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This paper contains the foundation for a new Particle-In-Cell model for gas discharges, based on 
Îto diffusion and Kinetic Monte Carlo (KMC). In the new model the electrons are described with 
a microscopic drift-diffusion model rather than a macroscopic one. We discuss the connection of 
the Îto-KMC model to the equations of fluctuating hydrodynamics and the advection-diffusion-
reaction equation which is conventionally used for simulating streamer discharges. The new 
model is coupled to a particle description of photoionization, providing a non-kinetic all-particle 
method with several attractive properties, such as: 1) Taking the same input as a fluid model, 
e.g. mobility coefficients, diffusion coefficients, and reaction rates. 2) Guaranteed non-negative 
densities. 3) Intrinsic support for reactive and diffusive fluctuations. 4) Exceptional stability 
properties. The model is implemented as a particle-mesh model on cut-cell grids with Cartesian 
adaptive mesh refinement. Positive streamer discharges in atmospheric air are considered as the 
primary application example, and we demonstrate that we can self-consistently simulate large 
discharge trees.

1. Introduction

Substantial efforts have been made in order to understand the nature of streamer discharges [1], which is a specific type of 
transient and filamentary plasma. Streamers occur naturally as precursors to electric sparks, and also appear as sprite discharges in 
the upper atmosphere [2–5]. They are also highly useful for CO2 conversion [6–9], in plasma assisted combustion [10–15], plasma 
catalysis [16–21], and plasma medicine [22]. Streamers are inherently three-dimensional structures that usually appear in bundles or 
in the shape of discharge trees. These develop through repetitive branching, which is a fundamental property of streamers [23,24]. 
For positive streamer discharges in air, the amount of photoionization in front of the streamer strongly affects the degree of branching 
[25,26]. When more photoelectrons are generated in front of positive streamers the amount of streamer branching is reduced.

Although single streamers are now relatively well understood, discharge trees are the more relevant structures since they appear in 
virtually all applications involving streamer discharges. Fig. 1 shows an example of such a structure for a positive streamer discharge 
in air at atmospheric pressure and temperature. Clearly, this structure requires full 3D modeling over many orders of magnitude in 
both space and time, and is therefore quite difficult to describe quantitatively. Most contemporary computational models can only 
solve for at most a few filaments. See e.g. [25–30] for recent results with fluid models, or [31–35] for kinetic particle models.

Several researchers have questioned the feasibility of using fluid and particle models for obtaining numerical solutions that 
describe entire discharge trees [1,36,37], such as those in Fig. 1. Given the difficulties in simulating even just an isolated streamer 
Available online 20 February 2024
0021-9991/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail address: robert.marskar@sintef.no.

https://doi.org/10.1016/j.jcp.2024.112858
Received 16 January 2023; Received in revised form 10 September 2023; Accepted 10 February 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:robert.marskar@sintef.no
https://doi.org/10.1016/j.jcp.2024.112858
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2024.112858&domain=pdf
https://doi.org/10.1016/j.jcp.2024.112858
http://creativecommons.org/licenses/by/4.0/


Journal of Computational Physics 504 (2024) 112858R. Marskar

Fig. 1. Example images of positive streamer discharge trees in technical air at 1 bar pressure. The images show the accumulated UV and optical light emission from 
the discharge (each frame shows a different discharge).

filament [38], it is easy to understand why such claims are made. In a recent review Nijdam et al. [1] remarked that although fluid and 
particle simulations of streamers with tens or hundreds of branches are computationally unfeasible, reduced-order models of single 
filaments [36,39] are candidates for improved tree and fractal based models [40–43]. Although these models have been heralded 
for quite some time and could be used for simulating discharge trees, they are still in their infancy and they are unfortunately also 
excessively simplified. Many natural phenomena like branching and charge transport do not self-consistently evolve from the model 
itself, and the lack of a density (or particle) description also complicates quantitative descriptions of the chemistry in the streamer 
channels.

Currently, drift-diffusion fluid models in the local field approximation (LFA) are most frequently used for studying streamer 
discharges. With fluid models the advection-diffusion-reaction equation for the electron density is discretized on an Eulerian grid, 
and the plasma density is updated in time using either explicit or implicit time integration [38]. There are several well-known 
numerical restrictions for fluid models, such as the existence of a Courant-Friedrichs-Lewy (CFL) condition on the time step Δ𝑡, or 
restriction by the dielectric relaxation time 𝜖0∕𝜎 where 𝜎 is the conductivity of the plasma. The latter can be avoided by using semi-
implicit formulations [44]. Infrequently mentioned is the fact that there is a rather fundamental requirement on the spatial resolution 
Δ𝑥 as well [45], which applies to both explicit and implicit temporal discretizations. One issue that is often faced in simulation codes 
is that explicit codes at best have time steps Δ𝑡 ∝Δ𝑥, which leads to an undesired scaling of computational resources. For example, 
refining the grid Δ𝑥 → Δ𝑥∕2 doubles the amount of grid cells per coordinate direction, and requires twice as many time steps. 
Implicit codes can decouple Δ𝑡 from Δ𝑥, but it is not clear how to obtain a scalable implicit discretization in the context of the 
frequent regridding that is a de-facto requirement for large scale 3D streamer discharge simulations [26–29].

