Association (BDVA): https://www.bdva.eu/  

https://www.bdva.eu/
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Implementing the intelligent connectivity solutions demanded by IoTS applications require new 
research to address the efficient radio resource allocation in wireless/cellular networks due to 
multiple haptic, human-to-human (H2H), machine-to-machine (M2M), and machine-to-human 
(M2H) communications that have various and sometimes conflicting service requirements. 

As haptic communications are bidirectional, symmetric resource allocation with the guarantee 
of a minimum constant rate in both the uplink and the downlink needs to be ensured.  

The above-mentioned challenges that current networks face give raise to a set of requirements, 
which in turn bring new issues for managing and orchestrating the wireless/cellular network 
parameters to provide priority for resources based on QoS, safety and mission-critical features. 

Spectrum issues need to be tackled as well, as the heterogeneity of access strata and bands 
used in the different vertical domains will require a holistic approach and a swift management 
of the existing bands, which are needed to deliver the flawless immersive experience required 
by IoTS services. 

Finally, dynamic, and flexible resource allocation techniques across different protocol layers, 
including adaptive management and network slicing with on-demand functionality, are 
required for future edge IoT deployments. 

10.3 Research Priorities Timeline 

Table 8 Internet of things senses research priorities 

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Sensors and 
Actuators 

Development of haptic edge 
sensors and actuators with 
wireless mesh connectivity 
capabilities. 

Enhance the sensors 
capabilities in terms of precision, 
range, sensitivity, response time, 
spatial resolution, reliability, 
cost, and temperature 
dependence. 

Research on lightweight 
energy-efficient, fast response 

time, low-cost, actuators 
providing capabilities of both 
the cutaneous and kinaesthetic 
feedback. 

Development of new haptic 
actuators, cutaneous, muscle 

type for force tension, 
kinaesthetic, skin type for 
vibration, pressure, pain, 
temperature, etc. 

Sensing Systems 

Research on surface sensing 
using multiple arrays of sensors 

and techniques to identify the 
forces across the surface. 
New reading techniques for 
distributed sensing and 
actuation optimised for low-
energy and acceptable 
latency. 

AI-based sensor fusion 
techniques for multi-modal 

sensory. 
Real-time multiplexing schemes 
across protocol layers for 
integrating the various 
modalities in dynamically 
varying wireless environments. 

Research on edge AI platforms 
for integration of multi-modal 
sensing systems for edge IoT 
applications. 

Resource 

Managing and 

Orchestration 

Further work on standardised 

groups of energy-efficient 
haptic codecs to be integrated 
into the kinesthetics and tactile 
information, to perform 
effectively in time-varying 
wireless environments. 
Development of new suitable 
performance metrics for 

analysing and comparing the 
performance (e.g., information 
fusion, connectivity features, 
data processing techniques, 
data reduction and control, 
compression, etc.) of various 
haptic systems over IoTs. 

Research on the optimisation of 
collaborative multi edge IoT 
device communication and the 
effect of overlay routing, and IP-
level routing on E2E latency. 
Research on ultra-high reliability 
in haptic communications 

considering trade-offs among 
reliability, latency, packet 
header to the payload ratio, 
etc. 

Research on managing and 
orchestrating the 
wireless/cellular networks 
parameters to provide priority 
for resources based on QoS, 

safety-, mission-critical features 
for IoTS systems.  
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11. Decentralised and Distributed edge IoT Systems 

New network architecture paradigms for the forthcoming intelligent connectivity era are driven 

by a decomposition of the architecture32 into platforms, functions, orchestration, and 
specialization aspects.  

Future network platforms will be associated with an open, scalable, elastic, and agnostic 
heterogeneous cloud, which is data flow centric, will include hardware acceleration options 
together with a heterogeneity of computing architecture (x86, RISC-V, ARM, etc). 

11.1 Technological developments 

For cellular connectivity, functionally, the convergence of RAN and CN, together with a broader 
adoption of the Open Radio Access Network (O-RAN)33 concept, will help reduce architectural 
complexity.  

At the same time, options of flexible offload, extreme slicing and flexible instantiation of sub-
networks will drive the increased level of specialization of the architecture.  

Of high relevance for the open provision of services and the monetization of resource will be the 
transformation of orchestration architecture; cognitive closed loop and automation are likely to 
become pervasive. 

All future deployment scenarios will rely on a superior transport network and network fabric that 
is flexible, scalable, and reliable to support demanding use cases and novel deployment 
options, such as a mixture of distributed RAN and centralized/cloud RAN enabled by AI-
powered programmability.  

Other interesting directions are provided by intent-based networks34 and semantic-based 
networks35. In any case, the future network architecture shall provide the capability to facilitate 
all the AI operations in the network. 

The expansion of edge IoT applications will entail massive deployment of communicating 
objects. Administrators of these applications aim to deliver the required coverage for large 
networks with minimised energy consumption and without multiplying BSs.  

Self-adaptive networks are needed, relying on IoT devices as relays. These micro networks would 
manage the flows of information from a heterogeneous set of communicating entities, e.g., IoT 
devices, robotic things, and sensors, locally interacting in a complex system. 

5G standardisation assumes the forthcoming deployment of network slices and private 
networks, which are supposed to bring their own network nodes.  

  

 

 

32 Y. Xu, B. Qian, K. Yu, T. Ma, L. Zhao and H. Zhou, "Federated Learning Over Fully-Decoupled RAN Architecture for Two-tier Computing Acceleration," in 
IEEE Journal on Selected Areas in Communications, doi: 10.1109/JSAC.2023.3236003. 

33 A. Giannopoulos et al., "Supporting Intelligence in Disaggregated Open Radio Access Networks: Architectural Principles, AI/ML Workflow, and Use Cases," 
in IEEE Access, vol. 10, pp. 39580-39595, 2022, doi: 10.1109/ACCESS.2022.3166160. 

34 P. Lingga, J. J. Kim and J. P. Jeong, "Intent-Based Network Management in 6G Core Networks," 2022 13th International Conference on Information and 
Communication Technology Convergence (ICTC), Jeju Island, Korea, Republic of, 2022, pp. 760-762, doi: 10.1109/ICTC55196.2022.9952437. 

35 X. Luo, H. -H. Chen and Q. Guo, "Semantic Communications: Overview, Open Issues, and Future Research Directions," in IEEE Wireless Communications, 
vol. 29, no. 1, pp. 210-219, February 2022, doi: 10.1109/MWC.101.2100269. 
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Here, micro-networks of potential different ownership and with a potentially external security 
management might share parts of the infrastructure with wide area networks, paving the way 
for a set-up where a private network with partly owned infrastructure and a private trust policy 
are integrated in a public network.  

11.2 Main Trends, Issues and Challenges 

Decision making and optimisation: taking into consideration an E2E system made of three 
elements, the edge, the network, and the cloud (where information flows from the edge through 
the network to the cloud and vice versa), critical issues are what are these decisions, and 
equally important, where do those decisions take place, with which implications on the overall 
network. 

The main consideration is that any network is a complex entity, since it is distributed, 
heterogeneous in different aspects (data streams, computation, and storage capabilities, 
required QoS, etc.), time varying (in some but not all aspects), and resource limited.  

The application of the decision theory to the more and more important problem of distributed 
resource allocation is still a hot research question that needs to be addressed36.  

What is looked for is a framework or model that would allow to decide where in a network (edge, 
cloud, intermediate stages?), both processing and decisions about resource allocation are 
made, and that does that in a way that is responsive in near real-time. 

Research is needed in novel IoT distributed architectures to address the convergence of low 
latency, Tactile Internet, edge processing, AI and distributed security based on ledger or other 

technologies, and an effective deployment of multi-access edge computing (MEC). 

