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A B S T R A C T

The balancing market for power is designed to account for the difference between predicted supply/demand
of electricity and the realised supply/demand. However, increased electrification of society changes the con-
sumption patterns, and increased production from renewable sources leads to larger un-predicted fluctuations
in production, both effects potentially leading to increased balancing. We analyse public market data for the
balancing market (manual Frequency Restoration Reserve) for Norway from 2016 to 2022 to investigate and
document these effects. The data is newer than for similar analyses and the eight years of data is more than
double the time span previously covered.

The main findings are: (a) The balancing volumes are dominated by hours of zero regulation but for
non-zero hours, the balancing volumes are increasing during the eight-year period. (b) The balancing prices
are primarily correlated with day-ahead prices and secondary with balancing volumes. The latter correlation
is found to be increasingly non-linear with time. (c) The balancing volumes and the price difference between
balancing price and day-ahead price are strongly correlated with the previous hour. (d) The increasing share
of wind power has not impacted the frequency of balancing, which has remained stable during the 8 years
studied. However, the volumes and share of balancing power compared to overall production have increased,
suggesting that the hours which are inherently difficult to predict remain the same. (e) Market data alone
cannot predict balancing volumes. If attempting, the auto-correlation becomes the main source of information.
1. Introduction

1.1. Motivation

The Nordic power market is a so-called deregulated market where
the balancing market is a tool for the Transmission System Operator
(TSO) to compensate the gap between the planned production and
demand that has been settled in the day-ahead market and the actual
production and demand. Electrification and an increased volume in the
electricity market combined with increasing renewable energy from,
e.g., wind, results in more volatile production and enlarge the need for
grid balancing. Hence, the deregulated electricity market becomes more
challenging for the TSO to balance, but also for the power producers
who need to become more flexible and provide more capacity for
balancing. The electricity volumes for all producers and consumers are
settled 12–36 h in advance of the operational hour in the day-ahead
market. However, neither consumption nor production can be predicted
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with 100% certainty. The producers can either balance their position
through trade in a continuous intra-day market (such as XBID1) or settle
them in the balancing market [1]. Deeper understanding of the bal-
ancing market may provide the power producers with decision support
for improved production planning and strategic decisions regarding
which market to settle potential imbalances in. In this work we provide
a thorough analysis of public data for the Norwegian deregulated
power market, which is coupled to the Nordic markets. In addition to
providing insights about the Norwegian market, it serves as example
for other deregulated markets and we provide the code for others to
repeat the analysis,2. Insight into and understanding of the statistical
properties for this market is crucial for anyone endeavouring to model
it, and is a natural part of exploratory data analysis hence this paper
paves the way for others to better understand these markets and carry
the analysis over to other markets.
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1.2. The Nordic power market

The Nordic power sector consists of 12 connected market zones
as shown in Fig. 1, of which the five Norwegian zones (NO1–5) are
under the TSO responsibility of Statnett. Zones in the neighbouring
countries are under the responsibility of the TSO of the respective
country. The zones are designed to take congestion in the transmission
grid into account during market clearing. The electricity price within
each zone is determined by the balance between demand, supply and
exchange with neighbouring zones while respecting the transmission
constraints [2]. Each zone is a unit in several markets; day-ahead (spot),
intra-day, and the balancing market. The intra-day market allows mar-
ket participants to settle imbalances directly between each other and
thus avoid penalties from the TSO if their production or consumption
differs from their day-ahead commitments.

The TSO continuously monitors the imbalances of the transmission
grid and uses three principal mechanisms to restore the balance. Pri-
mary and secondary reserves are automatically activated to handle
short and medium-term imbalances and are traded on D-1 and D-2
markets. If larger imbalances are detected or expected, the TSO can
activate bids in the balancing market. Bids are either for up-regulation
or down-regulation such that the TSO can increase or decrease produc-
tion, respectively. In the following the term balancing or grid balancing
refers to this action by the TSO. Up-regulation means that the producers
are increasing their production to meet the needs of the TSO, which
is policing the balancing by using the accessed reserves volumes to
balance the grid. Alternatively one or more consumers may reduce their
consumption, but historically this mechanism is of little importance, as
the volumes have been small. This may change in the future. In a sim-
ilar manner down-regulation means decreased production or increased
consumption. Note that the regulation may or may not happen in the
zone where the imbalance occurs (depending on available volumes and
transmission capacity).

The formation of the day-ahead prices and volumes is a vast study
topic. We do not dive into the underlying dynamics of the day-ahead
market, but merely regard the day-ahead volumes and prices as given
features when considering balancing volumes and prices.

1.3. Outline

In this paper we perform a statistical analysis of the market data for
the Norwegian power market for the period 2016–2022 to document
and describe changes. The aim is to enable future strategic decision
support primarily for power producers based on public available data
(in contrast to TSO-restricted sensitive data). The paper is organised
as follows: In Section 2 we recap related literature, and in Section 2.4
we highlight our contributions. The data and sources of production are
presented in Section 3 together with some general methodologies. We
split the analysis of the balancing market into Section 4 focusing on
volumes and Section 5 focusing on prices. In particular we investigate
the price premium defined as the difference between balancing price
and day-ahead price. Section 6 explores relations in the balancing
markets before we attempt to identify the driving features through a
simple model in Section 7. Finally, we provide a brief summary and
discussion in Section 8.

2. Related literature

Research on analysing and modelling of the balancing volume in the
Norwegian and Nordic markets is scarce, with only a handful of papers
found [1,4–6]. Research on the day-ahead and partially the intra-day
markets have received more attention [5,7–9]. Lago et al. [10] presents
a review of commonly used methods and benchmarks for day-ahead
electricity price forecasting.
2

Fig. 1. The Norwegian power market and neighbouring zones throughout the period
2016–2022. The Norwegian zones NO1-5 are in part defined by bottlenecks in the
transmission grid. The Swedish (SE1–4), Danish (DK1–2), Finnish (FI), and Baltic (EE,
LV, LT) zones are regulated by the respective TSOs.
Source: Figure from [3].