Cognizant of the above issues, we have developed a new model based on a microscopic drift-diffusion model rather than a 
macroscopic one. This is combined with mesoscopic reaction algorithms for describing the stochastic plasma chemistry, i.e. we 
replace the conventionally used deterministic chemistry by a Kinetic Monte Carlo (KMC) algorithm. The new model takes particle 
discreteness, random collisions, and stochastic reactions into account. Fundamentally, the model is a non-kinetic Particle-In-Cell (PIC) 
model, and it is indeed ironic that this is actually a helpful model since the switch from a fluid to a particle description is usually 
associated with an increased computational cost. But the new model has no fundamental restriction on Δ𝑥 or Δ𝑡, and numerical 
tests show that it is exceptionally stable in both space and time. Importantly, we are also achieving a decoupling of Δ𝑡 from Δ𝑥
without requiring an implicit discretization. This renders the new model capable of obtaining numerical solutions not only for single 
filaments, but also for comparatively large discharge trees. In this paper we use the model to investigate laboratory discharges, but 
the model itself is applicable to many other types of streamers (e.g. sprites).

This paper has two main goals: 1) A thorough presentation of the model, with details as to how it can be implemented with robust 
and scalable computer algorithms. 2) A capability demonstration for self-consistent simulation of discharge trees at the laboratory 
scale, similar to the ones shown in Fig. 1. The organization of this paper is as follows. Section 2 presents a computational prelude 
that focuses on finite-volume discretization issues for fluid models, for both explicit and implicit time discretizations. In section 3 we 
formulate the new model and discuss its connection to the conventional fluid model. Section 4 contains the numerical discretization 
of the model. In section 5 we provide some numerical tests of the model, and some concluding remarks are provided in section 6.

2. Prelude

We first consider an underlying issue facing the stability properties of discretized fluid models in the LFA. Our line of reasoning 
follows Villa et al. [45] who proved that the spatial resolution for fluid models must essentially resolve the avalanche length for the 
solution to remain bounded in time. Consider a one-dimensional advection-reaction model for the electron density 𝑛, for the moment 
ignoring electron diffusion:

𝜕𝑡𝑛 = −𝑣𝜕𝑥𝑛+ 𝛼𝑣𝑛, (1)

where 𝑣 > 0 is a constant electron velocity and 𝛼 > 0 is a constant ionization coefficient. The exact solution is
2

𝑛(𝑥, 𝑡) = 𝑛(𝑥− 𝑣𝑡) exp (𝛼𝑥) , (2)
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where 𝑛(𝑥 − 𝑣𝑡) is some initial function. If 𝑛 is bounded in time, so is 𝑛(𝑥, 𝑡).
We now consider the numerical discretization of equation (1) on a one-dimensional Cartesian grid with grid points 𝑥𝑖 = 𝑖Δ𝑥

where Δ𝑥 is the grid point spacing and 𝑖 is the grid index. Each grid cell spans the volume [𝑥𝑖 − Δ𝑥∕2, 𝑥𝑖 + Δ𝑥∕2]. A first order 
finite-volume upwind discretization in space with an implicit Euler discretization in time for equation (1) yields

𝑛𝑘+1
𝑖

=
𝑛𝑘
𝑖

1 + 𝑣Δ𝑡
Δ𝑥 − 𝛼𝑣Δ𝑡

+ 𝑣Δ𝑡
Δ𝑥

𝑛𝑘+1
𝑖−1

≥ 𝑛𝑘
𝑖

1 + 𝜉 (1 − 𝛼Δ𝑥)
,

(3)

where 𝜉 ≡ 𝑣Δ𝑡∕Δ𝑥 ≥ 0 is the Courant number. The solution 𝑛𝑘+1
𝑖

is bounded in time only if

𝛼Δ𝑥 ≤ 1. (4)

Here, the discretization is fully implicit but it is only conditionally stable and non-negative.
More generally, the underlying stability issues are related to the advective-reactive coupling. Using a Godunov splitting for 

equation (1) with explicit fractional Euler steps yields

𝑛†
𝑖
= 𝑛𝑘𝑖 (1 − 𝜉) + 𝜉𝑛

𝑘
𝑖−1, (5)

𝑛𝑘+1
𝑖

= 𝑛†
𝑖
+ 𝛼𝑣Δ𝑡𝑛†

𝑖

=
[
𝑛𝑘𝑖 (1 − 𝜉) + 𝜉𝑛

𝑘
𝑖−1
]
(1 + 𝜉𝛼Δ𝑥)

≥ 𝑛𝑘𝑖 (1 − 𝜉) (1 + 𝜉𝛼Δ𝑥) .
(6)

The stability region is now 𝛼Δ𝑥 ≤ 1∕(1 − 𝜉), i.e. the discretization is more stable for larger time steps. Splitting methods expand the 
stability region because they advect electrons out of the grid cell before they react.