Developing specific architectural requirements for distributed intelligence and context 
awareness at the edge is a future research topic, especially when considering the integration 
with mesh network architectures, so to form knowledge-centric networks for IoT, capable of 
serving many different applications coming from numerous vertical sectors. 

Research on orchestration of IoT heterogeneous networks, adaptation of software defined radio 
and networking technologies for IoT, considering built-in E2E distributed security as well as 
hardware-based security solutions37, trustworthiness, and privacy issues in edge computing 
environment must be extended, addressing the federation and cross-platform Integration for 
edge IoT applications. 

  

 

 

36 A. Mukherjee, P. Goswami, M. A. Khan, L. Manman, L. Yang and P. Pillai, "Energy-Efficient Resource Allocation Strategy in Massive IoT for Industrial 6G 
Applications," in IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5194-5201, 1 April1, 2021, doi: 10.1109/JIOT.2020.3035608. 

37 J. Gopika Rajan. and R. S. Ganesh, "Hardware Based Data Security Techniques in IOT: A Review," 2022 3rd International Conference on Smart Electronics 
and Communication (ICOSEC), Trichy, India, 2022, pp. 408-413, doi: 10.1109/ICOSEC54921.2022.9952021. 
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11.3 Research Priorities Timeline 

Table 9 Decentralised and distributed edge IoT systems research priorities 

 

  

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Decision making 

Partially distributed decision-
making mechanisms and 
techniques. 

Federated sub-system sharing a 
common decision mechanism 

Fully distributed decision-
making methods. 

Federated systems of systems 

sharing the same decision 
mechanisms  

Fully distributed and federated 
systems, using heterogeneous 
decision mechanisms targeted 

to specific QoS or vertical 
sectors. 

Security aspects 

Established Privacy preserving 
techniques. 

Block-chain based security 
methods applied to selected 
vertical sectors. 

Scalable block-chain based 
security mechanisms addressing 
some vertical sectors. 

Trustworthy and auto-adapting 
communication among several 
vertical sectors.  

Secure-by-design system of 
systems, endowed with swarm 
intelligence and hardware-
based security measures, fully 
Decentralised security 
procedures, self-adapting to 
real-time demands of 
heterogenous actors. 

Learning 

mechanisms 

Distributed learning. 

Federated learning. 

Distributed and federated 
learning. 

Continuous learning, self-
adapting to the dynamic 
changing environment of a 
heterogeneous network 
supporting several vertical 
sectors. 
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12. Federated Learning, Artificial Intelligence technologies and 

learning for edge IoT Systems 

To perform according to the devised expectations38, the new distributed IoT architectures for 
computing optimisation across the edge continuum need to improve responsiveness by 
reducing decision-making latency, to increase data security and privacy, to decrease power 

consumption, using less network bandwidth, thus maximizing efficiencies, reliability, and 
autonomy. 

The IoT edge contains computing capabilities scaled across the micro-, deep- and meta-edge 
to process workloads, including the latest technology like AI model training and ML inference 
and signal processing, using signal conditioning39 followed by neural networks40 computing. The 
neural network computing and memory requirements are significantly reduced by using signal 
conditioning on the raw data. 

In this context, federated learning as a distributed ML technique, which creates a global model 
by learning from multiple decentralised edge clients, is a significant technological development 
that can be implemented in distributed IoT architectures across the edge continuum. 

Federated learning uses complex methods for handling distributed data training by enabling 
the cooperative training of common AI models, by combining and averaging locally calculated 
updates submitted by edge IoT devices. Federated learning permits training new models on 
multiple edge IoT devices simultaneously without the need to have data stored in a central 
cloud. 

12.1 Technological developments 

Integrating AI-based techniques across the edge continuum requires a new layer of edge 
processing infrastructure and scalable, energy-efficient modules for AI-based processing41. 

Federated learning methods offer several advantages, including scalability and data privacy, 
with ML and DL algorithms that can be executed on edge IoT devices, delivering faster real-
time insights for increased IoT application efficiency. Bringing AI to the edge increase the 
efficiency of processing the data locally and reduces latency and the cost of connectivity for 

many IoT applications. 

In the distributed data exchange environment, federated learning/training combined with the 

IoT heterogeneous compute based on various underlying processing architectures (CPUs, 

GPUs, NPUs, neuromorphic, etc.) can provide the solution for future IoT edge intelligent 

heterogeneous systems. 

  

 

 

38 J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang and W. Zhao, "A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and 
Applications," in IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1125-1142, Oct. 2017, doi: 10.1109/JIOT.2017.2683200. 

39 R. Tirupathi and S. K. Kar, "Design and analysis of signal conditioning circuit for capacitive sensor interfacing," 2017 IEEE International Conference on 
Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 2017, pp. 1717-1721, doi: 10.1109/ICPCSI.2017.8392007. 

40 Z. Li, F. Liu, W. Yang, S. Peng and J. Zhou, "A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects," in IEEE Transactions on Neural 
Networks and Learning Systems, vol. 33, no. 12, pp. 6999-7019, Dec. 2022, doi: 10.1109/TNNLS.2021.3084827. 

41 Vermesan, O. and Nava, M.D. (Eds.). Intelligent Edge-Embedded Technologies for Digitising Industry. River Publishers Series in Communications, June 
2022. ISBN: 9788770226110, e-ISBN: 9788770226103. Online at: https://www.riverpublishers.com/pdf/ebook/RP_E9788770226103.pdf 

https://www.riverpublishers.com/pdf/ebook/RP_E9788770226103.pdf
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The federated learning/training must consider the underlying connectivity systems, including 
Bluetooth, Wi-Fi, LPWAN, mesh, 5G and beyond applied to the IoT application topology, range, 
and power requirements. The convergence of connectivity, AI/ML, and processing can ease 
the implementation of different IoT federated learning/training solutions for industrial and 
consumer applications. 

The concept of IoT federated learning/training is combined with the IoT edge mesh, which 
allocates the decision-making tasks among edge devices within the network. The computation 
and processing tasks and data are shared using an IoT networks of edge devices, routers, PLCs, 
and micro-servers. 

The IoT edge mesh combined with federated learning/training provide distributed processing, 
low latency, fault tolerance, scalability, security, and privacy, as required by IoT applications, 
which demand higher reliability, real-time processing, mobility support, and context awareness. 

Cooperative IoT computing based on federated learning/training provides better usage of 
resources, reduced latency, due to easy access to local resources, better services, as IoT 
devices can cooperate to get better information, reduced communication with centralised 
entities, and improved security and privacy as data remain most of the time within a local 
network. 

Enabling distributed intelligence in IoT/edge computing or swarm computing applications is 
difficult due to a set of known problems, e.g., synchronisation, consensus, cooperation etc. In 
addition, due to scalability and complexity issues of IoT systems, it is challenging to determine 
how to generate, coordinate and federate the intelligence, which edge IoT device provides 
intelligent functionality and how different edge IoT devices cooperate, transfer, and acquire 
intelligence. 

12.2 Main Trends, Issues and Challenges 

The challenge for many IoT applications is that federated learning/training uses multiple entities 
collaborating to solve ML problems under the coordination of a central server. This approach 
for edge networks creates many issues concerning security and privacy and the data itself. 

Federated learning raises several risks and weaknesses in terms of computational complexity in 
the case of heterogeneous edge IoT devices that may have limited computing resources, 
inadequate wireless connectivity quality, or may use different OSs. 

Another edge IoT federated learning challenge relates to communication delays expressed as 
the latency between edge IoT devices and the ML system. Decreasing latency is critical for 
AI‐based edge IoT devices operating in real-time applications such as industrial equipment. 

Replacing the client-server process of the federated learning/training model with fully 
decentralised learning replaces communication with the server by peer-to-peer 
communication between individual clients. 

Optimisation algorithms are necessary to implement federated learning/training at the edge, 
considering edge IoT devices' constraints and resource limitations as part of the edge 
continuum. 