2.1. The Nordic balancing market

Skytte [1] investigated patterns in the balancing power market
from an economical and business perspective on data from 1996. They
established a relationship (correlation) between the day-ahead price
and the balancing market price and linked it to the balancing volume by
a linear model. Jaehnert et al. [4] built upon Skytte [1] and proposed
a linear statistical model (SARIMA) for the balancing volume. They
modelled the effect of balancing volumes on electricity prices and
social welfare using data from NO1 in 2007. A high linear correlation
was identified between balancing volume and the differences between
day-ahead prices and balancing prices. The zones were significantly
redefined in 2009 and 2010 with minor adjustments in 2013 [11],
which impact comparisons between [4] and later studies.

Klæboe et al. [5] is the most extensive research found covering
both balancing volume and price forecasting in the Norwegian bal-
ancing market. The research benchmarked several time series-based
forecasting models for balancing price and volumes in the balanc-
ing market such as different types of autoregressive models, Markov
models, and arrival rate models for predicting the balancing state.
The study considered market data from July 2010 to December 2012
(balancing volumes, overall production volumes, balancing states, bal-
ancing prices, and day-ahead prices). Good bidding strategies rely
on forecasts, and for the producers it influences capacity allocations
between markets. The importance of the balancing markets is in-
creasing with the increased fraction of power from volatile renewable
sources [12]. Klæboe et al. [5] found that the correlation of Jaehnert
et al. [4] between price differences and balancing volume had declined
from 0.7811 on 2007 data down to 0.47 on the 2010–2012 data. The
aim of Klæboe et al. [5] was to predict the balancing market before
the closing of the day-ahead market. However, they conclude that the
balancing market is designed to handle unforeseen events and that
leads to randomly distributed balancing volumes and prices. Nonethe-
less, an increasing fraction of volatile renewable energy in the market
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will increase the need for balancing and hence for improved model
predictions both for the day-ahead market and for shorter timescales
for the balancing market.

In [13], bidding strategies between internal balancing and participa-
tion in the regulation market is investigated. The study concludes that
in the current regulatory setting, profit maximisation for participants
occurs when they allocate all available balancing resources to the
balancing market and not to handle internal imbalances. The authors
also highlight that knowledge of the market regulation price or the
expected imbalances (i.e. a forecast) can change the optimal bidding
strategy.

Dimoulkas et al. [8] used a Hidden Markov Model on the Swedish
bidding zone SE2 on 2014 market data to forecast both balancing
price and volume. They investigated the partial auto-correlation for
balancing volume and found the first and second lag significant, as well
as significant correlation between balancing volumes and price differ-
ences. They achieved good predictions for one hour ahead but struggled
to predict further, which they blamed on data being dominated by
randomness. They did not utilise wind, solar, power production, and
consumption load but proposed them for future work.

In [14], the authors introduced a prediction methodology for intra-
hour imbalance prediction from a TSO perspective, utilising data only
available for the TSO. They applied quantile regression forest, which
is an ensemble learning method with the ability to generate predic-
tion intervals. The considered features were market prices, planned
transmission flows, production plans, and historical imbalances (lags),
all with 5 min resolution for Norway (NO1–NO5) spanning January
2015 to December 2016. Some weather features were tried and found
not to improve the result and hence excluded. However, the authors
hypothesise that weather may be influential for models incorporat-
ing consumption forecasts together with temperature forecasts or if
the power systems had a greater share of renewable wind or solar
production.

Klæboe et al. [15] studied bidding strategies between day-ahead
and balancing markets for hydro-power producers in Norway. They
concluded that coordinated bidding between the two markets is cur-
rently not profitable, but might be with increased volumes and price
premiums. However, their model did not consider forecasting balancing
volumes. In a recent study [6], a forecasting model of regulation
volumes and price premiums based on Long Short Term Memory Neural
Networks (LSTM) was developed for the five Norwegian market-areas.
The model outperformed a simple baseline, but not to a significant
degree. The authors underlined the lack of predictive power in the
publicly available data. There are also commercial actors that have
developed their own methodology and are offering prediction tools and
services based at least partly on data-driven methods [16, e.g.].

2.2. Other markets

In recent years, there has been a growing body of research on bal-
ancing volumes outside the Nordic region in Europe. The differences in
market design, TSO practices and local conditions might limit the direct
comparison between different studies, but the general methodologies
and analyses are valid across different markets.

Garcia and Kirschen [17] applied artificial neural network tech-
niques to forecast the balancing volume using data for England and
Wales from 2001–2004. They explored various methods and achieved
better performance for neural networks than conventional forecasting
methods which was explained by the neural nets ability to capture non-
linear relationships between variables and influencing contributors.

Hirth and Ziegenhagen [7] investigated variable renewable energy
sources, such as wind and solar production, in Germany, and the
impact of forecast errors on balancing reserve requirements including
the supply of balancing services by dispatchable generators, and the
incentives to improve forecasting provided by imbalance charges. The
3

essence of their finding is that the balancing reserves depend on many
factors and that wind and solar power forecast errors are two of several
possible drivers, but that other factors are possibly more important in
the balancing market.

Bottieau et al. [18] developed a quantile regression tool producing
a probabilistic prediction of the future system imbalance. Furthermore,
the tool quantifies risks and optimises participation of a market player
in the imbalance market. The tool utilises an encoder–decoder neural
network approach and was trained on historic imbalances along with
historic production split on different sources from Belgium 2014–2018.
Similar to [14], this data is not publicly available, but obtained via the
TSO.

Toubeau et al. [19] developed a multi-horizon probabilistic fore-
casting tool for imbalance-volumes. Their model employs an attention-
mechanism that highlights the influence from the model variables and
therefore enhances explainability. Their model is trained on Belgian
TSO data from 2015–2020. The model shows that for short-term fore-
casts, the auto-correlation is the most important variable. As the pre-
diction horizon grows, cross-zonal transmission volumes give valuable
information.

Plakas et al. [20] presents a case study of the Greek balancing
market and several short-term forecasting tools are developed and
compared. The forecast-horizons considered are only 15-minutes and
1-hour and the authors does not claim their model has predictive
power beyond this horizon. They state that additional explanatory
variables should be considered, such as strategic bidding, operational,
commercial and transmission constraints, as well as outages modelling.

Merten et al. [21] performed a thorough study and description of
balancing markets in Europe, with an emphasis on Germany. They
formulate different prediction models for price and deployment du-
ration that are applicable both to secondary and tertiary reserves.
These models are then used to formulate bidding strategies for market
participants.

