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ABSTRACT
The wide spread of the Automatic Identification System (AIS) and

related tools has motivated several maritime analytics operations.

One of the most critical operations for the purpose of maritime

safety is the so-called Vessel Collision Risk Assessment and Fore-

casting (VCRA/F), with the difference between the two lying in

the time horizon when the collision risk is calculated: either at

current time by assessing the current collision risk (i.e., VCRA) or

in the (near) future by forecasting the anticipated locations and

corresponding collision risk (i.e., VCRF). Accurate VCRA/F is a dif-

ficult task, since maritime traffic can become quite volatile due to

various factors, including weather conditions, vessel manoeuvres,

etc. Addressing this problem by using complex models introduces

a trade-off between accuracy (in terms of quality of assessment /

forecasting) and responsiveness. In this paper, we propose a deep

learning-based framework that discovers encountering vessels and

assesses/predicts their corresponding collision risk probability, in

the latter case via state-of-the-art vessel route forecasting methods.

Our experimental study on a real-world AIS dataset demonstrates

that the proposed framework balances the aforementioned trade-

off while presenting up to 70% improvement in 𝑅2 score, with an

overall accuracy of around 96% for VCRA and 77% for VCRF.

CCS CONCEPTS
• Information systems→ Data mining; Spatial-temporal sys-
tems.

KEYWORDS
Maritime Safety, Collision Risk Assessment, Collision Risk Fore-

casting, Deep Learning

ACM ISBN 979-8-4007-0168-9/23/11.

https://doi.org/10.1145/3589132.3625573

ACM Reference Format:
Andreas Tritsarolis, Brian Murray, Nikos Pelekis, and Yannis Theodoridis.

2023. Collision Risk Assessment and Forecasting on Maritime Data (In-

dustrial Paper). In The 31st ACM International Conference on Advances in
Geographic Information Systems (SIGSPATIAL ’23), November 13–16, 2023,
Hamburg, Germany. ACM, New York, NY, USA, 10 pages. https://doi.org/10

.1145/3589132.3625573

1 INTRODUCTION
The growing number of ship sensor technologies, such as the Au-

tomatic Identification System (AIS), provides a wealth of vessel

positioning data well-suited to be used in a wide range of mar-

itime analytics applications [2, 36, 38]. In particular, deep learning,

real-time data analytics, and big data processing techniques have

attracted the interest of researchers and practitioners in the mar-

itime field who develop models by using large amounts of AIS data

to solve various maritime-related problems [2].

Effectively assessing the collision risk in a fleet of monitored

vessels is one of the most important aspects of maritime safety [25].

For example, the expected widespread use of unmanned surface

vessels (USV) that is foreseen in the near future [4] in order to

reduce other modes of transportation, such as road and rail, raises

a plethora of maritime safety concerns. In a nutshell, given the

current movement status of two vessels, Vessel Collision Risk As-

sessment (VCRA) and Forecasting (VCRF) aim to assess the current

and future, respectively, collision risk of the vessels when they are

or are expected to be, respectively, in an encountering process, in

terms of their Collision Risk Index (CRI)
1
.

Figure 1 illustrates an example, where we depict the vessels’

actual (solid black line) and future trajectories (dashed black line),

and their corresponding encounterings at 𝑡𝑛𝑜𝑤 (hence, VCRA) and

up to 𝑡𝑛𝑜𝑤 + Δ𝑡 (hence, VCRF). Towards this direction, there is a
wide spectrum of state-of-the-art approaches, from mathematical

formulae and Fuzzy Logic [31, 41] to Machine Learning / Deep

Learning (ML / DL) [18, 21]. In this paper, we propose a framework

for addressing VCRA/F based on deep learning, and investigate its

application towards ensuring maritime traffic safety.

1
While the problem sounds similar to that of collision avoidance, in terms of decision

taking on - high-risk - encountering processes in the foreseeable future, the latter is

out the scope of this paper, since it includes the additional stage of recalculating the

vessels’ itinerary, in order to avoid collision.
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Figure 1: VCRA/F example: VCRA detects encountering 𝑒1
(𝑎, 𝑏), whereas VCRF detects encounterings 𝑒2 (𝑎, 𝑏) and 𝑒3
(𝑎, 𝑐).

In summary, the main contributions of this work are as follows:

• we provide an ML-based method to address the VCRA prob-

lem, which outperforms related work;

• we combine our VCRA solution with Vessel Route Forecast-

ing (VRF) in order to address the VCRF problem; and

• we validate our proposed VCRA/F framework over a large-

scale real-world AIS dataset and discuss about the explain-

ability of the experimental results.

The rest of this paper is organized as follows: Section 2 discusses

related work; Section 3 formulates the problem at hand, whereas

Section 4 presents the proposed methodology for VCRA (Section

4.1) and VCRF (Section 4.2); Section 5 presents the setup and the

results of our experimental study, while Section 6 discusses about

the explainability of the results and the impact of the involved

training features in the calculation of CRI; Section 7 concludes the

paper, also giving hints for future work.