Several codes [27,38] use second order slope-limited discretizations, but these discretizations are not fundamentally more stable. 
An analysis is more difficult in this case, but one only needs to observe that slope-limited schemes default to piecewise constant 
reconstruction if there is a local maximum or a large gradient in the solution, and in this case one again obtains the stability limit 
𝛼Δ𝑥 ≤ 1. The problem dimensionality and presence of diffusion also affects the stability region. However, since equation (1) is a 
subset of multi-dimensional simulations where 𝑣𝑦 = 𝑣𝑧 = 0 and 𝑣𝑥 ≠ 0, the stability limit applies to multi-dimensional simulations as 
well.

The analysis above is quite simplified and ignores the fact that the streamer is a moving structure and thus that any potential 
instability regions 𝛼Δ𝑥 > 1 move with the solution. In practice, the situation is far less dire and one may still observe that 𝑛𝑘

𝑖
remains 

bounded even for quite significant violations of 𝛼Δ𝑥 ≤ 1. It is nonetheless clear that caution is needed for fluid simulations since 
numerical underresolution is fundamentally capable of enabling unbounded growth in the plasma density and corresponding non-
physical diverging growth of the electric field 𝐸, i.e. 𝐸→∞ as 𝑛 →∞. Such instabilities have been scrutinized in recent years, and 
they are particularly relevant in the cathode sheath [46] and in the context of so-called stagnant positive streamers [47]. Although 
the LFA is often identified as the culprit [46], the underlying issue is also present in the transport equation itself. Furthermore, the 
ionization coefficient 𝛼 increases with 𝐸, and in practice the requirement on Δ𝑥 introspectively depends on the numerical solution 
itself, complicating the selection of a spatial step size.

Various resolutions to the spatial stability restriction have been proposed in the literature. Villa et al. [45] showed that the 
mesh-dependent stability criterion 𝛼Δ𝑥 ≤ 1 can be removed by treating reactions with an upwind method. Marskar [26] softened it 
by using a Godunov splitting like equation (5), and used a Corner Transport Upwind (CTU) scheme [48] for maintaining an overall 
larger time step for multi-dimensional simulations. Model corrections to the ionization term have also been considered. Niknezhad 
et al. [46] change the characteristic length scale of the ionization term by applying a smoothing operator that changes 𝛼 without 
net loss in the number of reactions. Marskar [26], Soloviev and Krivtsov [49], Teunissen [50], and Li et al. [51] have considered 
alterations to 𝛼 based on electron energy considerations.

For explicit codes, the requirement on Δ𝑥 can be quite penalizing for the time steps that can be used. On structured Cartesian 3D 
grids Δ𝑥 =Δ𝑦 =Δ𝑧, a fully explicit discretization using a first order upwind method and centered finite differencing of the diffusion 
operator yields the time step restriction

Δ𝑡 ≤
(|𝑣𝑥|+ |𝑣𝑦|+ |𝑣𝑧|

Δ𝑥
+ 6𝐷

Δ𝑥2

)−1
, (7)

where we now also include the electron diffusion coefficient 𝐷. Fig. 2 shows how this time step varies with Δ𝑥 for different selections 
of the field strength 𝐸. Marskar [26] found that 𝐸 ∼ 25 kV∕mm for streamer discharges in air, and with a spatial resolution of 
Δ𝑥 ≲ 2 μm the time step is approximately 1 ps. A reasonable simulation time for streamer discharges in atmospheric air is around 
100 ns, requiring roughly 100 000 time steps, at which point even fluid simulations become numerically expensive.

Implicit methods are subject to the same requirement on Δ𝑥 as explicit methods, but they remain attractive since they do not 
impose fundamental limitations on Δ𝑡. Unfortunately, 3D simulations often use hundreds of millions of grid points [26–28] and 
3

billions of degrees of freedom. Full Newton methods [54] are not very practical at this scale since the full Jacobian must be factored 
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Fig. 2. Computed time step for 3D fluid models using equation (7) for discharges in atmospheric air. The combined line-mark style indicates the region 𝛼Δ𝑥 ≤ 1 while 
the marks-only style indicates the region 𝛼Δ𝑥 > 1. Velocities are given by 𝑣𝑥 = 𝑣𝑦 = 𝑣𝑧 = 𝜇𝐸∕

√
3 where 𝐸 is the electric field magnitude, and the electron mobility 𝜇

and diffusion coefficient 𝐷 are obtained using BOLSIG+ [52] and the SIGLO database [53].

at every time step. Jacobian-Free Newton-Krylov (JFNK) is a more attractive computational strategy, but it is not clear if JFNK 
methods remain computationally feasible at this scale, particularly when adaptive mesh refinement (AMR) is required.