2.3. Data driven modelling of the Nordic balancing market

The balancing market literature indicate challenges in providing
long term (3–12 h) robust predictions despite several attempts. While
data driven approaches have been explored [e.g. 8,13,17], they can be
difficult to tune.

The XGBoost package is a popular gradient-boost algorithm which
has been used for both snapshot and time series prediction in the
past [22]. One of its major strengths is high out-of-the box performance
on tabular data [23]. It has been shown to be efficient for industrial
consumer demand in China and Ireland [24], and day-ahead forecasting
based on smart-meters [25]. For wind power, the short term production
has been addressed through similarity modelling based on to historic
wind patterns using XGBoost [26]. However, we are not aware of
any applications to balancing market data, and hence we explore the
framework as a method to investigate non-linear relationships that may
remain non-significant in the statistical analysis.

2.4. Novelty and contribution

We analyse public market data for the Nordic balancing market
from 2016 to 2022. The data is newer than for previous publications
and the eight years of data span a longer time period than the three
years previously analysed by Klæboe et al. [5] allowing us to consider
changes over longer time spans. The main findings are:

• In all zones, the fraction of intermittent renewable production has
increased from 2016 to 2022.

• The balancing volumes are dominated by hours of zero regulation,
despite increase in average balancing volume. The number of
regulated hours is relatively stable, so the increased variation is

due to larger balancing volumes.
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Table 1
List of the investigated variables. Entso-E data is used only for the
Norwegian zones (NO1–5) while some Nordpool variables are also
investigated for the neighbouring zones (NO1–5 plus DK2, FI, SE1–3).
Source Variable

Entso-E Production Hydro Water Reservoir
Entso-E Production Hydro Run-of-river and poundage
Entso-E Production Wind Onshore
Entso-E Production Hydro Pumped Storage
Entso-E Production Fossil Gas
Entso-E Production Sum other

(Biomass, Waste, Other renewable, Other)
Nordpool Capacity for down regulation
Nordpool Capacity for up regulation
Nordpool Consumption volume
Nordpool Day ahead buy volume
Nordpool Day ahead sell volume
Nordpool Day ahead price
Nordpool Realised production volume
Nordpool Realised balancing volume
Nordpool Balancing up prices
Nordpool Balancing down prices

• The partial auto-correlation of balancing volumes and of the
price difference between balancing price and day-ahead price are
strongly dominated by the previous hour.

• The balancing prices are primarily correlated with day-ahead
prices and secondary with balancing volumes.

• The linear correlation between price premium and balancing vol-
ume was found to decrease from 2007 [4] to 2010–2012 [5]. We
find a persistent correlation but shifted towards a more non-linear
relationship.

• Through simple modelling, we show that market data alone can-
not predict balancing volumes or prices. We did not expect market
data alone to hold sufficient predictive power, which was con-
firmed by the study. If attempting, the auto-correlation becomes
the main source of information limiting the time horizon of the
predictions.

. Data and methodology

.1. Data

All data is public historical data provided by Nord Pool3 and Entso-
.4 The numerical market data covers the period from 2016-01-01 to
022-11-30 resulting in 60 600 h sequenced time-series data in total.
ccasionally missing values are imputed with the value of the previous
our. The investigated variables are listed in Table 1.

Fig. 2 shows the monthly averages of different electricity sources in
ach of the Norwegian zones. Historically, hydropower has dominated
he Norwegian power production but new sources emerge and change
he mix. For all zones there is a relative reduction in the fraction of
eservoir hydro power from 2016 to 2022 and an increase in volatile
eather-based sources such as wind and run-of-river hydropower. NO2

s the zone with the largest absolute energy production in Norway, and
lso the one with largest seasonal variations. NO3 has lower overall
roduction, but has the largest fraction of directly weather-based pro-
uction from run-of-river and onshore wind. In general, the balancing
s only a small, but increasing, fraction of the total volume. NO5 has the
ighest balancing fraction, but due to larger overall volume, NO2 has
he highest balancing volume in absolute numbers. This is due to a large
raction of flexible hydro reservoir power in the zones, in combination
ith high transmission capacity to the population dense zones NO1–2.

3 System price and Area price calculations, https://www.nordpoolgroup.
om/trading/Day-ahead-trading/726Price-calculation/

4 Entso-E python module https://github.com/EnergieID/entsoe-
y.667original-date:2017-07-12T13:17:39Z
4

3.2. Methodology

For each zone, we investigate the statistical properties over time. We
consider the daily and monthly patterns of production and consumption
as well as dominating time scales through discrete Fourier transforms.
We inspect the distributions of up and down regulation and balancing
prices in total, and the temporal evolution through the six-month
moving average.

Klæboe et al. [5] concluded that the balancing volumes and prices
are randomly distributed because the market is designed to handle
unforeseen events. Random data can be characterised as white noise,
meaning one cannot foresee the value of future time steps given histor-
ical data.

Hence we investigate the time development of mean, variance,
correlation and stationarity of regulation volume and balancing prices.

The auto-correlation measures the correlation between the signal
itself and a lagged copy of itself. It quantifies if past data is re-
lated to current data, which is particularly important for univariate
models which generate forecasts based on a single time series. The
auto-correlation contains contributions from both indirect and direct
correlations between the current time and prior time steps [27]. Conse-
quently, the correlation at lag 2 can be significantly influenced by, and
dependent on, the correlation for lag 1. The partial auto-correlation cor-
rects for this, and measures the correlation that remains after removal
of correlations from shorter lags [28].

Statistical frameworks for time series modelling such as auto-
regressive integrated moving average (ARIMA) requires the time series
to be stationary or that it can be made stationary by removal of trends
and seasonal variations [29]. A stationary time series is described
by a stochastic process for which the unconditional joint probability
distribution remains unchanged when shifted in time. The most intu-
itive interpretation of stationarity is that the statistical properties are
allowed to change over time but only if the way they change does
not itself change over time. With predictive modelling in mind we
investigate temporal evolution of mean and standard deviation of the
balancing market features.

In addition we compute the Augmented Dickey–Fuller statistic and
𝑝-value for selected time series.5 For a threshold 𝑝-value of 0.01 the
presence of a unit-root indicating non-stationarity can be rejected/conf-
irmed at 99% confidence level if the 𝑝-value is greater/smaller than the
threshold.

For exploring relations between available variables, we apply Spear-
man rank correlation as it handles outliers and non-linear relations
better than the linear Pearson correlation coefficient [30].