The IoT devices limited bandwidth can restrain scalability, but this is solved in IoT edge mesh 

architectures, as data is sent to multiple edge IoT devices that share data with other devices. 

The communication bottleneck issue is resolved due to the distributed nature of the system. 
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At the same time, the computation tasks are offloaded to different edge IoT devices, operation 
which speeds up the processing time and increases the efficiency of federated 
learning/training, leading to better response time, reduced make span, and higher throughput. 
The distribution of loads drives the edge IoT systems to be more flexible and robust, as, in the 
case of a device failure, other devices can share the load of the failed IoT device. 

IoT systems are dynamic, as devices can be mobile, added, removed, or changed in 
configuration; all of the above require new context-aware solutions for distributed security and 
privacy algorithms. 

The heterogeneity of computing, communication and AI technologies requires AI-based 
algorithms that are portable across different IoT edge environments. Communication 
technology is intrinsically heterogeneous for what concerns data rate, transmission range, and 
bandwidth. The IoT SW solutions depend on the HW, and programming models are needed to 
execute workloads simultaneously at multiple HW levels. 

Research on standard protocols and interfaces should address the integration of AI-based 
algorithms and lightweight protocols for communicating with different devices in a 
heterogeneous environment. 

More research is needed to develop distributed learning/training algorithms and to maximise 
the average time between errors and optimise the availability by minimising the failure 
probability and average recovery time in the OTA learning/training process. 

The IoT federated learning/training must consider the hybrid computing method that combines 
HW/SW and AI techniques across the edge continuum. Hybrid computing implies the integration 
of specialised advanced AI processors at different computing levels for both high-level and low-
level operations. 

Further research is needed to develop optimised algorithms for federated learning/training to 

complement and effectively leverage the computing capabilities with the AI-based processors 
and other types of processor architectures. 
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12.3 Research Priorities Timeline 

Table 10 Federated learning and AI for edge IoT systems research priorities 

 

  

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Federate 

learning 

approaches 

Techniques and methods to 
integrate federated learning 
into IoT/edge computing 
systems. 

Management of edge IoT 
systems, by addressing mesh 
network security and 
management by leveraging 
ML. 

Research on central training 
data sets and edge IoT local 
data sets. 

Edge IoT intelligence 
architectures and AI 
frameworks for federated 

learning. 

Development of tools and tool 
chains for dedicated edge IoT 
federated learning. 

Methods for providing 
reference training datasets for 
performing standard federated 
learning application tuning. 

Benchmarking techniques and 

methods for edge IoT federated 
learning. 

Scalability and portability of AI-
based models for federated 
learning across the edge 
granularity. 

Federated 

learning 

architecture and 

frameworks 

Advanced architectural 
approaches for the federated 
learning server integrated into 
mesh networking environments. 

Extend the capabilities of open-
source federated learning 
frameworks. 

Communication and 
computation efficiency of the 
federated learning 
architectures, synchronisation 
optimisation among edge IoT 
devices. 

Federated learning 

architectures addressing task 
scheduling, dynamic resource 
allocation to achieve low-
latency services. 

Hardware 

platforms for 

federated 

learning 

HW requirements for 
implementing federated 
learning in edge IoT computing 
environments. 

HW heterogenous solutions to 
minimise memory transfer, 

increase energy efficient and 
improve computational speed. 

Computation offloading and 
content caching using dynamic 
cache allocation techniques, 
context-aware offloading 
algorithms adapted to 
resource-constrained (e.g., 

limited storage and capacity) 
edge IoT devices. 

HW/SW/AI algorithms 
heterogeneity management. 

Understanding of the effect of 
system heterogeneity on the AI 
model aggregation efficiency, 
accuracy and the divergence 
or convergence of optimisation 
processes. 
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13. Operating Systems and Orchestration Concepts for edge IoT 

Systems 

The extension of the IoT edge and edge-cloud federation is redefining the use of OSs and 
orchestration concepts across the IoT-edge-cloud continuum in real-time applications. 

The increased use of embedded systems combined with processing units at the edge requires 

new ways of virtualising the computing capabilities and the OSs across the diversity of the HW 
components at the IoT edge. This also requires more frequent updates and upgrades of FW, SW, 
algorithms, and security patches for edge IoT devices. Challenges arise with more functions and 
services implemented in FW/SW/algorithms and the increasing complexity of electronic 
component interoperability, including managing agile and vulnerable edge IoT devices. 

13.1 Technological developments 

The development of ubiquitous meta-OSs42 to provide an integration framework that 
implements processing and a better traceability, safety, and security across the IoT edge must 
consider several challenges. Ubiquitous meta-OSs for IoT edge applications must embed 
features and functions to allow the applications to be autonomous, cooperative, situational, 
evolvable, and trustworthy.  

As the heterogeneity of edge IoT increases, edge IoT devices need to act with a valid secure 
method, both using centralised and distributed intelligence. The developments of ubiquitous 
meta-OSs for IoT edge applications are not yet ready to ensure scalability and provide the 
functionalities and capabilities that would allow Billions of edge IoT devices to work 
independently of each other and cooperate in real-time. 

Among the biggest challenges for ubiquitous meta-OSs for IoT edge applications one can 
mention how to effectively provide real-time features to applications and OS capabilities to 
heterogeneous edge IoT devices, and how to interact with federated platforms and interface 
with cloud provider agnostic solutions. Building supporting platforms would have a substantial 
impact in providing solutions to those issues. 

The challenges for autonomous orchestration of distributed edge systems are related to 

maximising utilisation while assuring the Service Level Objective (SLO) of workloads running at 
resource constraint edges and dealing with inhomogeneous/heterogeneous platforms at the 
IoT edge. 

The above-mentioned challenges need to address critical features, like network slicing, that 
open for an entirely new set of use cases. For example, given a set of network slices, how do we 
assure that each one will hit Its performance targets while at the same time not over-provisioning 
resources at large. Overall, the orchestration needs to become more autonomous and lift the 
burden of Site Reliability Engineers (SRE) running the systems to date. 

Artificial Intelligence Operations (AIOps) and Machine Learning Operations (MLOps) techniques 
and methodologies could form the basis for genuinely autonomous systems at the edge. 

  

 

 

42 P Trakadas, et Al., “A Reference Architecture for Cloud–Edge Meta-Operating Systems Enabling Cross-Domain, Data-Intensive, ML-Assisted Applications: 
Architectural Overview and Key Concepts”, in Sensors 2022, 22(22), 9003; https://doi.org/10.3390/s22229003 . 
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The heterogeneity of IoT edge brings a paradigm shift towards application-driven components 

and systems, interoperability, and open-source HW, SW solutions. There is a strong need for a 

data strategy and establishing trusted data exchange frameworks across OEMs, system 

integrators, and component vendors. 

Mission- and safety-critical real-time edge IoT applications require guaranteed latency and 
bandwidth, the integrity of data, security, resilience, and controlled mesh networking. Ubiquitous 
meta-OSs for IoT edge applications can act as orchestrators that aggregate and compose 
services according to users' requirements and coordinate their execution in a coherent and 
smart way. 

Ubiquitous meta-OS for IoT edge and orchestrating methods are needed to simplify the 
development, orchestration, and security of distributed IoT edge architectures and solutions. 
The development of new solutions using at the edge containers, virtual machines, and 
unikernels43 provides a flexible foundation for expanding distributed edge computing 
deployments with a choice of heterogeneous HW, applications, and federated edge-clouds 
infrastructures. This brings further challenges to ensure distributed firewall, open orchestration 
APIs, support for virtual machines, containers, and unikernels application deployment models. 