2 RELATEDWORK
2.1 Vessel Collision Risk Assessment
As alreadymentioned, the current state-of-the-art in VCRA includes

formulaic as well as ML-based approaches. The difference between

the two aforementioned families of methods is that the former uses

kinematic equations combined with ML models (e.g., SVM) while

the latter directly leverages ML methods (e.g., CNN) for assessing

the collision risk between two vessels, hereafter called “own” and

“target” vessels, respectively
2
.

Focusing on formulaic-based approaches, in [31] the collision

risk detection problem was addressed by using quantification tech-

niques (i.e., Extended Kalman Filters). In [41] the authors survey

the methods regarding the exploitation of AIS data towards anom-

aly detection, including approaches on VCRA from two families

of methods, namely Closest Point of Approach (CPA) and Fuzzy

Logic. Within the context of CPA-based methods, [5] proposes a

unified formulae system that includes not only the distance and

time to CPA (DCPA and TCPA, respectively), but also their relative

difference in speed and direction, as well as the distance between

the two involved vessels.

In contrast to the formulaic approach, [6] proposes a Time Dis-

crete Non-linear Velocity Obstacle (TD-NLVO) method, in which

the vessel encounter is considered as a process, rather than ana-

lyzing traffic data at certain time slices. Their CRI formula takes

into account the vessels’ distance, time difference, as well as their

corresponding domain, calculated with respect to their length.

Iphar et al. [15] propose a general-purpose expert-based method

for the risk assessment of anomalous maritime transportation data

which, among other situations, calculates the vessels’ collision risk

using four discrete danger levels. Shi et al. [35] propose a novel

track pairs collision detection algorithm for evaluating the risk of

vessel collision in port traffic using a variant of Douglas-Peucker

algorithm [11], which takes into account the vessels’ speed in order

to achieve better compression with respect to quality.

Hongdan et al. [13] propose a deterministic collision risk as-

sessment and avoidance model, based on the vessels’ kinematic

characteristics and CPA alarms. Additionally, Lee et al. [17] propose

a collision prevention algorithm aimed towards the safety of small

fishing vessels. Following this line of research, Zhou et al. [44]

propose a collision risk assessment and avoidance model for USV,

composed of the vessels’ navigation safety domain and CRI.

Most similar to our work on VCRA, Gang et al. [12] propose

an ML-based approach that takes as input the encountering ves-

sels’ CPA-based features and generate a dataset used to train an

SVM model. In a similar fashion, Li et al. [18] replace the SVM

with a CART model for calculating the vessels’ CRI and assess its

performance over five different metrics. In one of the most recent

works, Park et al. [29] propose an RVM model for calculating the

encountering vessels’ CRI, and assess its performance compared to

[12].

2.2 Vessel Collision Risk Forecasting
In relation to the VCRF problem, Sang et al. [33] propose a position

prediction model in order to extract short-term future trajectories of

vessels using AIS data. In particular, they propose an improvement

over the existing CPA calculation methods by adding the change

of speed (COS) and rate of turn (ROT), and taking into account all

points in the predicted trajectory instead of only the latest trans-

mitted ones. Through the analysis of a real-world collision scenario,

they show that the proposed method can help identify and warn of

anomalous vessel behaviour in a realistic time frame.

2
Interestingly, the collision risk between two vessels is not symmetric; see the related

discussion in Section 6
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Moving on to DL approaches, Vukša et al [42] propose a vessel

collision probability estimation model over a maritime spatial grid

based on Monte Carlo simulation and bidirectional long short-term

memory neural network (Bi-LSTM). In a similar manner, Liu et al.

[20] propose a Convolutional LSTM (ConvLSTM) model, which can

extract spatial–temporal features and predict the vessels’ collision

probability within a region of interest. Further following this line

of research, [19] proposes a framework for short-term regional

collision risk prediction by combining DBSCAN clustering with

Shapley values, a method from game theory, and Recurrent Neural

Networks (RNNs). Most recently, Namgung et al. [27] propose a

VCRF framework, which consists of a Fuzzy Inference System-based

variant (FIS-NC) and an RNN to aid timely decision making.

Most similar to our work on VCRF, Ma et al. [22] reduce VCRF

into time-series classification and propose an LSTM-based model

which maps the encountering vessels’ behavioural features to their

corresponding CRI in the future. Furthermore, Ma et al. [21] extend

[22] by offering an updated version of the aforementioned model

that employs Bi-directional LSTMs [34] and the Attention [3] mech-

anism to improve feature extraction. Nevertheless, their approach

[21,20] is not directly comparable with our framework since they

directly predict vessels’ CRI instead of relying upon a vessel route

prediction model.

3 PROBLEM FORMULATION
In this section, we formulate the VCRA/F problems and present our

proposed methodology. The main background definitions are as

follows:

Definition 3.1 (Trajectory). A trajectory 𝑇𝑗 of vessel 𝑗 is repre-

sented by a sequence of timestamped GPS positions, where the 𝑘𝑡ℎ

time-stamped position is expressed as a triplet of [𝑡𝑘
𝑗
, 𝑙𝑜𝑛𝑘

𝑗
, 𝑙𝑎𝑡𝑘

𝑗
],

with the values corresponding to timestamp, longitude, and latitude,

respectively.