Finally, we make an attempt at a simple XGBoost model of balancing
volumes to check for any non-linear relations and combinations of
factors that may have been overseen by the statistical analysis [22]
and explore the feature importance using Shapley Additive Global im-
portancE (SAGE) values [31]. SAGE estimates how much each feature
contributes to the model’s predictive power.

4. Production, consumption and balancing volumes

4.1. General observations in the day-ahead market

The day-ahead markets constitute the majority of available power
traded and while focusing on the balancing market, we find it useful to
also include some analysis of the day-ahead market for better under-
standing of the balancing market. Fig. 3 shows the hourly production,
consumption and regulation for the Norwegian zones in 2019. We
observe a clear seasonal pattern in the production and consumption
volumes. This would be similar for other years before 2020 when
the covid-19 pandemic significantly changed consumption and 2022

5 Using the python package statsmodels version 0.13.5

https://www.nordpoolgroup.com/trading/Day-ahead-trading/726Price-calculation/
https://www.nordpoolgroup.com/trading/Day-ahead-trading/726Price-calculation/
https://github.com/EnergieID/entsoe-py.667original-date:2017-07-12T13:17:39Z
https://github.com/EnergieID/entsoe-py.667original-date:2017-07-12T13:17:39Z
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Fig. 2. The power production composition in the Norwegian market zones (columns) shown as monthly averages (red lines, left axis) and fractions of total for the same month
and zone scaled between 0 and 1 (green lines, right axis). The bottom row shows the total production in each zone and the fraction of electricity production used for balancing
within the same month (orange, right axis). Historically, hydropower has dominated, but for all zones there is a relative decrease in hydropower since 2016 (top row, green lines),
and an increase in volatile sources e.g. onshore wind (third row, green lines). On a monthly basis, the balancing only makes up a few percent of the total production volume
(bottom row, orange line). NO2 is the zone with larges absolute production and largest seasonal variations (bottom row, second column, red line). NO3 has the largest relative
fraction of directly weather based production from run-of-river and onshore wind. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
when the geopolitical situation around Ukraine affected energy-trade
in Europe.

Some zones are roughly balanced between consumption and produc-
tion (e.g. NO2) while others are dominated by consumption (e.g. NO1)
or production (e.g. NO5). Hence production does not necessarily hap-
pen in the same geographical region as consumption. This will naturally
affect the regulation as well, which may not happen in the zone where
the under- or over-production happens. The first noticeable difference
between balancing and production/consumption volumes is the fact
that regulation is a correction to day-ahead production and can take on
both positive and negative values. The balancing volumes are centred
near zero, but in contrast to the day-ahead volumes, the balancing vol-
umes do not reveal any systematic patterns and appear to be stochastic
in nature.

4.2. Temporal patterns in balancing volumes

The upper two panels of Fig. 4 show the balancing, production and
consumption volumes per hour of the day averaged over the year of
2019 for NO1 which is consumption-dominated and for NO5 which
is production-dominated. The production and consumption follows a
double-hump curve. During night, less power is consumed/produced
before peaking around 06:00 when most people start their days. This is
followed by a slight decrease during daytime to another peak around
18:00, matching evening household activities. Note that a large portion
of major industrial consumers are not trading electricity in the day-
ahead market and hence private consumption dominate the pattern.
The regulations are dominated by a small negative mean, and stable
standard deviation across the day. We observe no significant difference
between weekdays, and neither between working days and holiday (not
shown).

The two lower panels of Fig. 4 show the balancing, production and
consumption per month averaged over 2019–2022 for NO1 and for
NO5. The production and consumption follow a seasonal pattern with
increase in winter and decrease in summer. The balancing volumes are
dominated by a small negative mean, and stable standard deviation
across the year.
5

4.3. Balancing volume statistics

The upper panel in Fig. 5 shows the distributions of balancing
volumes for each of the Norwegian zones. The corresponding statistics
are given in Table A.3 in Appendix. Notice that the 𝑦-axis is logarithmic
and hence the distributions are clearly dominated by hours of zero
regulation. The high zero fraction is expected, since balancing is a
deviation from the day-ahead plan per design.

We observe that for some zones (e.g. NO1), the distributions are
almost symmetric in up and down regulation, while it is asymmetric for
others (NO3–4). The distributions are heavier on the small regulations
than a Gaussian, and are more similar to a Laplacian in shape. Where
asymmetric, it is always the down-regulation which is more frequent
than up-regulation. This is also reflected in Table A.3 (in Appendix)
where all zones have small negative mean values indicating a skewness
towards down-regulation. This is expected as upwards regulation is
limited by capacity within the zone, while downwards regulation more
often is available in the hydropower dominated zones.

By normalising the balancing volumes with the actual production of
the specific hour, we can conclude that the distributions of balancing
volumes and their skewness are not strongly related to the overall
production volume in each zone.

4.4. Temporal development of balancing volumes

To investigate whether the balancing is random or systematically
changing, Fig. 6 shows the balancing volumes and the six-month mov-
ing average for NO1–5. The mean and one standard deviation appear
constant over time, but the 3𝜎 lines reveal a trend towards increas-
ing variation in regulation for some zones. This trend remains when
normalising to the actual production in each zone. In addition we
have checked for unit roots using the Augmented Dickey–Fuller test
for day-ahead, production, consumption and balancing volumes. At
the 99% confidence level there are no overall constant, linear or
quadratic trends in the hourly volumes. From this we cannot conclude
the presence of any non-stationary evolution, but given the trend in the
variance, we encourage caution if applying model frameworks that rely



Energy Strategy Reviews 52 (2024) 101331P.F. Austnes et al.
Fig. 3. Hourly actual production (red, left axis), consumption (yellow, left axis) and balancing volumes (blue, right axis) for 2019 for each of the Norwegian zones from NO1 (top
panel) to NO5 (bottom panel). In all zones, we observe that consumption is higher in summer than in winter (yellow). Some zones are roughly balanced between consumption
and production (e.g. NO2) while others are dominated by consumption (e.g. NO1) or production (e.g. NO5). This will naturally affect the regulation volumes as well (blue). Since
regulation is a correction to the day-ahead plan, it can take on both positive and negative values, and does not follow any obvious pattern. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
on stationary data. The partial auto-correlation indicates that only the
correlation at lag ℎ − 1 significantly describes the present time step.