13.2 Main Trends, Issues and Challenges 

New research and key innovations are needed to address orchestration in the future. For 
instance, novel interfaces between the legacy IoT architecture and the new one will be 

required. This will allow users to exploit innovations in the control planes (e.g., moving from 
centralised systems to more decentralised ones) and new HW features in heterogeneous (from 
the compute capability point of view) platforms, so to be able to place mission-critical 
workloads at the edge. 

OSs and orchestration concepts for decentralised and distributed edge IoT systems are needed 
to provide an integrated environment for the next-generation intelligent IoT applications. Such 
applications embed IoT in distributed computing systems operating in a continuum at the edge 
across micro- deep-, meta-edge and are interfaced and federated with the cloud solutions. 
IoT/edge computing platforms and the new IoT applications can create new business models 
relying on meta-OS orchestration, distributed edge intelligence, storage, and resources 
heterogeneity. 

Ubiquitous meta-OSs for IoT edge and orchestrating mechanisms are required for 
heterogeneous systems with lightweight virtualisation, virtual machines, microservices and 
containers. Key issues to be addressed are data pre-processing at the edge, edge analytics, 
scalability, efficiency, dependability, trustworthiness, adaptability, and transparency. The issues 
are even more critical considering the evolution of IoT towards Tactile IoT and IoTS. 

Research activities must solve several critical technical challenges, including the availability of 
a distributed architecture of ubiquitous meta-OSs, scalability, performance and applicability 
issues, self-X features, and autonomous considerations. 

Ubiquitous meta-OSs developments for IoT edge must align with the emerging new computing 
paradigms such as IoT swarm, including intelligent robotics things, organic computing, broad 
usage of AI, and neuromorphic concepts. 

  

 

 

43 http://unikernel.org/  

http://unikernel.org/
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The development of new SW-defined abstractions and capabilities for edge IoT devices is 
needed to support the management, application development, and communications 
between devices across the edge and cloud continuum. 

Context-awareness in the edge IoT system is related to the context information, the real-time 
operation and the dynamicity of processing, scalability and managing the information with the 
support of the ubiquitous meta-OS.  

Research should address the issue of creating a flexible context modelling framework to provide 
means of presenting, maintaining, sharing, protecting, reasoning, and querying context 
information. In this context, the IoT edge meta-OS must include adaptability and self-X features 
to allow the IoT application to adapt its behaviour according to the context. The IoT system can 
then be reconfigured to adapt to these context changes. 

Self-X functions, including self-organising, self-healing, self-protecting, self-diagnosing, self-
reconfiguring, require a form of self-awareness to understand the state of the edge IoT system 
and are to be embedded into the meta-OS, which must realise its state and configuration, and 
the state and the configuration of the resources it controls and manages. 

Research in developing models of edge IoT HW and ubiquitous meta-OS-level SW configuration 
is necessary to describe the topologies and the rationale for the designs of IoT devices and their 
integration into the distributed IoT edge applications architecture. The development of new 
software-defined abstractions and capabilities for edge IoT devices is needed to support the 
management, application development, and communications between devices across the 
edge and cloud continuum. 

The meta-OS features for IoT edge require adapting to the characteristics of these future 
applications that will be context-sensitive, adaptive, customised, and reconfigurable. The 
functional requirements behind the concepts of IoT systems reconfigurability, context-

awareness, adaptability, and customisation mean that the meta-OS supports and allows that 
the IoT system’s HW and SW configurations can seamlessly change at runtime. 

13.3 Research Priorities Timeline 

Table 11 Operating systems and orchestration concepts for edge IoT systems research priorities 

  

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Decentralization 

techniques 

Mature federated learning 

techniques that provide clear 
advantages in selected 
verticals and use cases 

Advanced federated learning 
techniques suitable for all 
verticals 

New paradigm of distributed 
management  

Context 

awareness 

Understanding the key 
surrounding parameters and 
functionalities that can 
guarantee an advance 
context awareness 

Context awareness improved 
with semantic capabilities, i.e., 
abstracting from the sheer 
heterogeneous data and going 
up in the abstraction layer 

New context awareness 
paradigm 

Operating 

Systems 

New meta-OS that can proof 
advantages against existing 
traditional OSs 

Enhanced distributed meta-OSs 
that adapt resource 
computation and storage 
allocation to the run-time 
environment on a ms scale 

Fully autonomous and 
reconfigurable management 
of the system resources in the 
IoT-edge-cloud continuum with 
fully distributed decision 
capabilities 
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14. Dynamic Programming Tools and Environments for Decentralised 

and Distributed IoT Systems 

Current programming environments and tools for IoT44 provide a centralised approach (either 
on-premises or cloud-based) where the main component transforms and processes most of the 
computation on data supplied by the edge and far edge devices. 

This approach unfortunately implies several drawbacks, for instance unused edge 
computational power, a single point of failure, and violation of data boundaries (private, 
technological, etc.). 

In this context, new research is needed in leveraging the resources available in lower-tier 
devices to improve overall dependability, performance, scalability, observability, and 
reproducibility of IoT systems using new programming and tools for distributed IoT. 

14.1 Technological developments 

Extensive edge IoT distributed systems are difficult to implement. Programming these systems is 
challenging due to the requirement to assert numerous control paths resulting from the 
innumerable interleaving of messages and failures, produces by a huge number of 
heterogeneous devices. 

The edge IoT distributed systems developments need to consider the integration of lightweight 
meta-OSs, distributed databases, middleware, mesh networking, and application architecture 
types. This means addressing the design and analysis of distributed algorithms, programming 
languages, compilers, SW tools and dynamic middleware environments. 

Managing edge IoT distributed systems infrastructure requires dedicated sets of programming 
tools.  

The dynamic programming tool for coding, modelling, simulating, and visualising the current 
operational state of all edge IoT devices, including verification and validation components and 
debugging and testing modules notifying when the failure occurs in the distributed IoT systems. 

The edge IoT distributed systems bring inherent challenges such as concurrency, partial failure, 
node dynamism, or asynchrony in their design and implementation.  

The increasing complexity of the concurrent activities and reactive behaviours in edge IoT 
distributed systems are unmanageable by the existing programming models, tools, and 
abstraction mechanisms. 

14.2 Main Trends, Issues and Challenges 

The research should consider transforming and decomposing data flow and partitioning of data 
exchange between the distributed IoT nodes while detecting current conditions in deciding 
when to move computations along the edge continuum. 

  

 

 

44 A recent survey of the most used tools can be found at: https://www.iotforall.com/top-iot-tools-and-platforms-for-iot-development-and-developers.  

https://www.iotforall.com/top-iot-tools-and-platforms-for-iot-development-and-developers
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The decomposition into heterogeneous IoT distributed environments needs to be done based 
on a selected decomposition schema. 

New techniques such as graph representations can provide an unambiguous computation 

model to abstract the application definition from its architecture to achieve a specific level of 

decentralization and heterogeneity. Infrastructure-independent application definition is 

needed that only contains data processing logic.  

The execution should be achievable on different sets of IoT devices with other capabilities using 
several algorithms for flow decomposition. The development of programming tools must 
integrate elements to design and evaluate mechanisms for component deployment and 
dependency management.  

The edge IoT devices of a complex distributed system can evolve heterogeneously, therefore 
exhibiting diverse component configurations. In these conditions, mechanisms are required to 
resolve and deploy component dependencies upon installing new components on the edge 
IoT devices. 

The research activities in the following years must consider solving several issues that are part of 
the edge IoT systems development, such as failure detection and partitioning of the system, 
replication and consistency, storage, and processing. 

The research in edge IoT distributed systems requires new techniques for the integration, 
management, and interoperability of distributed data, methods, technologies, services, 
architectures, applications, and interfacing with legacy IoT systems. 

The heterogeneous integration of wireless communications (cellular, Wi-Fi, LPWAN, etc.), mobile, 
ad-hoc, mesh networks, and sensors as part of complex edge IoT distributed systems require 
addressing novel algorithms, uses, and implications of distributed concepts, models, 

architectures, technologies, and deployments. 