Next, consider the evolution of the microscopic version of equation (1):

d𝑡𝑋 = 𝑣, (8a)

d𝑡𝑊 = 𝛼𝑣𝑊 , (8b)

where 𝑋 is a one-dimensional electron position and 𝑊 is the (average) number of electrons sharing this position. For demonstration 
purposes, we are using a deterministic reaction rate equation for 𝑊 . This is less meaningful when dealing with a particle method 
but we improve on this aspect later in the paper. Consider a single starting electron, 𝑋(0) = 0, 𝑊 (0) = 1, in which case the solutions 
to equation (8) using the explicit Euler rule until time 𝑡 = 𝑘Δ𝑡 are

𝑋𝑘 = 𝑣𝑡, (9)

𝑊 𝑘 = (1 + 𝛼𝑣Δ𝑡)𝑘 . (10)

The number of particles per unit length for a grid cell 𝑖 is then

𝑛𝑘𝑖 =

{
1
Δ𝑥 (1 + 𝛼𝑣Δ𝑡)

𝑘 if ||𝑣𝑡− 𝑥𝑖|| ≤Δ𝑥∕2,
0 otherwise.

(11)

This is to be contrasted with the exact solution to equation (1) with the initial condition 𝑛(𝑥 − 𝑣𝑡) = 𝛿(𝑥 − 𝑣𝑡),

𝑛𝑖(𝑡) =
1

Δ𝑥𝑖

𝑥𝑖+Δ𝑥2

∫
𝑥𝑖−Δ𝑥∕2

𝛿(𝑥− 𝑣𝑡) exp (𝛼𝑥)d𝑥

=

{ 1
Δ𝑥 exp (𝛼𝑣𝑡) |𝑣𝑡− 𝑥𝑖| ≤Δ𝑥∕2,

0 otherwise.

(12)

The two solutions (equations (11) and (12)) differ only due to the way we approach the numerical integration of equation (8). 
Notably, numerical discretizations that start from equation (8) do not require 𝛼Δ𝑥 ≤ 1, and we can identify why: Equation (3) is 
numerically diffusive and the electron density only asymptotically tends to zero as 𝑡 →∞, and thus there is always some fraction of 𝑛
that will react in the grid cell [45]. On the other hand, there is no numerical diffusion involved in equation (11) and the discretization 
is also stable for any time step, i.e. it does not have a CFL condition. These are the two basic properties that we exploit in the new 
PIC model.

3. The new model

3.1. Particle transport

Rather than using a macroscopic drift-diffusion model for the electrons, which is subject to fairly strict requirements on Δ𝑥 and 
4

Δ𝑡, we consider a microscopic model based on Îto diffusion
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d𝑿𝑝 = 𝑽 𝑝d𝑡+
√

2𝐷𝑝d𝑾
𝑝
𝑡 , (13)

where 𝑿𝑝 is the position of a particle 𝑝, 𝑽 𝑝 is the drift velocity of the particle and 
√
2𝐷𝑝 is the diffusion coefficient of the par-

ticle. Here, d𝑾 𝑝
𝑡 is a Wiener process over a time d𝑡. It can be represented as d𝑾 𝑝

𝑡 =
√

d𝑡 𝑝 where  𝑝 is a normal distribution 
with standard deviation of 0 and variance of 1 in 𝑑-dimensional physical space. The noise is uncorrelated in time and space, and 
independent of noise acting on other particles. The representation of the particle diffusion coefficient as 

√
2𝐷𝑝 is due to a conve-

nient normalization when coarse-graining the model onto a continuum representation where the macroscopic diffusion coefficient 𝐷
appears instead.

Averaging equation (13) over many identical particles, i.e. 𝑽 𝑝 = 𝒗, 𝐷𝑝 =𝐷, yields⟨
𝑿𝑝(𝑡+Δ𝑡) −𝑿𝑝(𝑡)

⟩
= 𝒗Δ𝑡, (14a)⟨[

𝑿𝑝(𝑡+Δ𝑡) −𝑿𝑝(𝑡) − 𝒗Δ𝑡
]2⟩ = 2𝐷𝑑Δ𝑡, (14b)

where ⟨…⟩ indicates the expectation value. Thus, by taking 𝑽 and 𝐷 to be the macroscopic electron drift velocity and diffusion 
coefficients, the Îto model recovers macroscopic drift-diffusion statistics. In this paper we adopt the LFA and take 𝒗 and 𝐷 to be 
functions of 𝑬. The velocity and diffusion coefficients are found by interpolation of the macroscopic quantities 𝒗 and 𝐷 to the 
particle positions, i.e.

𝑽 𝑝 = 𝒗
(
𝑿𝑝

)
, (15)

𝐷𝑝 =𝐷
(
𝑿𝑝

)
. (16)

Extensions to the local mean energy approximation where the coefficients are given as functions of the average electron energy are 
not examined in this paper.

In a formal derivation Dean [55] showed that the evolution of the global density

𝑛(𝒙, 𝑡) =
∑
𝑝

𝛿
[
𝒙−𝑿𝑝(𝑡)

]
(17)

yields the advection-diffusion equation of fluctuating hydrodynamics:

𝜕𝑛

𝜕𝑡
=∇ ⋅
(
−𝒗𝑛+𝐷∇𝑛+

√
2𝐷𝑛𝒁
)
, (18)

where 𝒁(𝒙, 𝑡) is a Gaussian random field without space-time correlations,

⟨𝒁(𝒙, 𝑡)𝒁(𝒙′, 𝑡′)⟩ = 𝛿 (𝒙− 𝒙
′) 𝛿 (𝑡− 𝑡′) . (19)

The term 
√
2𝐷𝑛𝒁 is a stochastic flux that accounts for fluctuations from Brownian motion. This term is usually ignored in studies of 

non-equilibrium gas discharges. In the macroscopic limit of vanishing fluctuations, equation (18) yields the deterministic advection-
diffusion equation which is the conventional starting point for fluid models. The recovery of equation (18) from equation (13) in the 
macroscopic limit is hardly surprising since equation (13) is a microscopic drift-diffusion model.