The standard deviation of the down-regulation increases more than
the up-regulation. This may be caused by an increasing number of hours
of with overproduction compared to planned production from volatile
electricity sources, such as wind. This is particularly pronounced in
NO3–4, where wind production have increased the later years.

Fig. 6 also shows the fraction of hours with non-zero balancing
volumes for a rolling window of six months. There is some variation,
but no systematic trend over time. This indicates that the driver for
increase in balancing volumes is on the size of the volumes rather than
the number of hours with balancing.

In Fig. 7 we show the interplay between the number of hours
with activated reserves and fraction of wind power, and regulation
6

volumes compared with the overall production in all Norwegian zones.
During the eight years of analysed data, the production from wind has
increased significantly in all zones except NO5. At the same time, we
observe only a small increase in the share of regulation volume com-
pared to the overall production. The fraction of hours with activated
reserves show a mild negative trend in all zones, except NO4. This
suggests that while volumes in the regulating market are increasing,
the occurrence of events which require activation of regulating power
does not increase. I.e. the number of hours where the day-ahead cleared
volumes does not match the actual consumption are similar both with
and without a large wind power share. Furthermore, it suggests that
the large introduction of wind power does not cause more hours of ac-
tivated reserves, rather the hours that were hard to predict historically
remain hard to predict today.
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Fig. 4. Upper two panels: Hourly averages and standard deviations (shaded) of 2019
data for production/consumption (red/yellow) volumes and corresponding balancing
(blue) for NO1 and NO5. The characteristic daily pattern is visible in consumption
and production, while there is no clear pattern in the balancing. Lower two panels:
Monthly averages and standard deviations of 2016–2022 data for NO1 and NO5. The
consumption and production show a characteristic seasonal pattern, while the balancing
fluctuates over the entire year. In both cases, we show NO1 which is consumption-
dominated and NO5 which is production-dominated, but similar patters occur for the
other zones as well. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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4.5. Periodicity of balancing volumes

Since the periodic and seasonal patterns in the balancing volume
are vague, we perform a further investigation of periodicity. A dis-
crete Fourier transformation converts the data from time-domain to
frequency-domain and individual frequencies may reveal periodic pat-
terns. Fig. 8 shows the discrete Fourier transform.6 for both production,
consumption, and balancing volumes for NO5 for the period 2016–
2022. All zones have similar spikes with the dominant frequency being
yearly, followed by daily (12 and 24 h) coming from the two-hump
pattern in Fig. 4 Consumption volumes are the most periodical with
little noise, while production volume periodicity is more variable and
depends on the mix of production sources in the zone. The balancing
volume periodicity also shows a major frequency at one-year intervals,
but the rest of the spectrum is noisy with no clear periodicity.

4.6. Balancing capacity

As shown in Fig. 5, down-regulation is more frequent than up-
regulation. This is naturally linked to available production capacity.
Fig. A.16 (in Appendix) shows the production capacity declared avail-
able for regulation for each of the Norwegian zones along with six-
month rolling averages. In general, the capacity for down-regulation
is large when the capacity for up-regulation is small, but the sum is
not constant as they also depend on regular production. The capacities
available for balancing have clear seasonal variations. NO2 clearly
dominates the regulation capacity, followed by NO5 as discussed in
Section 3.

5. Day-ahead and balancing prices

Balancing prices consist of two prices, one for up-regulation and
one for down-regulation. The regulation prices are also defined for
hours with no regulation. In the majority of hours, the balancing
prices are identical to the day-ahead prices. However, when deviat-
ing the up-regulation price is higher than the day-ahead, while the
down-regulation price is lower than day-ahead. If not specified, we
consider the up-regulation price in the following, but qualitatively
similar conclusions apply for the down-regulation prices.

5.1. Temporal patterns in the prices

The upper panel in Fig. 9 shows the characteristic daily pattern
for hourly averages and standard deviations of day-ahead price and
balancing price for NO5 for 2019. There are hints of the two-hump
shape also seen in the volumes in Fig. 4, but less pronounced. The
balancing prices are strongly correlated with the day-ahead prices,
however, in the morning, the variance is larger for balancing price
than for day-ahead. This pattern is seen in all the Norwegian zones,
and for several years. A possible explanation can be the uncertainty in
the timing of the morning peak (rather than the magnitude) leading to
larger variation in the balancing prices.

The lower panel in Fig. 9 shows the monthly average and standard
deviation for the prices. We observe the same trends as for volume
(lower panels in Fig. 4) where the prices follow the demand and are
on average higher in winter than in summer. However, where the
balancing volumes appear as random noise over the year, the balancing
prices overall follow the day-ahead prices.

6 Computed with Tensorflow.signal.rfft https://www.tensorflow.org/
tutorials/structured_data/time_series

https://www.tensorflow.org/tutorials/structured_data/time_series
https://www.tensorflow.org/tutorials/structured_data/time_series
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Fig. 5. Upper panel: Balancing volume histograms for the period 2016–2022: Actual balancing volumes for frequency of hours with zero regulation (orange, first bin), non-zero
up-regulation (green) and absolute values of non-zero down-regulation (blue). The vertical dashed lines shows the standard deviation of the down- and up-regulations. Similar
behaviours are present if the balancing volumes are normalised to actual production. The evolution of regulation volumes and potential asymmetry over time is shown in Fig. 6.
Lower panel: Histograms of day-ahead and balancing prices for 2016–2022 for each of the Norwegian zones. We observe that the distributions seem to consist of two overlapping
distributions (note the logarithmic scale): A narrower Gaussian centred around the median price (40 e/MWh) and a wider distribution of higher prices. A few counts with prices
higher than 700 e/MWh are outside the plotting range. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
5.2. Balancing price statistics

The lower panels of Fig. 5 shows the histograms of day-ahead and
balancing prices for 2016–2022 and the statistics are given in Table A.3
in Appendix. We observe that the distributions seem to consist of
two overlapping distributions (note the logarithmic scale): A narrower
Gaussian centred around the median price (40 e/MWh) and a wider
distribution of higher prices. However, this multi-distribution shape
may be due to temporal evolution of the prices.