Future work in this area requires exploring various representation techniques like semantics45, 
meta-data, tagging46, ontologies47, and knowledge bases48 applied to edge-distributed 
environments. 

The evolution of edge IoT distributed systems towards collaborative creation, resource sharing, 
and problem-solving requires combining the theory of distributed systems and technologies with 
parallel processing concepts and integration with cognitive-based49 algorithms. 

Testing and debugging edge IoT distributed systems are inherently complex and need to 
address many aspects, ranging from performance testing through scalable and accurate 
network emulation, correctness testing and debugging the edge IoT distributed systems. 

  

 

 

45 C. Dong, et Al., "Semantic Communication System Based on Semantic Slice Models Propagation," in IEEE Journal on Selected Areas in Communications, 
vol. 41, no. 1, pp. 202-213, Jan. 2023, doi: 10.1109/JSAC.2022.3221948. 

46 H. Jang, et Al. "IoT Device Auto-Tagging Using Transformers," 2020 12th International Conference on Advanced Infocomm Technology (ICAIT), Macao, 
China, 2020, pp. 47-50, doi: 10.1109/ICAIT51223.2020.9315384. 

47 C. -Y. Huang, Y. -H. Chiang and F. Tsai, "An Ontology Integrating the Open Standards of City Models and Internet of Things for Smart-City Applications," 
in IEEE Internet of Things Journal, vol. 9, no. 20, pp. 20444-20457, 15 Oct.15, 2022, doi: 10.1109/JIOT.2022.3178903. 

48 Y. Shen, et Al., "Prior Knowledge based Advanced Persistent Threats Detection for IoT in a Realistic Benchmark," GLOBECOM 2022 - 2022 IEEE Global 
Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 3551-3556, doi: 10.1109/GLOBECOM48099.2022.10000811. 

49 A. Giuliano, et Al., "A Review of Cognitive Dynamic Systems and Cognitive IoT," 2022 IEEE International IOT, Electronics and Mechatronics Conference 
(IEMTRONICS), Toronto, ON, Canada, 2022, pp. 1-7, doi: 10.1109/IEMTRONICS55184.2022.9795834. 
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The programming tools for building and testing edge IoT fault-tolerant distributed systems must 
include these elements to address these complex challenges. 

14.3 Research Priorities Timeline 

Table 12 Dynamic programming tools and environments for edge IoT systems research priorities 

 

  

TOPIC 

SHORT TERM MEDIUM TERM LONG TERM 

2023-2024 2025-2027 2028-2030 

Programming 

tools 

Programming tools for 
distributed algorithms for solving 
dynamic programming 
problems and work on models 
for asynchronous distributed 
computation addressing 
energy efficiency. 

Tool chain techniques for edge 
IoT systems including formalisms 
and programming models. 

Enhance the language support 
for implementation, 
specification, and systematic 
testing of asynchronous edge 
IoT systems. 

State machine-based 
programming language that 
supports the dynamic features 
required for building edge IoT 
asynchronous systems. 

Integrated 

development 

environments 

Integrated development 
environments and tools using 
module-based compositional 
refinement elements for 
development reasoning of 
dynamic edge IoT distributed 
systems. 

Evolution of the development 
environment for edge IoT 
distributed systems to include 
the design of efficient, AI-based 
components, support for DLTs, 
swarm and mesh networking 
using mechanisms for 
addressing the heterogeneity of 

these systems. 

Integrated development 
environments to address the 
dynamic changes in 
architectural patterns, 
abstractions, and component 
models for network-partition-
tolerant, scalable, elastic, and 
self-X edge IoT distributed 

systems enabling testing and 
debugging. 

Distributed 

system 

environments 

Monitoring solutions for 
distributed edge IoT systems, 
including scanning how the 
data is collected, processed, 
distributed, and presented 
following what events are 

available and measuring the 
required parameters for the 
distributed processes. 

Lightweight, agentless 
approaches and solutions for 
built-in monitoring technologies 
and protocols integrated into 
edge IoT distributed systems. 

Explore new hybrid and data 

streams approaches for 
monitoring distributed edge IoT 
systems. 

Development programming 
models and protocols for 
reconfigurable edge IoT 
distributed systems. 
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15. Heterogeneous Edge IoT Systems Integration 

The next-generation IoT and edge systems are evolving towards heterogenous and hybrid 

systems, integrated using various technologies. IoT and edge computing heterogeneous system 
integration is essential for providing IoT solutions that offer scalability, security, and resilience for 
IoT application needs. 

Heterogeneous edge IoT system integration refers to the integration of various HW/SW/AI 
components and convergence of different technologies into a higher-level IoT system that 
provides enhanced functionality and improved operating characteristics. 

The IoT applications require the integration of heterogenous technologies including sensors, 
devices, edge processing, and the cloud, with a variety of protocols and standards for 
communication. All these require certificate based E2E security to improve the overall robustness 
of the proposed products. 

Edge IoT heterogeneous systems comprise sensors, computing units, interconnects, processing, 
memory, connectivity, SW, and AI modules. The compute units can be very different, ranging 
from CPU, GPU, ASIC, DSP, ASSPs, FPGAs to SoCs. Different interconnects (e.g., PCIe, Ethernet) 
connect all these compute units.  

Each memory hierarchy of these computing units accesses these memories in a specific 
manner. The SW modules have usually to support different OS, virtual machines, runtime libraries 
and compiler toolchains. 

In edge IoT heterogeneous systems, memory bandwidth and data transfer between each 
compute unit can be unbalanced, and the different computing units have their own 
programming models, making integrating these systems difficult. 

15.1 Technological developments 

The edge IoT distributed systems are a result of technology convergence that enables the 
enhancement of edge IoT at the device, system, and application levels. 

Several technologies, such as identification technology, IoT architecture technology, 
communication and network technology, network discovery technology, computing, AI, 
discovery and search engine technology, SW and algorithms, sensors and HW technology, 
power and energy storage technology, data and signal processing technology, network 
management technology, security and privacy technologies, and standardisation are 
contributing to the functionality of the edge IoT systems. 

IoT heterogeneous system integration involves ecosystems of IoT connected devices, 
applications, and systems, including sensing, communication, processing, data analytics, 
enterprise-user apps, and a platform to streamline operations. All these components need to 
communicate seamlessly without compromising the quality or the performance of the overall 
E2E system. 

In the context of edge IoT systems, there is a need to define a heterogeneous system 
architecture with specifications for integrating various sensors, processing units, SW and HW 
components, AI frameworks, and connectivity. The goal is to make the IoT heterogeneous 
devices compatible from an IoT system-level perspective. 
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IoT heterogeneous system integration aggregates disparate devices, protocols, and enterprise 
systems for seamless operations, to provide E2E solutions interacting with IoT factory application 
integrators to connect IoT devices to the backend. 

This requires a deep knowledge domain and understanding of technologies and 
implementations to establish enterprise-wide connectedness systems across IoT architectural 
layers and industrial applications, aligned with the enterprise functions. 

As the number of IoT devices increases, the architectures evolve towards distributed systems, 
the complexity of IoT deployment expands significantly.  

Edge IoT system integration requires interdisciplinary skills, work experience, proper planning, 
and vital ecosystems to cover the entire process, from design and development to deployment 
and maintenance. 

IoT heterogeneous system integration implies the selection of IoT platforms that allows the 
storage, processing, sharing and visualization of the captured data by the distributed IoT 
devices, flexibility in managing content and permissions, and processing the data across the 
edge-cloud continuum, while allowing an easy use of the APIs, which can be focused on 
different kind of system integrations. 