3.2. Kinetic Monte Carlo

For the plasma chemistry we compute reactions locally within each grid cell, using KMC. Suppose that we are provided with a 
set of reactions that evolve a system of 𝑀 different chemical species 𝑆𝑖, 𝑖 ∈ [1, 2, . … , 𝑀]. The number of particles for each species 
𝑆𝑖 is given by a state vector

𝑄⃗(𝑡) =

⎛⎜⎜⎜⎜⎝
𝑄1(𝑡)
𝑄2(𝑡)
⋮

𝑄𝑀 (𝑡)

⎞⎟⎟⎟⎟⎠
, (20)

where 𝑄𝑖(𝑡) is the number of particles of type 𝑆𝑖 in some computational volume Δ𝑉 at time 𝑡. Reactions are represented stoichio-
metrically, e.g.

𝑆𝐴 +𝑆𝐵 +…
𝑘
←←←←←←→ 𝑆𝐶 + 𝑆𝐷 +… , (21)

where 𝑘 is the reaction rate. The set of such reactions is called the reaction network 𝑅⃗. Let 𝜈𝑟 denote the state change in 𝑄⃗ caused by 
a single firing of a reaction of type 𝑟, i.e.

𝑄⃗⇒ 𝑄⃗+ 𝜈𝑟. (22)
5

For example, if 𝑄⃗ = (𝑄1, 𝑄2)⊺ and the reaction network consists of a single reaction 𝑆1 ←←→ 𝑆2 then 𝜈1 = (−1, 1)⊺.
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Propensity functions 𝑎𝑟
(
𝑄⃗(𝑡), 𝑡
)

d𝑡 are defined as the probability that exactly one reaction of type 𝑟 occurs in the infinitesimal 
interval [𝑡, 𝑡 + d𝑡]. In other words, 𝑎𝑟 can loosely be interpreted as the number of reactions of type 𝑟 per unit time in a computational 
volume. The rates 𝑘 that occur in reactions like equation (21) are not equivalent to the conventional reaction rates that are used in 
the deterministic reaction rate equation (RRE). For a unipolar reaction of the type 𝑆1

𝑘
←←←←←←→∅ the propensity function is 𝑎𝑟 = 𝑘𝑄1 and 

in this case 𝑘 is numerically equal to the rate that occurs in the RRE (see equation (27)). However, for bipolar reactions of the type 
𝑆1 + 𝑆1

𝑘
←←←←←←→∅ the propensity is 𝑘 1

2𝑄1(𝑄1 − 1) since there are 12𝑄1(𝑄1 − 1) unique pairs of particles of type 𝑆1.

We use the KMC algorithm as proposed by Cao et al. [56,57]. This algorithm advances 𝑄⃗ over a time step Δ𝑡 using a sequence of 
adaptive smaller steps Δ𝜏 where the reaction network is advanced using either the SSA [58], tau-leaping, or a combination of these. 
This algorithm is discussed further in section 3.2.3, but we first provide some context to the SSA/KMC and tau-leaping algorithms.

3.2.1. Stochastic simulation algorithm (SSA) and tau-leaping

The SSA (or Gillespie algorithm [58]), is a next-reaction model which advances 𝑄⃗(𝑡) one reaction at a time. Given a total 
propensity 𝐴(𝑡) =

∑
𝑟 𝑎𝑟

(
𝑄⃗(𝑡), 𝑡
)

, the time until the next reaction is randomly determined from

Δ𝑇next =
1
𝐴(𝑡)

ln
(

1
𝑢1

)
, (23)

where 𝑢1 ∈ [0, 1] is a random number sampled from a uniform distribution. The reaction type is further determined with

𝑗 = smallest integer satisfying
𝑗−1∑
𝑟=0

𝑎𝑟

(
𝑄⃗(𝑡), 𝑡
)
> 𝑢2𝐴(𝑡), (24)

where 𝑢2 ∈ [0, 1] is another uniformly sampled random number. The system is then advanced as

𝑄⃗
(
𝑡+Δ𝑇next

)
= 𝑄⃗(𝑡) + 𝜈𝑗 . (25)

The SSA resolves one reaction at a time, and the algorithm becomes increasingly inefficient as the number of reactions per unit time 
grows. In its isolated form, the algorithm is not very useful for discharge simulations.