Definition 3.2 (Collision Risk Index). Given the location (𝑙𝑜𝑛, 𝑙𝑎𝑡),
course 𝜙 , and speed 𝑉 over ground of two vessels 𝑣𝑂 and 𝑣𝑇 (for

“own” and “target” vessel, respectively), the Collision Risk Index

(CRI) of 𝑣𝑂 with respect to 𝑣𝑇 is expressed as a probability, calcu-

lated via the dot-product of Eq. 1, where𝑊 denotes the weight

vector of target factors, and 𝑈 denotes the membership vector of

target factors, namely the Distance and Time to Closest Point of

Approach (DCPA and TCPA, respectively), distance 𝐷
𝑇

𝑂
, relative

bearing \
𝑇

𝑂
, and speed ratio 𝐾 =

𝑉𝑇

𝑉𝑂
[29].

𝐶𝑅𝐼 =𝑊 ·𝑈 =𝑊𝐷𝐶𝑃𝐴𝑈𝐷𝐶𝑃𝐴 +𝑊𝑇𝐶𝑃𝐴𝑈𝑇𝐶𝑃𝐴+
𝑊
𝐷
𝑇

𝑂

𝑈
𝐷
𝑇

𝑂

+𝑊
\
𝑇

𝑂

𝑈
\
𝑇

𝑂

+𝑊𝐾𝑈𝐾 (1)

For the purposes of this paper, we adopt the weights and mem-

bership functions introduced in [12, 29, 43]; Figure 2 illustrates a

diagram of the involved parameters
3
.

Definition 3.3 (Vessel Encountering Process). Assuming fixed sam-

pling rate
4
, vessels 𝑣𝑂 and 𝑣𝑇 , are in an encountering process,

3
More information on the mathematical formulae can be found at https://github.com

/DataStories-UniPi/VCRA.

4
In real-world, AIS signals are not transmitted in fixed sampling; nevertheless, the

fixed sampling rate assumption can be realized by, on the one hand, using interpolation

Figure 2: The diagram of vessel collision geometry, adapted
from [12].

when their distance 𝐷
𝑇

𝑂
is less than 𝐷𝑚𝑎𝑥 for at least 𝑘 > 0most re-

cent time-slices and is monotonically decreasing during this period

[𝑡𝑛𝑜𝑤−𝑘 , 𝑡𝑛𝑜𝑤].

Definition 3.4 (Vessel Collision Risk Assessment). Given a pair of

vessels 𝑣𝑂 , 𝑣𝑂 that are in an encountering process, VCRA aims to

calculate the CRI of 𝑣𝑂 with respect to 𝑣𝑇 .

Definition 3.5 (Vessel Collision Risk Forecasting). Given a pair of

vessels 𝑣𝑂 , 𝑣𝑇 , and a prediction horizonΔ𝑡 , VCRF aims to evaluate (i)

whether the two vessels will be in an encountering process within

Δ𝑡 based on their anticipated routes and, if yes, (ii) calculate the

CRI of 𝑣𝑂 with respect to 𝑣𝑇 at the time of expected encountering.

Adopting Definition 3.3 with 𝑘 = 4 in the example of Figure 1,

we discover encountering process 𝑒1 (𝑎, 𝑏) at 𝑡𝑛𝑜𝑤 , whereas via
Definition 3.5 we predict that this encounter will continue for two

more time-slices (i.e., 𝑒2, a superset of 𝑒1), and up to 𝑡𝑛𝑜𝑤 + Δ𝑡 we
discover a new encountering 𝑒3 (𝑎, 𝑐).

4 VCRA/F FRAMEWORK OVERVIEW
The proposed architecture of our VCRA/F framework is illustrated

in Figure 3. In particular, starting from the offline layer and given

the AIS-enabled vessels’ historical data, we train a VCRA and a VRF

model, the latter being in charge of forecasting future vessel routes

(to be used in the VCRF process). Proceeding to the online layer,

we feed the preprocessed (cleansed) AIS data-stream to the VRF

model in order to get the predicted routes, and for the anticipated

encountering vessels’ their kinematic information is passed through

the VCRA model in order to calculate their CRI.

In contrast to unified frameworks for VCRA/F [22, 21] our pro-

posed framework not only predicts vessels’ CRI but also predicts

their corresponding locations up to 𝑡𝑛𝑜𝑤+Δ𝑡 . This makes our frame-

work modular in terms that, depending on the use-case, different

VCRA and/or VRF models can be deployed in a plug and play mode.

in past locations and, on the other hand, setting the VRF model to operate as such

when producing future locations.
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Figure 3: Architecture overview of the proposed VCRA/F framework

In the sections that follow, we present the details of the main

components of our architecture, namely, the online layer including

the tasks of processing AIS data, tracking encounters, and calculat-

ing CRI (Section 4.1) and the offline layer including the underlying

VCRA and VRF models (Section 4.2).

4.1 The Online Layer
In this section, we describe the online part of our VCRA/F frame-

work, which is responsible for data preprocessing, tracking encoun-

tering vessels, and assessing the CRI of the tracked encountering

vessels in the short-term future.