15.2 Main Trends, Issues and Challenges 

The heterogeneity of edge IoT distributed systems (e.g., protocols, device data format, 
communication capabilities of the devices, technologies, HW, platforms, intelligence) creates 
a challenge to the large-scale implementation and scalability of edge IoT distributed systems. 

Several levels of heterogeneous integration can be identified for edge IoT systems. The 
heterogeneous integration starts at the components level, which includes the sensors, 
microcontrollers, analytics, and communication modules as part of the IoT device level.  

Next, there is heterogeneous integration at the SW and AI framework levels. And on the top, 
there is heterogeneity at the edge IoT system level. Heterogeneity at all levels leads to edge IoT 
system reconfigurability. 

Different platforms have been developed for edge IoT heterogeneous integration, including 
sensors, circuits, SW, processing, AI, and communication technologies.  

However, deploying these platforms requires edge IoT solutions covering the whole scale, from 
sensors and devices, through efficient circuit design, SW, and AI technologies to novel system-
level architectures and methodologies. 

Integrating heterogeneous devices allows for raising the processing capacity of edge IoT 
devices. Integrating edge IoT systems (software, HW, AI, training datasets, etc.) create System 
of Systems (SoS) solutions that can improve the features of IoT applications. 
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15.3 Research Priorities Timeline 

Table 13 Heterogeneous edge IoT systems integration research priorities 

 

  

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Heterogenous 

HW solutions 

Power-efficient performance 

for heterogenous HW including 
neural processing units (NPUs), 
to enable highly flexible, 
efficient processing for specific 
workloads and increased code 
portability across processors 
and platforms. 

Reliable SW across the edge, 
fog, and cloud processing for 
heterogenous edge IoT HW 
systems. 

Hybrid HW heterogeneous 
system architecture for edge IoT 
integrating heterogeneous 
processing elements into a 
coherent processing 
environment. 

Heterogenous 

integration 

Integration concepts to 

combine the heterogeneity of 
devices, data formats, 
communication, and 
interoperability issues due to 
heterogeneity. 

Define frameworks for 
continuous design and 
validation flows for edge IoT 
heterogeneous systems. 

HW/SW co-design on the next-
generation intelligent, 
adaptive, and autonomous 
edge IoT systems. 

Models  

Modelling techniques for 
heterogeneous edge IoT 
systems considering models for 

physical phenomena, 
architecture, computation, 
communication scheduling, 
self-awareness, and 
adaptation. 

Methods and techniques to 
model the edge IoT systems and 

their topology, heterogeneity, 
system loads, and simulation 
tools to identify how these 
parameters influence the 
system performance. 

Simulation integration (co-
simulation) of edge IoT 
heterogeneous systems by 

addressing scaling, 
composition, extensive range of 
required time resolution, HW-in-
the-loop simulators and 
increasing automation in 
simulation integration. 
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16. Edge IoT sectorial and Cross-Sectorial Open Platforms 

The IoT platforms are categorised considering the area of operation and the functionalities (e.g., 

device, connectivity, edge, cloud), the sector (e.g., industrial, consumer, business), or the 
openness (e.g., open-source, commercial, proprietary) they address. 

The IoT platforms developed around specific IoT devices or components provide the features 
for implementing functions to secure that the connected devices are installed, configured, and 
maintained using regular FW/SW updates and upgrades. 

The IoT platforms focusing on connectivity provide capabilities and features for connecting 
various IoT devices to support, manage and orchestrate the connectivity functions, and 
implement communication services. 

16.1 Technological developments 

The edge IoT platforms are developed to provide advanced capabilities near the edge of the 
network close to the IoT devices that collect data or deliver processed information.  

The edge IoT platforms that implement the management capabilities for implementing a 
distributed architecture required to exchange data among the edge IoT devices integrated 
into the edge IoT platforms, are required to use HW-agnostic scalable architectures to support 
the deployment of functions across the edge continuum covering micro-, deep- and meta-
edge. 

Cloud-based IoT platforms are centralised solutions implemented by cloud providers to support 
developers to create and deploy IoT solutions on their clouds (e.g., IaaS, PaaS). Many of these 
platforms offer advanced AI-based analytics and offer tools including ML and other AI 
techniques to secure actionable insights from IoT data. 

Edge IoT platforms help facilitate localised processing on edge IoT devices to support analysing 

data streams, including information about networks, actions, and other infrastructure the edge 
IoT devices are connected to or interacting with. 

Edge IoT platforms deliver containerised components that are deployable on IoT devices, 
runtime modules to execute actions locally at the edge, and interfaces with other edge or cloud 
platforms using, in many cases, cloud-based interfaces for monitoring and management. 

The edge IoT platforms embed IoT analytics to the edge to increase processing efficiency and 
security by reducing the amount of data being transferred over networks so that processing can 
be completed locally on edge IoT devices. 

The industrial, consumer, business edge IoT platforms are developed to provide IoT solutions for 
the specific economic sectors, and they are in many cases tailored for the specific need in these 
sectors. 

The industrial edge IoT platforms are created to match the industrial manufacturing 
requirements to monitor edge IoT devices, process the data series, event streams, support and 
convert a variety of industry open or proprietary protocols, interpret data at the edge or in the 
cloud and provide analytics on industrial data collected.  

The industrial IoT platforms provide an integration framework for IT and OT systems facilitating 
data sharing and consumption for the integration of new real-time asset management. 
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The next-generation edge IoT platforms require a move from specific vertical industrial sectors 
to horizontal IoT platforms that implement distributed architectures based on edge computing 
capabilities operating across several industrial sectors.  

Such platforms need to integrate several connectivity and processing technologies, advanced 
analytics and data management capabilities that enable developers to easily design and 
deploy IoT solutions faster, accelerating time to insight for applications operating across several 
industrial sectors. 

16.2 Main Trends, Issues and Challenges 

Specific research challenges for next-generation edge IoT platforms are to address the issues of 
heterogeneity, scalability and federated learning (FL) by implementing distributed architectures 
that guarantee the security and privacy of the data exchanged by an extensive number of 
intelligent edge IoT devices while subduing interoperability issues. 

The research advances in the area of cognitive cloud platforms require new solutions for the 
federation of edge IoT platforms and the orchestration of edge-cloud domains for optimising 
the use of the resources, improving service quality, reducing the energy, the inefficient flow of 
data, and the costs. 

Further research is needed to address the technological and semantic interoperability issues 
among heterogeneous IoT devices and platforms in the context of implementing distributed 
architectures and the integration of new technologies such as swarm computing.  

The research needs to focus on minimising the complexity of collecting and processing vast 

amounts of real-time data generated by intelligent IoT devices, address scalability and security 
issues. 

The increased focus on IoT solutions built using open-source SW and HW, which are based on 
open specifications allowing portability and reducing IoT applications development, require 
further research on open-source technologies. 

The research and innovation priorities must address the convergence of technologies for edge 
IoT platforms combining the technological development in a long list of areas, e.g., sensing, 
processing, communication, computing, AI, and storage technologies. 

The research priorities need to support the development of new open, edge IoT horizontal 
platforms combining the distributed functions for mobile edge computing and the interfaces to 
synergize and federate with other edge or cloud platforms. 

The advances in intelligent industrial IoT applications, Tactile IoT and autonomous/robotic 
systems solutions require real-time response and computing at the edge of the networks and FL 
across the edge.  

New research is required to provide AI algorithms to operate in a heterogeneous distributed IoT 
application context, including a federation of edge IoT and cloud platforms. 

AI and IoT FL advances require new development frameworks to enable the effective 
development of edge IoT platforms embedding AI-based components at different IoT 
architectural layers. 

Further development of edge IoT platforms needs to support the creation of intelligent, self-X 
functions (e.g., self-organising, self-healing, self-configuring, self-managing) integrated into the 
platforms to deal with the intelligent autonomous IoT and swarm systems.  
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These functions include SW/HW and AI-based algorithms that enable automated tasks (e.g., to 
create, provision, configure, troubleshoot) that manage fleets of IoT devices and gateways 
securely, remotely, in volume or individually. 