The tau-leaping method advances the entire reaction network in a single step over time Δ𝑡 using Poisson sampling:

𝑄⃗ (𝑡+Δ𝑡) = 𝑄⃗(𝑡) +
∑
𝑟

𝜈𝑟
[
𝑎𝑟

(
𝑄⃗(𝑡), 𝑡
)
Δ𝑡
]
, (26)

where  (𝜇) is a random number sampled from a Poisson distribution with mean 𝜇. If the propensity functions 𝑎𝑟 do not change 
significantly on the time interval [𝑡, 𝑡 +Δ𝑡] then reaction events are statistically independent, which is the condition for the validity 
of the tau-leaping scheme. A tau-leaping method has been considered by Luque and Ebert [59] in the context of streamer discharges 
(although the authors do not use the tau-leaping terminology). Unlike the SSA, equation (26) does not guarantee a physically valid 
state since Poisson sampling of reactions that consume reactants can yield negative population numbers, and thus needs to be 
combined with time step selection and rejection sampling [56].

3.2.2. Connection to the reaction rate equation

Tau-leaping is related to the RRE as follows: If a sufficiently large number of reactions occur within Δ𝑡, i.e. 𝑎𝑟
(
𝑄⃗(𝑡), 𝑡
)
Δ𝑡 ≫

1, then we can approximate the Poisson process by a Gaussian process. Furthermore, if reactive fluctuations are negligible, i.e. √
𝑎𝑟

(
𝑄⃗(𝑡), 𝑡
)
Δ𝑡 ≪ 𝑎𝑟

(
𝑄⃗(𝑡), 𝑡
)
Δ𝑡 then we can replace the Gaussian process by its mean value. It can then be shown [60] that 

equation (26) yields

d𝑄⃗
d𝑡

=
∑
𝑟

𝜈𝑟𝑎𝑟

(
𝑄⃗(𝑡), 𝑡
)
, (27)

which we recognize as the deterministic reaction rate equation for the particle density 𝑛(𝑡) = 𝑄⃗(𝑡)∕Δ𝑉 . Equation (27) now allows us 
to identify the usual rate constants from the propensities. For example, for the bimolecular reaction 𝑆𝑖 + 𝑆𝑗

𝑘
←←←←←←→ ∅ the reaction rate 

constant is 2𝑘∕Δ𝑉 for 𝑖 = 𝑗 and 𝑘∕Δ𝑉 for 𝑖 ≠ 𝑗.
3.2.3. Reaction algorithm outline

Complete details regarding the reactive algorithm that we use are found in [56–58]. We are interested in advancing 𝑄⃗(𝑡) from 
time 𝑡 to time 𝑡 +Δ𝑡 for a set of reactions 𝑅⃗. Letting 𝜏 be the simulated time within Δ𝑡, this proceeds as follows:

1. Partition 𝑅⃗ into critical and non-critical reaction sets 𝑅⃗c and 𝑅⃗nc. The critical reactions are defined as the set of reactions that 
6

are within 𝑁c firings of consuming its reactants. We take 𝑁c = 5 in this paper.
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2. Compute all propensities, the total propensity 𝐴 and the critical propensity 𝐴c:

𝐴 =
∑
𝑟∈𝑅⃗

𝑎𝑟,𝜏 , (28a)

𝐴c =
∑
𝑟∈𝑅⃗𝑐

𝑎𝑟,𝜏 , (28b)

where 𝑎𝑟,𝜏 ≡ 𝑎𝑟
(
𝑄⃗(𝑡+ 𝜏), 𝑡+ 𝜏

)
.

3. Compute the time Δ𝜏c until the next critical reaction:

Δ𝜏c =
1
𝐴c

ln
(

1
𝑢1

)
, (29)

where 𝑢1 ∈ [0, 1] is a uniformly distributed random number.
4. Compute a permitted time step Δ𝜏nc such that non-critical reaction propensities do not change by a relative factor greater than 
𝜖:

Δ𝜏nc = min
𝑖∈𝐼rs

⎛⎜⎜⎜⎝
max
(
𝜖𝑄𝑖
𝑔𝑖
,1
)

||𝜉𝑖|| ,
max
(
𝜖𝑄𝑖
𝑔𝑖
,1
)2

𝜎2
𝑖

⎞⎟⎟⎟⎠ , (30)

where 𝐼rs is the set of reactant species in 𝑅⃗nc and

𝜉𝑖 =
∑
𝑟∈𝑅⃗nc

𝜈𝑟𝑖𝑎𝑟,𝜏 , (31)

𝜎2𝑖 =
∑
𝑟∈𝑅⃗nc

𝜈2𝑟𝑖𝑎𝑟,𝜏 . (32)

Here, 𝜈𝑟𝑖 is the state change of 𝑄𝑖 due to one firing of reaction 𝑟. The factor 𝑔𝑖 depends on the highest order of reaction where 
the reactant 𝑖 appears [56]. In this paper we consider only first order reactions and then 𝑔𝑖 = 1.