Algorithm 1 illustrates our method for discovering and tracking

encountering vessels in online fashion. Firstly, for each incoming

time-slice 𝑡𝑖 , we retrieve the current vessel pairs 𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 using

the Ball-Tree spatial index provided by scikit-learn ML library
5

over the vessels’ location at 𝑡𝑖 (line 3). If there are no actively

tracked pairs 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 , then we directly track 𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (lines

4–5). Otherwise, if no pair of vessels are in close vicinity, we stop

tracking 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 and save/output the actively tracked pairs that

satisfy the temporal constraint (𝑃𝑎𝑖𝑟𝑠𝑜𝑢𝑡 ; lines 6–9).

On the other hand, if both 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 and 𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 are non-

empty, we update 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 using Algorithm 2, with the encoun-

tering vessels that no longer maintain distance monotonicity but

satisfy the temporal constraint being saved to 𝑃𝑎𝑖𝑟𝑠𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 (lines

10–13). Finally, the vessels in 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 that satisfy the temporal

constraint are output in a data-stream for VCRA/F as well as in a

data storage for future reference, e.g., model retraining (line 14).

In particular for Algorithm 2, it compares the active (𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 )

with the current (𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ) encountering pairs of vessels and

separates them into the following three cases: an encountering pair

5
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.BallTree.html

has either disappeared (line 2) or emerged (line 3) or survived (lines

6-16).

For the latter case, if 𝑃𝑎𝑖𝑟 ∈ 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 satisfies the distance mono-

tonicity constraint (lines 13–14) then it is labeled as “survived” and

added to the updated 𝑃𝑎𝑖𝑟𝑠′
𝑎𝑐𝑡𝑖𝑣𝑒

set (line 17), whereas if 𝑃𝑎𝑖𝑟 does

not meet the aforementioned constraint (lines 10–11), it is labeled

as “disappeared” and added to the updated 𝑃𝑎𝑖𝑟𝑠′
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

set if it

satisfies the temporal constraint as well (line 18).

Recalling Figure 1 and using Algorithm 1 for 𝑘 = 4, we discover

the encountering process 𝑒1 at time-slice 𝑡𝑛𝑜𝑤 − 𝑘 and track it up

to 𝑡𝑛𝑜𝑤 , where the corresponding vessels’ CRI is calculated. Using

a VRF model, we predict all time-slices up to 𝑡𝑛𝑜𝑤 + Δ𝑡 , where
we discover that 𝑒1 continued to be tracked hence, 𝑒2, with the

CRI being calculated as well at each predicted time-slice up to

𝑡𝑛𝑜𝑤 + 2. Moreover, we discover a new encountering process 𝑒3 at

𝑡𝑛𝑜𝑤 + (Δ𝑡 − 5), which continues to be tracked up to 𝑡𝑛𝑜𝑤 + Δ𝑡 ,
with the vessels’ corresponding CRI being calculated at the last two

time-slices (𝑡 ∈ [𝑡𝑛𝑜𝑤 + (Δ𝑡 − 1), 𝑡𝑛𝑜𝑤 + Δ𝑡]) due to 𝑘 = 4.

4.2 The Offline Layer
For the VCRA task, we employ a variant of the MLP-VCRA model

proposed in [37]. Essentially, we use a Multi-Layered Perceptron

(MLP) model, with two hidden layers of 256 and 32 neurons each

(chosen empirically), trained for 100 epochs using the Adam [16]

optimizer and early stopping [32] in order to avoid overfitting.

After calculating the actual CRI of “own” with respect to “target”

vessel (to be used as ground truth), we create a dataset with seven

features, namely 𝐷
𝑇

𝑂
, 𝑉𝑂 , 𝑉𝑇 , 𝜙𝑂 , 𝜙𝑇 , as well as, 𝛼

𝑇

𝑂
and 𝜙

𝑇

𝑂
(c.f.,

Figure 2), and train the aforementioned model in order to assess

vessels’ CRI, without resorting to computationally complicated and

“expensive” formulae.
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Algorithm 1: VesselEncounters. Online identification of

vessels in encountering process within temporally aligned

trajectory data-streams.

Input: Data-stream 𝐷 = {𝑡1, 𝑡2, . . . , 𝑡𝑛} of time-slices 𝑡𝑖
consisting of vessels’ time-stamped locations;

Distance threshold 𝐷𝑚𝑎𝑥 ; Temporal threshold 𝑘 ;

Output: Vessels’ pairs that satisfy Definition 3.3

1 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 , 𝑃𝑎𝑖𝑟𝑠𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 ← ∅
2 for time-slice 𝑡𝑖 ∈ 𝐷 do
3 𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← CurrentPairs(𝑡𝑖 , 𝐷𝑚𝑎𝑥 )
4 if 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 == ∅ then
5 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 ← 𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡

6 else if 𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 == ∅ then
7 𝑃𝑎𝑖𝑟𝑠𝑜𝑢𝑡 = {𝑃𝑎𝑖𝑟 ∈ 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 :

𝑃𝑎𝑖𝑟 .𝑒𝑛𝑑 − 𝑃𝑎𝑖𝑟 .𝑠𝑡𝑎𝑟𝑡 ≥ 𝑘}
8 𝑃𝑎𝑖𝑟𝑠𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 ← 𝑃𝑎𝑖𝑟𝑠𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 ∪ 𝑃𝑎𝑖𝑟𝑠𝑜𝑢𝑡
9 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 ← ∅