Various AI techniques, rule engines, event stream processing, data visualisation and ML need to 
be developed to address the micro-, deep, and meta-edge and integrated into the IoT 
platforms. 

The IT and OT security measures and features must be considered and developed in the context 
of distributed architecture and across the edge-cloud continuum. 

The advances in IoT/edge computing need to address secure data storage, efficient data 
retrieval and dynamic data collection as part of a processing framework for IoT along the 
computing continuum considering the functions of data pre-processing, storage and analytics 
based on both edge and cloud computing infrastructures. 

16.3 Research Priorities Timeline 

Table 14 Edge IoT sectorial and Cross-Sectorial Open Platforms research priorities 

 

  

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Simulation 

capabilities 

Edge IoT platforms can simulate 
and run a IoT devices in a 
specific vertical domain 

Edge IoT platforms across 
multiple IoT verticals domains 
and supporting partial twinning. 

Edge AI platforms working and 
seamless simulating all industrial 
domains and make use of 
advanced twinning. 

Interoperability 

among platforms 

Each edge IoT platform has its 
own API to expose its services to 
the outside world 

Edge IoT platforms that can 
exchange data among 
themselves, making use of the 
recently defined data spaces at 
European level. 

Edge IoT distributed platforms 

with embedded AI capabilities 
applied to industrial sectors and 
use Research on advanced 
edge AI platforms to exchange 
abstract data sets and make 
use of all defined data spaces 
at the European level. 

Convergence of 

technologies 

Edge IoT platforms that 
combine distributed 
architectures converging mesh, 
DLT and AI technologies. 

Advanced edge IoT AI-based 

platforms with integrated 
cognitive functions for 
federated learning and other 
emerging distributed learning 
technologies. 

Advanced edge IoT platforms 

including digital twining 
technologies to address the 
metaverse continuum for novel 
immersive applications. 
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17. IoT Verification, Validation and Testing (VV&T) Methods 

The broad range of existing security certification schemes for products, systems, domains, 

solutions, services, and organizations derives on a heterogeneous environment of solutions, 
making it difficult to understand what is needed to achieve a certain level of security in each 
context or technology. This heterogeneity also makes comparing certified devices more difficult, 
especially when different certification approaches, countries, and contexts are used. Currently, 
there is no unified solution that copes with these problems, facilitating the process of comparing 
and assessing the security levels. 

17.1 Technological developments 

Due to the dynamism of security defined by the new vulnerabilities discovered, affecting the 
security or the change of the domain that have different security requirements (e.g., IoT devices 
that passes from a medical to a home domain), the certification approach must adapt to these 
changing conditions. An agile certification process is required to ensure such security level is up 
to date during the lifecycle of a device. In addition, the approach must cope with the business 
requirements and needs of the market. It means that security certification approaches should 
be efficient and cost-effective, so the market product launch is not delayed. 

17.2 Main Trends, Issues and Challenges 

While pure functional verification of IoT systems still poses challenges, e.g., due to HW/SW 
integration issues, AI at the edge, and the distributed nature of IoT systems, verifying non-

functional properties, such as cybersecurity or resource consumption, usually is at least as 
challenging. Also, integrating untrusted third party IoT devices in sensitive or safety-critical 
systems often comes with the challenge to prove the absence of hidden “unwanted” 
functionality (e.g., backdoors), which can go as deep as needing to employing techniques like 
binary code analysis. 

The edge IoT distributed, heterogeneous systems employ multi-languages for implementation or 
for services edge IoT devices provide. Distributed systems use different forms of concurrent 
programming that increase HW concurrency and sources of heterogeneity. 

Developing reliable, safe, and secure edge IoT distributed systems is a trade-off process that 
must be able to also scale among the different level of performance that are needed in the 
different configurations. 

The development requires novel models, logical notations, verification techniques, extensions, 
improvements, and combinations of existing ones to catch the behaviour of such systems and 
ensure that they meet various specific requirements. In this context, advanced formal methods 
applied to the verification and validation of edge IoT concurrent and distributed heterogeneous 
systems can provide new understandings of the efficiency of these methods, when compared 
with other approaches. Given the financial pressure on IoT device development, any 
verification activity must be cost effective and efficient, hence, the automation of verification 
tasks is an important trend. Cost and efficiency of verification also is heavily linked to the proper 
usage of design methodologies like “security-by-design”, as rigorous design will significantly cut 
down testing efforts. 

Verification of non-functional properties like cybersecurity lags behind functional verification, 
even if the former can have even bigger financial risk attached. 
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Research shall focus on new and improved methods for the automated verification of non-
functional HW/SW properties of IoT systems. In addition, the functional verification of edge IoT 
AI-based solutions, which is a largely open challenge, must be addressed. 

Verification research on edge IoT system should consider virtual environments (incl. digital twins), 
and design approaches promising greater efficiency at reduced error - and vulnerability rate 
into account. This may include formal development/rigorous design, low-code/model-based 
and other approaches. Finally, investigating automating and improving the scalability of 
verification approaches for third-party “black-box” systems, which look at the HW and binary 
SW level of IoT systems, is required. 

The heterogeneity of edge IoT distributed systems makes deploying and managing these 
systems complex. The distributed architecture of these systems adds to the complexity, as the 
IoT systems are deployed across networks and spatial boundaries. 

Distributed systems display a high level of concurrency, which is a challenge in estimating the 
consistency and correctness of these systems, mainly when their behaviours are not 
appropriately defined. In the edge distributed systems, IoT devices become reactive systems, 
constantly interacting with the environment, and adjusting their states. 

The distributed environment and the changing behaviour of edge IoT devices drive the IoT 
applications to be very dynamic and, therefore, exposed to unexpected behaviour. Identifying 
unexpected behaviour and assuring that the demanded behaviour is followed can create a 
challenge in dynamic systems. Intended behaviours in edge IoT distributed systems can be 
defined as properties. Model-checking techniques are used to see whether these properties 
hold onto the formal specification of the system. In this context, property specification, 
verification and virtual validation can help detect errors in edge IoT dynamic and distributed 
systems. 

Further research must consider upcoming technologies such as HW/SW neuromorphic and 
swarm computation. Of further interest is the automation and integration of the 
design/verification/debug cycle with operational data: automated repair, diagnosis, and 
updates for systems in the field based on observed failures. 

17.3 Research Priorities Timeline 

Table 15 IoT Verification, Validation and Testing Methods research priorities 

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Edge IoT AI-

based systems 

VV&T 

Virtual validation of edge IoT 
based system including AI-
based components. 

VV&T of self-X behaviours (e.g., 
self- configuration, self-healing, 
and self-adaption, etc.) of edge 
IoT systems. 

Development of VV&T methods 
and techniques for real time 
and time constrained AI-based 
edge IoT distributed systems. 

Distributed 

systems VV&T 

Validation methods for edge IoT 
distributed systems focusing on 
both proof-based verification 
and systematic testing. 

Mesh networking systems 
integrated as part of edge IoT 
infrastructure. 

Edge IoT distributed systems 
embedding digital twin 
solutions. 

Heterogenous 

systems VV&T 

HW/SW neuromorphic and 
swarm computation applied to 
edge IoT distributed systems. 

Heterogenous IoT distributed 
systems comprising of DLT 
platforms, edge AI frameworks 
and various ML 
implementations. 

Federation of multi-blockchain-
based data processing, edge 
IoT computing and swarm 
intelligence. 

Heterogenous edge IoT 
interoperability testing. 
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18. IoT Trustworthiness and Edge Computing Systems Dependability 

Trustworthiness of the edge IoT systems can be defined as the degree of confidence one has 

that the edge IoT system performs as expected. Designing IoT edge trustworthiness into edge 
IoT systems requires the identification of characteristics and mechanisms of trust that can be 
embedded into the edge IoT system. 