5.3. Temporal evolution of the balancing price

Fig. 11 shows the day-ahead and balancing prices for NO1 and
NO3 for 2016–2022 together with six-month moving average and
standard deviation calculated using one hour incremental rolling. First
we notice that the two sets of prices are highly correlated, with the
major difference being higher spikes in the balancing prices. Before
2020 the mean and standard deviations are rather stable, with some
variation in 2020, and a systematic increase from 2021 onward. This
increase is thought to origin in a combination of multiple meteorologi-
cal and geopolitical factors such as covid-19 pandemic, below average
precipitation, the commissioning of both the NordLink cable between
NO2 and Germany, and the North Sea Link between NO2 and UK, as
well as Russian invasion of Ukraine with subsequent significant changes
to power trading patterns in Europe. This demonstrates that the mean
and standard deviations are not constant over time, and that market
couplings are particularly important for price formation.

The lower panel of Fig. 11 shows the difference between day-ahead
price and balancing price (the price premium). The average of price
differences follows the pattern of the balancing prices, being relatively
stable up until 2020, and with significant increase from 2021 onward.
This behaviour is reflected in all zones, but NO3–4 are more affected
by individual outliers.

The Augmented Dickey–Fuller test for unit-root in the day-ahead,
balancing, and price premiums give no indication of unit roots for
8

the period 2016–2022, and hence we cannot conclude non-stationarity
beyond the variation in the data, but encourage caution if modelling
using frameworks based on stationarity assumptions.

5.4. Periodicity of prices

Fig. 12 shows the Fourier transforms of the prices and price differ-
ences. They do not reveal any systematic patterns, and we hypothesise
that any seasonal patterns are masked by the overall temporal evo-
lution. The partial auto-correlation indicates that only the first lag
is significantly correlated with the original series, i.e. the temporal
dependence is very short.

6. Relations in the market

In this section we investigate correlations between various market
factors.

6.1. Market relations for volumes

Fig. A.14 in Appendix shows the Spearman correlation between
balancing volumes of the Nordic market zones plus neighbouring zones
(green box), consumption and production volumes (black box, orange
box in Fig. A.14), volumes from various production types and available
balancing capacity. First, we observe that the balancing is correlated
between zones, in particular NO1–2–5 and NO3–4 but also with neigh-
bouring zones outside Norway (green box). Cross-border international
transmission cables are not directly used in the balancing market, but
they affect the balancing through the day-ahead market and through
unplanned changes in available transmission capacity.

The consumption is highly correlated between zones as it is domi-
nated by consumption with temporal patterns that are independent of
market zones. The production is strongly correlated with consumption,
although this is less clear for the consumption dominated zones (black
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Fig. 6. Balancing volumes (faint blue) and six-months moving average for one hour incremental rolling from 2016 to November 2022 (blue) for NO1 (top) to NO5 (bottom). The
dashed green line shows the standard deviation and solid green is three standard deviations. The grey line indicates number of hours with non-zero regulation for a rolling window
of six months. The mean and one standard deviation appear constant over time (blue and dashed green lines), but the 3𝜎 lines (green solid) reveal a trend towards increasing
variation in regulation for some zones. This trend remains when normalising to the actual production in each zone. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 7. Comparison of increase in wind power production with need for balancing. Left y-axis: Wind production share of total production (red solid lines) and absolute regulation
volume share of total production (blue solid lines) in NO1–5 and aggregated for all zones. Right y-axis: Monthly share of hours with activated regulation reserves (green dots)
in NO1–5 and the average of all zones aggregated. The dotted lines represent a linear best fit of the different variables. Apart from NO5, all zones see an increase in wind
power production (red lines) which is larger than the corresponding increase in regulation (blue lines). The number of hours with balancing remains almost constant (green lines),
indicating that the total increase in balancing volume is driven by larger volumes rather than more hours with need for balancing. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Discrete Fourier transform of balancing (blue), consumption (yellow) and production (red) volumes in NO5 for 2016–2022. The amplitudes are normalised to the largest
observed frequency spike. NO1-4 show qualitiatively similar results. All zones have similar spikes with the dominant frequency being yearly, followed by daily (12 and 24 h)
coming from the two-hump pattern in Fig. 4. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Upper panel: Hourly averages and standard deviations (shaded) of day-ahead
price (red) and balancing price (blue), and the difference between the two (green) for
2019 data for NO5. Lower panel: Monthly averages and standard deviations (shaded)
day-ahead price and balancing price for 2016–2022 for NO5. In both panels, we show
NO5 which is production-dominated. The other regions and years show similar patterns
for most years. A similar plot for weekdays do not reveal any significant difference
between weekdays. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 10. Pearson (blue) and Spearman (red) correlations between balancing volumes
and price differences for each year for NO1 (top) to NO5 (bottom). We compare to
previous values for 2003–2007 [4] and 2010–2012 [5]. The 2003–2007 value was
based on NO1 data, before it was split into NO1 and NO2 and is thus shown for both
zones. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

box in Fig. A.14). On the contrary, we do not observe any significant
correlation between balancing and production or consumption (orange
box in Fig. A.14) confirming the role of the balancing as adjustments
to unforeseen deviations.

For the individual (dominating) production categories, we observe
strong correlation between zones for the individual types of production:
hydro reservoir, run-of-river and onshore wind. This shows the comple-
mentary application of the sources where for example hydro reservoir
is used to compensate for over/under production of wind power. There
are no significant correlations between the individual types of pro-
duction and the balancing volume confirming the observations from
Section 4.4 of smaller increase in balancing volumes than increase in
wind power production.
11
6.2. Market relations for prices

It is known that coupling of markets leads to a price convergence
between the coupled markets [32]. Due to transfer capacities between
the zones, we expect a correlation between the volumes and prices of
the Norwegian zones, in particular NO1–2–5 and NO3–4. This is clearly
visible in the correlation heatmap in Fig. A.15 (in Appendix) where
we observe correlation between zones, also those that are not directly
neighbouring.

Regulation prices are strongly correlated with day-ahead prices and
secondary with balancing volumes. The deviations from the day-ahead
prices are somewhat correlated with the balancing volume, allowing
for price predictions given you can predict the balancing volume.