10 else
11 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 , 𝑃𝑎𝑖𝑟𝑠

′
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

←
UpdatePairs(𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 , 𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑘)

12 𝑃𝑎𝑖𝑟𝑠𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 ← 𝑃𝑎𝑖𝑟𝑠𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒 ∪ 𝑃𝑎𝑖𝑟𝑠
′
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

13 𝑃𝑎𝑖𝑟𝑠𝑜𝑢𝑡 = {𝑃𝑎𝑖𝑟 ∈ 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 :
𝑃𝑎𝑖𝑟 .𝑒𝑛𝑑 − 𝑃𝑎𝑖𝑟 .𝑠𝑡𝑎𝑟𝑡 ≥ 𝑘}

14 output 𝑃𝑎𝑖𝑟𝑠𝑜𝑢𝑡
15 end
16 return 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 , 𝑃𝑎𝑖𝑟𝑠𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

For predicting vessels’ locations in short-term, we use the Auto-

Regressive Recurrent Neural Network (AR-RNN) model proposed

in [26], which operates as follows. For a given region of interest,

unique trips with common origins and destinations are grouped.

Each trip (i.e., distinct origin-destination combination) constitutes

the training data for a specific RNN model; therefore, there exist

as many RNN models as the distinct groups of trips. Given the

known origin and destination of a vessel, the respective model

is used to forecast its route. Alternatively, a single model can be

trained on all underlying data for the region if no such information

is available, albeit with lower fidelity compared to decomposing

the vessel behavior into specific models [26].

To forecast the route of a vessel 𝑣𝑖 , its current trajectory up

to 𝑡𝑛𝑜𝑤 (c.f., Figure 1) is fed into an RNN in order to produce an

embedding𝑇 𝑒𝑚𝑏𝑒𝑑𝑣𝑖
of its current mobile status. Afterwards, we con-

catenate it with another embedding vector produced using the static

data of the corresponding vessel (length, etc.). Thus, similar vessels

should generate similar embeddings that can be used for more ac-

curate route predictions. Additionally, since the next location of a

vessel is highly dependent on the previous, its latest known position,

{𝑇𝑣𝑖 }𝑡𝑛𝑜𝑤 , is concatenated with the aforementioned embeddings,

so as to allow the model to learn short-term dependencies.

In this study, the RNN architecture utilized is a Gated Recurrent

Unit (GRU) [7] with a hidden size of 50, chosen empirically. This

architecture addresses the issue of vanishing gradients in "vanilla"

RNNs, whilst reducing the number of trainable parameters com-

pared to the more commonly used LSTM architecture.

Algorithm 2: UpdatePairs. Compares active with the cur-

rent vessel pairs in order to determine their evolution.

Input: Active vessel pairs 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 ; Current vessel pairs
𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ; Temporal threshold 𝑘

Output: Updated active vessel pairs 𝑃𝑎𝑖𝑟𝑠
′
𝑎𝑐𝑡𝑖𝑣𝑒

; Inactive vessel

pairs 𝑃𝑎𝑖𝑟𝑠
′
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

1 𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 ← ∅
2 𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑 ← {𝑃𝑎𝑖𝑟 ∈ 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 : 𝑃𝑎𝑖𝑟 ∉ 𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 }
3 𝑒𝑚𝑒𝑟𝑔𝑒𝑑 ← {𝑃𝑎𝑖𝑟 ∈ 𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 : 𝑃𝑎𝑖𝑟 ∉ 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 }
4 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 ← 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑
5 𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑒𝑚𝑒𝑟𝑔𝑒𝑑
6 for 𝑃𝑎𝑖𝑟𝑎𝑐𝑡𝑖𝑣𝑒 ∈ 𝑃𝑎𝑖𝑟𝑠𝑎𝑐𝑡𝑖𝑣𝑒 do
7 for 𝑃𝑎𝑖𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∈ 𝑃𝑎𝑖𝑟𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 do
8 if 𝑃𝑎𝑖𝑟𝑎𝑐𝑡𝑖𝑣𝑒 .𝑝𝑎𝑖𝑟 ≠ 𝑃𝑎𝑖𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑝𝑎𝑖𝑟 then
9 continue

10 else if 𝑃𝑎𝑖𝑟𝑎𝑐𝑡𝑖𝑣𝑒 .𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑃𝑎𝑖𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

then
11 𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑 ← 𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑 ∪ 𝑃𝑎𝑖𝑟𝑎𝑐𝑡𝑖𝑣𝑒
12 else
13 𝑃𝑎𝑖𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .𝑠𝑡𝑎𝑟𝑡 ← 𝑃𝑎𝑖𝑟𝑎𝑐𝑡𝑖𝑣𝑒 .𝑠𝑡𝑎𝑟𝑡

14 𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 ← 𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑 ∪ 𝑃𝑎𝑖𝑟𝑐𝑢𝑟𝑟𝑒𝑛𝑡
15 end
16 end
17 𝑃𝑎𝑖𝑟𝑠

′
𝑎𝑐𝑡𝑖𝑣𝑒

← 𝑒𝑚𝑒𝑟𝑔𝑒𝑑 ∪ 𝑠𝑢𝑟𝑣𝑖𝑣𝑒𝑑
18 𝑃𝑎𝑖𝑟𝑠

′
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

← {𝑃𝑎𝑖𝑟 ∈ 𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑 :

𝑃𝑎𝑖𝑟 .𝑒𝑛𝑑 − 𝑃𝑎𝑖𝑟 .𝑠𝑡𝑎𝑟𝑡 ≥ 𝑘 }
19 return 𝑃𝑎𝑖𝑟𝑠

′
𝑎𝑐𝑡𝑖𝑣𝑒

, 𝑃𝑎𝑖𝑟𝑠
′
𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑒

The resultant vector is fed into a 2-layer regression head of fully

connected (FC) layers with a hidden layer size of 27, and output

layer of size 2, all empirically selected. The network is trained

to predict the next position, [𝑡𝑡𝑛𝑜𝑤+1
𝑗

, 𝑙𝑜𝑛
𝑡𝑛𝑜𝑤+1
𝑗

, 𝑙𝑎𝑡
𝑡𝑛𝑜𝑤+1
𝑗

]. This is
then fed back into the network in an auto-regressive manner, until

the desired prediction horizon is reached. The network is trained

using the Adam [16] optimizer and early stopping [32] to avoid

overfitting.

5 EXPERIMENTAL STUDY
In this section, we evaluate the proposed VCRA/F model using a

real-world AIS dataset in comparison with related work [12, 18,

29] that has been reproduced for the purposes of our experimental

study.

5.1 Experimental Setup
Our VCRA/F framework is implemented in Python. For our exper-

imental study, we use a GPU cluster owned by the University of

Piraeus, out of which we used 1 Nvidia A100 GPU, 8 CPUs, and 1TB

of RAM. The corresponding source-code used in our experiments

is available at: https://github.com/DataStories-UniPi/VCRA.

For the purpose of our experimental study, we use a subset

of the “Historical AIS data in Norwegian waters” [10], hereafter

referred to as the “Norway”
6
dataset, which consists of AIS records

transmitted by 732 distinct vessels in Jan. 2019; Figure 4 illustrates

a single-day snapshot of it. In terms of preprocessing, because

6
The dataset is publicly available at https://ais-public.kystverket.no/
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Figure 4: A snapshot of the Norway dataset on Jan. 10th, 2019.

#Records 8,352,352

#Vessels 732

#Segments 7267

#Points per Segment

(min; med.; avg.; max.) 20; 172; 1153; 77759

Vessels’ Speed

(min; avg.; max.) 0; 3; 50 knots

Sampling Rate 30 sec.

Table 1: Statistics of Norway dataset after preprocessing

GPS/AIS data is prone to noisy and/or erroneous records [30], we

drop the records with speed above 50 knots as well as the ones with

speed below 1 knot (considered stationary points). Furthermore,

we segment the vessels’ locations to port-by-port trajectories, with

an additional segmentation when a pair of points with a temporal

difference higher than 30 minutes is detected. Finally, we use linear

interpolation with a sampling rate of 30 seconds to temporally align

the vessels’ locations; Table 1 illustrates the dataset statistics after

the aforementioned preprocessing task. Regarding the underlying

models, the VCRA model is trained over this dataset, as discussed

in the following section, whereas the model used for VRF purposes

is a pre-trained model, as presented in [26].

5.2 Experimental Results on VCRA
In this section, we evaluate the VCRA part of our framework. After

running Algorithm 1 on the aforementioned dataset for 𝐷𝑚𝑎𝑥 = 1

n.m. and 𝑘 = 2 time-slices (i.e., 1 min. using a sampling rate of 30

sec.), we detect 62, 359 vessel encounters with 359, 846 training sam-

ples on encountering vessels’ CRI. Table 2 presents the performance

of our framework in what regards its VCRA part, compared to re-

lated work in terms of Mean Absolute Error (MAE), Root Means

Squared [Log] Error (RMS[L]E), and 𝑅2 score, in relation to CRI

determined using mathematical formulae. Due to the spatial com-

plexity of RVM-VCRA [29] we use a stratified subset that consists

of 125, 946 records (35%), which is split into training and test sets

using a stratified 5-fold cross-validation method. It can be observed

that our approach clearly outperforms its competitors by a high

margin (up to 70%) in terms of 𝑅2 score, while reaching an overall

accuracy of about 96%. Moreover, the comparatively low RMS[L]E

leads us to the conclusion that our model has a lower tendency to

underestimate danger (in terms of CRI), resulting in fewer false

negatives, which in our case is more favourable than a false positive

alert within the context of ensuring maritime traffic safety.

MAE RMSE RMSLE R2

Gang et al. [12] 0.1194 0.1969 0.1452 0.5766

Li et al. [18] 0.0395 0.1165 0.0853 0.8517

Park et al. [29] 0.1272 0.1936 0.1379 0.5906

VCRA/F 0.0246 0.0607 0.0440 0.9597

Table 2: Comparing our VCRA approach with respect to re-
lated work in terms of MAE and RMS[L]E error (the lower
the better) and 𝑅2 score (the higher the better).