Trust in edge IoT systems is realised at the intersection of several dependability characteristics, 

as shown in Figure 8. As a result, trust in an edge IoT system is a concept with multiple dimensions, 
combining dependability characteristics with human and machine behaviour. In this context, 
there is a need for a greater understanding of how individuals interact with edge IoT devices 
and how edge devices interact with other devices/things concerning the extension of trust. 

18.1 Technological developments 

The dependability50 of a system reflects the user's degree of trust in that system. Dependability 
characteristics applied to edge IoT systems are safety, security, reliability, resilience, availability, 

connectability, and maintainability as illustrated in Figure 8. 

 

Figure 8 Edge IoT system dependability characteristics 

The security aspects for IoT are critical due to the amount, diversity, and potential impact of 
security threats on everyday critical infrastructures. Security aspects represent one of the most 
pressing barriers to the adoption of large-scale IoT deployments. 

  

 

 

50 Laprie, JC. (1995). Dependability — Its Attributes, Impairments and Means. In: Randell, B., Laprie, JC., Kopetz, H., Littlewood, B. (eds) Predictably 
Dependable Computing Systems. ESPRIT Basic Research Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79789-7_1.  

https://doi.org/10.1007/978-3-642-79789-7_1
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Recent cyberattacks, such as the Mirai51 or BrickerBot52 IoT Botnets53, highlight the need to design 
appropriate protection mechanisms for the next generation of IoT devices. 

To address cybersecurity concerns, one of the most ambitious initiatives in Europe is the definition 
of a cybersecurity certification framework. In this direction, the recent "Cybersecurity Act"54 
represents the European Commission effort to strengthen the European Union Agency for 
Network and Information Security (ENISA)55 role for the definition of this framework by providing 
additional guidelines and challenges for its realization. 

The definition of a cybersecurity framework requires efforts from different knowledge domains 
to satisfy the requirements and needs of various stakeholders, such as manufacturers, institutions, 
legal firms, and consumers. 

On the one hand, the very broad range of existing security certification schemes for products, 
systems, domains, solutions, services, and organizations derives on a heterogeneous 
environment of solutions, making difficult understanding what is needed to achieve a certain 
level of security in each context or technology. 

This heterogeneity also makes comparing certified devices more difficult, especially when these 
devices are certified with different certification approaches, countries, and contexts. Currently, 
there is not a unified solution that copes with these problems, facilitating the process of 
comparing and assessing the security level. 

On the other hand, due to the dynamism of security (e.g., a new vulnerability discovered 
affecting the security or a change of domain such as a device that passes from a medical to a 
home domain, implying different security requirements), the certification approach must 
consider these fast-changing conditions, which could affect the device’s security level. 

IoT Trustworthiness requires integrating stakeholders of the critical sector (network operators, 
technology suppliers, cybersecurity solution providers, standard and certification bodies, etc.) 

for defining cybersecurity standards and test procedures. 

18.2 Main Trends, Issues and Challenges 

With IoT devices taking over critical tasks in system control and/or health areas, dependability is 
one major trend: data provided must be reliable and trustworthy.  

Dependable edge IoT systems will incorporate devices and services of multiple different vendors 
which will only increase the challenge. For example, such systems need to cope with data 
privacy, cybersecurity, reliability, and safety at the same time.  

Without proper standards and planning, guaranteeing all these attributes over a set of diverse 
devices from different vendors (being deployed in different networks and data centres) is next 
to impossible.  

  

 

 

51 G. Tatebatake and S. Yamaguchi, "Mathematical Modeling and Analysis of the Dictionary Attack Mechanism in IoT Malware Mirai,"  2022 IEEE International 
Conference on Consumer Electronics-Asia (ICCE-Asia), Yeosu, Korea, Republic of, 2022, pp. 1-5, doi: 10.1109/ICCE-Asia57006.2022.9954838. 
52 C. Kolias, G. Kambourakis, A. Stavrou and J. Voas, "DDoS in the IoT: Mirai and Other Botnets," in Computer, vol. 50, no. 7, pp. 80-84, 2017, doi: 
10.1109/MC.2017.201. 
53 R. Raman, "Detection of Malware Attacks in an IoT based Networks," 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and 
Cloud) (I-SMAC), Dharan, Nepal, 2022, pp. 430-433, doi: 10.1109/I-SMAC55078.2022.9987253. 
54 https://digital-strategy.ec.europa.eu/en/policies/cybersecurity-act. 
55 https://www.enisa.europa.eu/ 
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Dependability management over the complete product lifecycle will become key and include 
techniques such as AI-augmented DevOps, safety and security-by design, dependability 
architectures, low-code development, code-re-use, and proper security management over the 
whole product lifecycle. 

In a more technology-dependent world, cybersecurity concerns have attracted an increasing 
interest from companies, regulatory bodies, and end users. With the IoT, such aspects are 
exacerbated due to the amount, diversity, and potential impact of security threats on everyday 
critical infrastructures. Indeed, nowadays, security aspects represent one of the most important 
barriers for the adoption of large-scale IoT deployments. 

Therefore, an agile certification process is required to ensure such security level is up to date 
during the lifecycle of a device. In addition, the approach must cope with the business 
requirements and needs from the market. It means that security certification approaches should 
be efficient and cost effective, so the product launch in the market is not delayed. 

As a result of this process, a cybersecurity label is looked for, which contains the security level 
achieved by the device. It should provide a clear visibility of the level of security achieved but 
also give a non-ambiguous and complete representation of the results of the cybersecurity 
evaluation process. 

This is rather difficult to achieve, because in comparison to the energy label, which measure a 
physical quantity, the measurement of security is far more complex, involving several security 
properties or dimensions. In addition, the label should be able to show in real time the security 
offered by the device. 

The IoT and edge computing systems have challenges in addressing the automated 
cybersecurity evaluation towards a more agile and cost-effective certification, dealing with the 
IoT dynamism. 

Finally, there is also the need for objectives and evidence-based evaluation methodologies that 
would allow for a homogeneous evaluation, including comparability aspects. This limits the 
security management mechanisms addressing the whole lifecycle of the IoT device, dealing 
with the security changes that might invalidate the certificate. 
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18.3 Research Priorities Timeline 

Table 16 IoT Trustworthiness and Edge Computing Systems Dependability research priorities 

 

  

Topic 

Short Term Medium Term Long term 

2023-2024 2025-2027 2028-2030 

Trustworthiness 

Edge IoT trustworthiness of ML 

models and explainability of AI 
(XAI) models used in Federated 
Learning. 

Trustworthiness models for edge 

IoT self-adapting systems based 
on digital twin and AI-based 
technologies. 

Frameworks providing 

guidelines, good practices and 
standards oriented to end-to-
end trust in edge IoT systems. 

Dependability 

Define methods and tools to 
support the dependability 
system properties definition, 

composition and validation and 
relate the properties to different 
standards addressing different 
technologies. 

Dependability properties at 
different layers of the edge IoT 
architecture by considering 
scalable concepts for HW, SW, 
connectivity, Al algorithms 

(inference, learning) and the 
design of flexible 
heterogeneous architectures 
that optimise the use of 
computing resources and the 
use of resource-constrained 
devices. 

Virtualisation and simulation 

tools for managing the 
evaluation of edge IoT system 
dependability. 

Benchmarking 

Define different benchmarking 

methods and techniques of 
trust for an edge IoT system and 
provide compliance to an 
agreed-upon standard via 
certification schemes. 

Benchmarking heterogenous 
edge IoT systems based on DLT, 
digital twins, mesh networking 
and AI technologies. 

Benchmarking reference data 
sets for training edge IoT systems 
for federated learning. 
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