5. To halt integration at time Δ𝑡, select a reactive substep Δ𝜏 within Δ𝑡 from

Δ𝜏 =min
[
Δ𝑡− 𝜏,min

(
Δ𝜏c,Δ𝜏nc

)]
. (33)

6. Resolve reactions as follows:
(a) If Δ𝜏c <Δ𝜏nc and Δ𝜏c <Δ𝑡− 𝜏∶ One critical reaction fires. Determine the critical reaction 𝑟𝑐 from

𝑟𝑐 = smallest integer satisfying
𝑟𝑐−1∑
𝑟=0

𝑎𝑟 > 𝑢2𝐴𝑐, (34)

where 𝑢2 ∈ [0, 1] is sampled from a uniform distribution. The sum only runs over the critical reactions. Advance the state 𝑄⃗
with the results from the SSA and tau-leaping reaction firings:

𝑄⃗→ 𝑄⃗+ 𝜈𝑟𝑐 +
∑
𝑟∈𝑅⃗nc

 (𝑎𝑟,𝜏Δ𝜏) . (35)

(b) Otherwise: No critical reactions fire. Advance 𝑄⃗ over Δ𝜏 with the non-critical reactions only:

𝑄⃗→ 𝑄⃗+
∑
𝑟∈𝑅⃗nc

 (𝑎𝑟,𝜏Δ𝜏) . (36)

An exception is made if 𝐴Δ𝜏 is smaller than some factor (we take 𝐴Δ𝜏 ≤ 1) since tau-leaping is inefficient in this limit. In 
this case we switch to SSA stepping using the whole reaction network, taking up to 𝑁SSA = 10 steps for a total integration 
time Δ𝜏′. Obviously, we restrict this integration to Δ𝜏′ ≤Δ𝜏 .

7. Check if 𝑄⃗ is a valid state:
(a) If any particle numbers in 𝑄⃗ are negative, reject the update. Let Δ𝜏nc →Δ𝜏nc∕2 and return to step 5.
(b) Otherwise, increment 𝜏 by Δ𝜏 , or by Δ𝜏′ if triggering use of the SSA in step 6(b).

8. If 𝜏 <Δ𝑡, return to step 1.

The above algorithm is a well-tested procedure which uses the SSA and tau-leaping algorithms in their respective limits. The 
factor 𝜖 determines the maximum permitted relative change in the propensities during one tau-leaping step, and therefore adjusts 
7

the accuracy and number of reactive substeps that the algorithm will take.
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Fig. 3. Comparison between the KMC algorithm and the RRE. a) Breakdown conditions with 𝐸 = 10 kV∕mm and a single starting electron. b) Sub-breakdown 
conditions with 𝐸 = 1.7 kV∕mm and five initial electrons.

3.2.4. Comparing reaction algorithms

To highlight the potential importance of reactive fluctuations, we compare the stochastic reaction algorithm with the RRE for 
a zero-dimensional test case that illustrates basic electron-neutral interactions in atmospheric pressure air. For simplicity we only 
consider electron impact ionization and attachment, i.e.

e +∅
𝑘𝛼
←←←←←←←←←←←→ e + e +∅, (37a)

e +∅
𝑘𝜂
←←←←←←←←←←→∅, (37b)

where the ionization and attachment rates are computed using BOLSIG+ (see section 5 for further details). The breakdown field is 
𝐸𝑏 ≈ 3 kV∕mm, and the exact solution to the RRE (equation (27)) is

𝑄e(𝑡) =𝑄e(0) exp
[(
𝑘𝛼 − 𝑘𝜂

)
𝑡
]
, (38)

where 𝑄e(0) is the number of starting electrons.
Fig. 3a) shows the results under breakdown conditions with an electric field 𝐸 = 10 kV∕mm and a single starting electron. We 

have advanced for 50 ps which from the RRE yields 4-5 electrons. This value is compared with the predictions of eight independent 
runs using the stochastic algorithm. The stochastic algorithm shows considerable variation in the final number of electrons, including 
one case where the initial electron attached.

Fig. 3b) shows a similar case for sub-breakdown conditions with an electric field 𝐸 = 1.7 kV∕mm and five initial electrons. In 
this case attachment processes dominate the evolution. We find that the hybrid algorithm eventually leads to attachment of all five 
initial electrons while the RRE yields a solution which only asymptotically decays to zero, i.e. it contains fractional electrons. This 
latter point is particularly pertinent to positive streamers in highly attaching gases (e.g., sulphur-hexafluoride). In a fluid model the 
seed electrons ahead of the streamer never completely attach and form negative ions. Rather, the asymptotic decay of the electron 
density means that a computational fraction of the electron is always available for further seeding the streamer, artificially reducing 
fluctuations at the streamer tip.

3.3. Model remarks

The Îto-KMC model presented above is a microscopic drift-diffusion model with stochastic chemistry, and in the above we have 
shown that it recovers the standard drift-diffusion-reaction fluid model in the coarse-grained deterministic limit. In principle, one can 
think of the Îto-KMC model as a non-kinetic PIC method that samples the macroscopic evolution using computational particles that 
represent average electrons. Our model rectifies some shortcomings of macroscopic drift-diffusion models, in particular those that 
pertain to numerical stability and efficiency, but also by maintaining a particle description in regions where the plasma is rarefied.