Previous research considered the relation between price premiums
(difference between day-ahead price and balancing price) and bal-
ancing. In particular Klæboe et al. [5] found a decreasing Pearson
correlation between 2003–2007 (0.78) and 2010–2012 (0.47) by com-
paring with [4] with the caveat that NO1 was split into NO1 and
NO2 between the two time intervals. However, Pearson correlation
only accounts for linear relationships. Instead we apply the Spearman
correlation which evaluates the monotonicity of a relationship, leading
to significantly higher values for all zones. Fig. 10 shows the Pearson
and Spearman correlation coefficients between balancing volumes and
price premiums per year for NO1–5. We compare the values from the
literature with those from 2016–2022. As the two methods incorporate
the same range (−1 to 1) we loosely interpret the dropping Pearson
correlation for NO1 as a decrease of linear relation and an increase in
non-linear relations over time.

7. Simple modelling and feature importance

To further investigate relations in the data that may not be sig-
nificant in the statistical analysis, we perform a simple modelling
and feature importance analysis. The observed increased complexity
motivates the use of advanced data driven methods over the classical
statistical methods used in previous research for predicting balancing
volumes a few hours ahead. Given the construction of the balancing
market, it is per default difficult to predict multiple hours ahead. Here
the focus is to obtain a model based on market data alone to investigate
the importance of the various features. The challenges of a full scale
predictive model are discussed in Section 7.2.

7.1. Model architechture, training and performance

We train a snapshot model to predict balancing volumes ahead in
time using training data for balancing price and volume, day-ahead
price and volume, hour of day, day of week, month and year for
the Norwegian market zones. The model is configured to predict the
balancing volumes for hour 0 based on information from previous
hours. Consequently, in order to predict four hours ahead, we provide
the balancing volumes for hour t-4, t-5 and t-6 as input. The day-
ahead prices are given for hour 𝑡𝑖 for i ∈ {−3,… , 3} since these are
settled at least 12 h prior to realisation, and will always be available
for prediction up to 12 h ahead.

The balancing market is dominated by hours with no activity, and
at the same time, the main interest of a predictive model is to capture
the sparse events where the balancing volumes are high. This is a
challenging scenario, which we work around by a naively resampling
of the balancing data. We randomly sub-sampled the hours with zero
balancing such that they provided 1/3 of the total training sample,
while 2/3 of the sample was hours with non-zero balancing volumes.

Hourly data for the period 2016–2022 was randomly shuffled into
a training and a test set using a 0.7/0.3 split. The hyperparameters of
the XGBoost algorithm were chosen as n_estimators = 400, max_depth
= 15, eta = 0.1, subsample = 0.7 and colsample_bytree = 0.8, and mean
squared error loss. Hyper-parameter tuning by trial and error showed
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Fig. 11. Upper and middle panels: Per hour day-ahead and balancing prices together with the six-month moving average and standard deviation for balancing price calculated using
one hour incremental rolling (backwards in time) from 2016 to November 2022 for NO1 (top) and NO3 (middle). A few counts with prices higher than 700 e/MWh are outside
the plotting range. NO2, NO4–5 are shown in Fig. A.13 in Appendix. Due to large transmission capacity between zones, NO2 and NO5 are similar to NO1, while NO4 is similar
to NO3. Lower panel: The price difference (balancing minus day-ahead price) and the absolute difference together with the rolling standard deviation of the difference separately
for up- and down-regulation prices for NO1. The spikes before 2021 are correlated in time with hours with large regulation, but not all balancing volume spikes leads to a price
spike. The average of price differences follows the pattern of the balancing prices, being relatively stable up until 2020, and with significant increase from 2021 onward.

Fig. 12. The discrete Fourier transforms of day-ahead price (red), balancing price (blue, almost identical with day-ahead), and the difference between the two (green). The
day-ahead and balancing prices show minor peaks at 12 and 24 h, but they are partly washed out due to the overall temporal evolution. The price difference shows no particular
pattern. All zones show similar lack of relevant time scales. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Table 2
List of the five most important features in the XGBoost regression model for determining the balancing volumes in NO1–5. The subscript depicts the
feature type and the superscript depicts the time-lag of the data. The coefficient of determination (𝑅2) evaluated on the test data is given for each
model. The value in parenthesis is the relative importance based on SAGE values expressed as a fraction between 0 and 1. Sell and buy refers to the
volumes traded in day-ahead, imb-volume is the imbalance volume while DA-price refers to the day-ahead price.

NO1 (𝑅2 = 0.50) NO2 (𝑅2 = 0.49) NO3 (𝑅2 = 0.56) NO4 (𝑅2 = 0.57) NO5 (𝑅2 = 0.47)

1 𝑁𝑂1−4𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (1) 𝑁𝑂2−4𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (1) 𝑁𝑂3−4𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (1) 𝑁𝑂4−4𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (1) 𝑁𝑂5−4𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (1)

2 𝑁𝑂5−4𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.15) 𝑁𝑂2−6𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.14) 𝑁𝑂4−4𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.08) year (0.4) 𝑁𝑂2−4𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.25)

3 𝑁𝑂2−4𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.14) 𝑁𝑂5−4𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.07) 𝑁𝑂3−6𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.06) 𝑁𝑂4−5𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.15) 𝑁𝑂5−6𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.13)

4 𝑁𝑂1−0𝑝𝑟𝑜𝑑−𝑣𝑜𝑙𝑢𝑚𝑒 (0.09) 𝑁𝑂2−5𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.06) 𝑁𝑂3−6𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.05) 𝑁𝑂4−6𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.15) month (0.13)

5 𝑁𝑂1−6𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.08) 𝑁𝑂1−4𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.05) 𝑁𝑂3−0𝑝𝑟𝑜𝑑−𝑣𝑜𝑙𝑢𝑚𝑒 (0.05) 𝑁𝑂1−0𝐷𝐴−𝑝𝑟𝑖𝑐𝑒 (0.11) 𝑁𝑂5−5𝑖𝑚𝑏−𝑣𝑜𝑙𝑢𝑚𝑒 (0.11)
that increasing n_estimators and max_depth from their default values
increased the performance of the model significantly. The 𝑅2 reported
y XGBoost on the test data range from 0.47 to 0.57 across the different
idding zones as given in Table 2.

.2. Feature importance

We assess the predictive power of different features by SAGE values,
hich estimates how much each feature contributes to the model’s
redictive power.7 The results are given in Table 2. The overall model
erformance is poor, highlighting the challenging nature of the prob-
em. We observe that the features with the highest predictive power
re the temporal lags of the balancing volume from the corresponding
idding zone. This is expected given the high auto-correlation of the
irst lags of balancing volumes.