After training the top performing models (i.e., Li et al. [18], and

our VCRA/F) on the full training dataset using stratified 5-fold

cross-validation, Table 3 presents the models’ predictive behaviour,

in terms of RMSLE, across five risk levels. It can be observed that

our model has more “confident” predictions on low (< 0.2) and

(medium-) high (> 0.6) CRI, while low-medium risk encounters

(0.2 < 𝐶𝑅𝐼 <= 0.4) have a tendency to be over-estimated, mostly

concentrated at medium risk level (0.4 < 𝐶𝑅𝐼 <= 0.6). This be-

haviour may be attributed to the (natural) imbalance of the dataset

regarding the CRI (most encountering processes have either zero

or high risk), as Figure 5 illustrates.

[0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1]

Li et al. [18] 0.1795 0.0663 0.0675 0.0585 0.0389

VCRA/F 0.0869 0.0760 0.0496 0.0312 0.0215

Table 3: Comparing the predictive behaviour of our VCRA
approach with respect to related work in terms of RMSE
across five distinct CRI risk levels.

Additionally, Table 4 presents the response time, i.e., the latency

of calculating a CRI value using the “busiest” time-slice (in terms

of concurrent encounterings) of the Norway dataset (𝑛 = 40). It

can clearly be observed that our approach not only outperforms

all aforementioned works by a significant margin, but also the CRI

formula (c.f., Eq. 1) used to create the ground truth.



Collision Risk Assessment and Forecasting on Maritime Data (Industrial Paper) SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany

Figure 5: Probability density function of the training dataset

Method Latency (` ± 𝜎)

CRI Formula (Eq. 1) 2.30 msec. ±47`sec.
Gang et al. [12] 43.4 msec. ±430`sec.
Li et al. [18] 3.38 msec. ±56`sec.
Park et al. [29] 0.29 msec. ±45`sec.
VCRA/F 0.22msec. ±110𝝁sec.

Table 4: Comparing the response time of the different VCRA
models.

5.3 Experimental Results on VCRF
The evaluation of a VCRF approach is not a straightforward task,

since we need to define how the error between the predicted and

the actual encountering process will be quantified. Intuitively, our

aim is to match each encounter 𝐸𝑃𝑝𝑟𝑒𝑑 with the most similar ac-

tual cluster 𝐸𝑃𝑎𝑐𝑡 . This matching will yield encounters that are

predicted accurately (i.e., true positives) as well as actual encoun-

ters that were not predicted (i.e., false negatives) and predicted

encounters that were not discovered in the actual set (i.e., false

positives). Towards evaluating the true positive encounterings, we

adopt Allen’s interval algebra [1] and calculate their similarity as

follows:

𝑆𝑖𝑚 (𝐸𝑃𝑝𝑟𝑒𝑑 , 𝐸𝑃𝑎𝑐𝑡 ) =
𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝐸𝑃𝑝𝑟𝑒𝑑 )

⋂
𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝐸𝑃𝑎𝑐𝑡 )

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝐸𝑃𝑝𝑟𝑒𝑑 )
⋃
𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝐸𝑃𝑎𝑐𝑡 )

(2)

where 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝐸𝑃𝑝𝑟𝑒𝑑 ), (𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝐸𝑃𝑎𝑐𝑡 ), respectively) is the time

interval when the predicted (actual, respectively) encountering

process was valid.

Based on the above, we assess the quality of the VCRF part of

our framework with respect to its corresponding “ground truth”. As

“ground truth” we define the encountering vessels discovered using

the objects’ corresponding actual positions and assessed using Eq.

1, and for quantifying the accuracy of a predicted encounter 𝐸𝑃𝑝𝑟𝑒𝑑
against an actual one 𝐸𝑃𝑎𝑐𝑡 , we use Eq. 2.

Focusing on the encountering cargo/passenger vessels inside

a specific region of interest (Oslo Fjord), we discover 36 actual

encountering processes, while we predict 26 encountering processes

using the underlying VRF and VCRA models. Out of these, we have

a match (i.e., same vessels) at 24 encounters, meaning that we have

2 false positives (i.e., predicted encounters that did not actually

happen) as well as 12 false negatives (i.e., actual encounters that

were not discovered). Furthermore, for the matched encounters,

using Eq. 2, we observe that our VCRF framework has accurately

predicted them with ≈ 77% accuracy, in terms of temporal overlap.

To illustrate the above discussion, Figure 6 presents high-risk

(in terms of CRI) areas of interest on actual vs. predicted locations,

respectively. We observe that for the actual regions (c.f., Figure 6a)

most encounters are concentrated near the “entrance” of the Fjord,

with some moderate risk areas, which may indicate either vessel

anchorages [40], or high flow maritime “highways” that vessels

may use for entering/exiting the Fjord.

On the other hand, for the predicted high-risk areas of interest

(c.f., Figure 6), we observe that we accurately predict most vessel

encounters within the Fjord, albeit with slightly lower mean CRI

on the Fjord entrance, as well as nearby ports. For the case of the

aforementioned maritime “highways”, our predictions yield less

high-risk regions, with slightly less mean CRI. These findings may

trigger domain experts into further investigating these occurrences

and reach meaningful conclusions.

For forecasting future encountering processes within a Δ𝑡 = 50

minute prediction horizon, a single VRF prediction takes only 0.86

msec. for the aforementioned time-slice, resulting in a total latency

of 1.2msec. on average, rendering our VCRA/F framework a feasible

solution for online streaming maritime safety systems.