Since the balancing market is designed to account for deviations
etween planned production and the actual demand, the model has
otential for improvement by adding features that carries information
bout the origin of those deviations such as changes in weather or
nforeseen changes in the infrastructure. Simple attempts on includ-
ng representative temperatures or wind speed/wind direction did not
mprove the model, and a full study is beyond the scope of this
aper where we focus on the market data. Based on the large auto-
orrelation with one hour lag, a model framework such as recurrent
eural networks should be considered. In addition, changing societal
actors such as power production policies may affect such modelling,
nd the framework should allow for continuous updates with new data.
e conclude that public available power market data does not provide

ecessary information for predicting balancing volumes.

. Results and discussion

Our analysis shows that the balancing market is strongly coupled
o the day-ahead market. In addition, infrastructure, policy and be-
avioural changes affecting the day-ahead market will also affect the
alancing market. This applies for example to a growing degree of
lectrification, increase of volatile production from intermittent energy
ources such as wind and solar, and the geopolitical development
aving an strong impact on overall energy prices.

When investigating temporal evolution, it becomes clear that there
s no such thing as a standard year in the power market. Given the
orrelations to other zones and countries, the Norwegian zones are
ffected by international events and policy changes e.g. related to sup-
ly stability. This will affect the volumes directly, while the balancing
rices are affected both by the balancing volumes and by policies for
rice setting. It is also observed that increased volatile production does
ot increase the number of hours with regulation, and we interpret
hat situations that were difficult to predict before, remains difficult
o predict presently and quite potentially in the future. However,
ncreasing volumes makes the impact of wrong predictions larger.

7 SAGE values are not designed for correlated data, and hence the values
ay include some uncertainty and small differences should be interpreted with

aution.
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Table A.3
Median, mean, standard deviation and percentage of hours with zero, for balancing
volume and price differences for NO1–NO5 for 2016–2022. Volumes are in MWh and
prices in e/MWh.

NO1 NO2 NO3 NO4 NO5

Regulation
volume
Median [MWh] 0.0 0.0 0.0 0.0 0.0
Mean [MWh] −5.0 −16.1 −34.9 −21.5 −19.5
Std [MWh] 35.2 140.6 112.9 112.7 175.7
% zero [–] 69 47 44 59 41

Up price
difference
Median [e/MWh] 0.0 0.0 0.0 0.0 0.0
Mean [e/MWh] 2.6 2.3 2.81 2.29 2.55
Std [e/MWh] 12.7 10.6 42.3 41.2 11.7
% zero 69 69 71 74 69

Down price
difference
Median [e/MWh] 0.0 0.0 0.0 0.0 0.0
Mean [e/MWh] −5.4 −5.6 −3.6 −2.9 −5.3
Std [e/MWh] 20.8 21.4 9.5 8.2 20.6
% zero 55 55 52 56 56

International connections are not used directly in the regulation
market, but they affect the day-ahead market and the bilateral trading
in the intra-day markets which again can affect the regulation indi-
rectly. It is possible that the introduction of interconnectors affects
the strategies chosen by the traders, and that this in turn gives new
balancing needs. There is also a question of strategy for each trader
or trading organisation as to which market to settle imbalances in.
If sufficient lead time is given, a producer may trade in the intra-
day market to secure the fulfilment of commitments made in the
day-ahead market that have become hard to fulfil based on intended
production assets. We do not have access to insight in the individual
trading strategies, but it is expected that each trading organisation has
a trading strategy for these situations. It is reasonable to assume that
the strategy is developing and adapting to the observed changes in
the power system. Hence, the risk-handling strategy and other trader
specific choices are expected to impact the resulting prices and volumes
in the balancing markets. Such input is beyond the scope of this paper
and will only be captured by the statistical analysis as irregularities and
non-stationarity.

The introduction of more non-regulated power production such
as wind and solar power is in and of itself expected to give larger
volumes and more hours of non-zero regulation in the regulatory
markets. It is observed in this study (for example in Fig. 7) that the
resulting behaviour in the regulation market is more nuanced. It is
not found that the number of hours with non-zero regulation volumes
have increased significantly, rather the opposite has been found as a
trend for several zones. Although the volumes have increased for those
non-zero hours. In addition, the increase in the ratio of non-regulated
power production does not seem to correlate with the increase in the
regulation volumes. A potential mechanism for these observations may
be that the balancing strategies of the producers have developed, for
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Fig. A.13. Per hour day-ahead and balancing prices for together with the six-month moving average and standard deviation for balancing price calculated using one hour
incremental rolling (backwards in time) from 2016 to November 2022 for NO1 (top) to NO5 (bottom). Due to large transmission capacity between zones, NO2 and NO5 are similar
to NO1, while NO4 is similar to NO3. A few counts with prices higher than 700 e/MWh are outside the plotting range.
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Fig. A.14. Spearman correlation heat map for the period 2016–2022. Correlations between balancing volumes (regulation) of the Nordic market zones plus neighbouring zones
(black box), consumption and production volumes (green and orange boxes), volumes from various production types and available balancing capacity. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.15. Spearman correlation heat map for the period 2016–2022 for balancing volumes (regulation), day-ahead prices and price differences.
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Fig. A.16. Available balancing capacity volumes for up- and down-regulation (faint blue, positive and negative values respectively), and six-months moving average (blue line)
and standard deviation (green) for one hour incremental rolling for 2016–2022 for NO1 (top) to NO5 (bottom). Positive values correspond to available up-regulation and negative
to available down-regulation. All zones show some seasonal variation in regulation capacity. NO2 and NO5 dominates the regulation capacity due to large amounts of flexible
hydro reservoir power in the zones. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
example by building larger portfolios of diverse assets that combined
give better predictability. As noted, the statistical analysis shows how
the market is developing. The fact that this residual market shows
stochasticity indicates that the day-ahead market is well-functioning
and interacts with the balancing market in an efficient manner. With
public data, the analysis could be performed by any entity ensuring
market transparency. This is also valid for other markets where similar
data is available.

Due to the demonstrated changing characteristics of the balancing
market, modelling of this is very challenging and will require methodol-
ogy that is able to handle systems in development displaying non-linear
behaviour. It is a strong recommendation that such modelling is per-
formed in a way that it may be continuously updated with new data
from the system in order to capture the ever changing characteristic of
the system.
17
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