6 A NOTE ON MODEL TRANSPARENCY
While ML/DL-based models are capable of providing state-of-the-

art results, in many cases they are used (and regarded) as black-

boxes, with little-to-no knowledge on the rationale behind their

decision. SHapley Additive exPlanations (SHAP) is a popular tech-

nique in the field of eXplainable AI (XAI) that seeks to provide

insights into the decision-making process of models. It specifically

focuses on explaining individual predictions by utilizing the game

theoretically optimal Shapley values. Shapley values, derived from

cooperative game theory, possess favorable characteristics and are

widely adopted. In this context, the values of the features in a given

data instance are treated as players within a coalition. The Shapley

value represents the average marginal contribution of a feature

value considering all potential coalitions [24].

Figure 7 illustrates the summary of SHAP values for each feature

of a random subset of the test set of our VCRAmodel. At first glance,

it is clear that the vessels’ speed (𝑉𝑂 ,𝑉𝑇 ) and direction (𝜙𝑂 ,𝜙𝑇 ) have

the least impact, whereas their distance (𝐷
𝑇

𝑂
), azimuth angle (𝛼

𝑇

𝑂
),

and relative movement direction (𝜙
𝑇

𝑂
) have the most significant

impact, as they determine not only how close the "own" is to the

"target" vessel, but also their relative positioning, in accordance

with the vessel collision regulations and providence measures, as

illustrated in Figure 10.

In a more thorough view, we observe that as 𝐷
𝑇

𝑂
increases, the

more negative impact (i.e., it contributes to the decrease of the
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(a)

(b)

Figure 6: Visualization of (a) actual vs. (b) predicted high-
risk (in terms of CRI) areas of interest within the Oslo Fjord,
defined by the window [10.161, 11.077] lon, [58.670, 59.911]
lat, with each cell of dimension 6 x 6 km2

output) it has on the CRI calculation. In conjunction with Figure 8, it

can be observed that for𝐷
𝑇

𝑂
> 0.7 the SHAP value for𝐷

𝑇

𝑂
decreases

rapidly with negative impact on the model output, whereas for

Figure 7: Impact of VCRA input variables on the model out-
put

Figure 8: Impact of𝐷
𝑇

𝑂
vs.𝑉𝑇 with respect to the VCRAmodel

output

𝐷
𝑇

𝑂
≤ 0.7 its impact is positive (i.e., it contributes to the increase of

the output), albeit minor, when compared to 𝛼
𝑇

𝑂
and 𝜙

𝑇

𝑂
.

In contrast to 𝐷
𝑇

𝑂
, assessing the impact of 𝛼

𝑇

𝑂
and 𝜙

𝑇

𝑂
on their

own is quite cumbersome, since they display different values on

negative SHAP values. However, when jointly observing 𝛼
𝑇

𝑂
and

𝜙
𝑇

𝑂
, it seems that they are correlated, since they display a similar

spectrum of feature values across negative SHAP values. Looking

at Figure 9, we can clearly observe that when 𝜙
𝑇

𝑂
≤ 𝜋 , 𝛼

𝑇

𝑂
≥ 𝜋

with positive SHAP values (i.e., increasing CRI), whereas when

𝜙
𝑇

𝑂
> 𝜋 , 𝛼

𝑇

𝑂
≥ 𝜋 with negative SHAP values (i.e., decreasing CRI).

This conclusion is compliant with the stand-on/give-way rules in

maritime (c.f., Figure 10).
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Figure 9: Impact of𝜙
𝑇

𝑂
vs. 𝛼

𝑇

𝑂
(with respect to the VCRAmodel

output)

Figure 10: Vessel collision regulations - determining right-of-
way (source: https://www.boatsmartexam.com).

7 CONCLUSION
In summary, in this paper we studied the VCRA/F problem from

the ML perspective and proposed an efficient ML-based solution,

which consists of an online layer that is reponsible for AIS data

preprocessing, vessel encountering tracking, and CRI calculation

on encountering vessels, and an offline layer that maintains two

effective models, for the purposes of VCRA and VRF, respectively.

Our experimental results on a real-world AIS dataset demonstrate

the efficiency of the proposed model compared to related work, in

terms of both quality and latency.

In the near future, we aim to further demonstrate the efficacy

of VCRA in real-world situations through Visual Analytics frame-

works [39] as well as experiment on advanced VRF models [8, 9] in

order to evaluate whether the accuracy of VCRA/F can be further

improved. Moreover, we intend to further advance our VCRA/F

solution through state-of-the-art collision avoidance methods [14]

so as to be able to address the collision avoidance problem as well.

As a long-term goal, we aim to experiment on the parameter sensi-

tivity of VCRA/F with respect to its hyperparameters (i.e., 𝐷𝑚𝑎𝑥 , 𝑘)

as well as its prediction capabilities in terms of sparse vessel trajec-

tories. Finally, regarding the offline part of models’ training, we aim

to exploit on Federated Learning [23] in order to train our solution

while preserving the vessel owners’ privacy, as well as Lifelong

Learning [28] in order to facilitate gradual model improvement

over time in terms of incorporating new information.
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