The Îto-KMC model is qualitatively similar to the model by Luque and Ebert [59], which is essentially a reaction-diffusion master 
equation (RDME) model supplemented with electron drift. The RDME model evolves the total number of particles in a cell using 
stochastic sampling of transfer rates. However, the Îto-KMC model has a few important distinctions. Firstly, we expand beyond pure 
tau-leaping for the plasma chemistry, with the primary benefits being guaranteed non-negativeness and adjustable accuracy. The 
same algorithm could be used in the Luque and Ebert [59] model. Secondly, the RDME model [59] does not generalize very well to 
the strong drift regime of streamers where negative transfer probabilities between grid cells can appear [59,61]. The Îto-KMC model 
resolves these issues, but the cost is the adoption of a microscopic model rather than a mesoscopic one.

We have not included any energy description for the electrons or ions. In fact, it is generally not clear if the model can be extended 
to include energy transport in such a way that one also recovers the fluid electron energy transport equation when coarse-graining 
8

the model. However, an excellent alternative is to combine Îto-KMC with a kinetic electron description. The Îto-KMC method is 
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Fig. 4. Classic cartoon of a cut-cell AMR grids with a solid boundary (shaded region). The coarsest grid covers a domain of 16 × 16 cells with two-levels of properly 
nested refined grids. Bold lines represent grid boundaries.

already a particle model and so the inclusion of kinetic electrons is possible, and is most likely algorithmically simpler than existing 
hybrid models based on fluid-particle couplings [62,63].

4. Computer implementation

In this section we present our implementation of the new PIC model on cut-cell Cartesian AMR grids. The equations of motion 
are the Îto-KMC-Poisson system

d𝑿𝑝 = 𝑽 𝑝d𝑡+
√

2𝐷𝑝d𝑡 𝑝, (39a)

𝑄⃗ (𝑡)
𝑅⃗
←←←←←←←←→ 𝑄⃗ (𝑡+ d𝑡) , (39b)

∇2Φ = − 𝜌

𝜖0
, (39c)

where equation (39c) is the Poisson equation for the electric field 𝑬 = −∇Φ where Φ is the electrostatic potential and 𝜌 is the space 
charge density. This model has been implemented into the chombo-discharge1 code, which we have used for streamer simulations in 
the past [26–28,64–66].

4.1. Spatial discretization

We discretize the equations over a Cartesian grid with patch-based AMR, see Fig. 4. With AMR, the equations of motion are solved 
over a hierarchy of grid levels 𝑙 ∈ 0, 1, … , 𝑙max. When refining a grid level, the resolution increases by a factor two, i.e. Δ𝑥𝑙+1 = Δ𝑥𝑙∕2. 
Each grid level consists of a union of properly nested rectangular grid boxes. That is, the valid region of levels 𝑙 − 1 and 𝑙 + 1 are 
separated by at least one grid cell on level 𝑙, and boxes are disjoint (non-overlapping) on each level. As in previous publications 
relating to non-equilibrium gas discharges [26–28,64–66] we use the Chombo [67] library for handling the AMR infrastructure. 
Algorithmic details that are not specific to the Îto-KMC model are found in references [26–28,64,67].

4.2. Charge deposition & interpolation

Deposition of particles and interpolation to the particle positions is done using a cloud-in-cell (CIC) scheme with Cartesian AMR. 
The mesh densities 𝑛 are given on cell centers 𝑛 

(
𝒙𝒊

)
= 𝑛𝒊 where 𝒊 is a multi-dimensional index and 𝒙𝒊 = 𝒊Δ𝑥. The mesh density is 

given by

𝑛𝒊 =
∑
𝑝∈R(𝒊)

(
𝑤𝑝

Δ𝑉𝒊

)
cic

(
𝒙𝒊 −𝑿𝑝

Δ𝑥

)
, (40)

where 𝑝 ∈ R(𝒊) indicates particles whose clouds extend into cell 𝒊, 𝑤𝑝 is the particle weight, Δ𝑉𝒊 is the volume of the grid cell and

cic (𝒙) =
𝑑∏
𝑠=1

𝑊cic(𝑥𝑠), (41)
9

1 https://github .com /chombo -discharge /chombo -discharge.

https://github.com/chombo-discharge/chombo-discharge
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Fig. 5. Refinement boundary deposition procedure at the coarse-fine interface between levels 𝑙 and 𝑙 + 1. Particles on level 𝑙 can deposit into level 𝑙 + 1; they retain 
their original particle shape. Particles on level 𝑙 + 1 can also deposit into level 𝑙; the deposition weight across the refinement boundary is added to the corresponding 
coarse-side grid cells.

𝑊cic(𝑥) =

{
1 − |𝑥|, |𝑥| < 1,
0, otherwise.

(42)

Deposition of particles near refinement boundaries are sketched in Fig. 5 and handled as follows: If the particle cloud for a particle 
at level 𝑙 + 1 hangs over the refinement boundary into the coarse level 𝑙, the deposition weight is added to the corresponding level 𝑙
cells and then normalized by the appropriate volume fraction. Particles that live on a coarse grid level 𝑙 but whose clouds hang into 
level 𝑙 + 1 have particle widths Δ𝑥𝑙 on level 𝑙, and for factor two refinements they may extend into the first strip of cells on level 
𝑙 + 1 (see Fig. 5). In order to ensure that this weight ends up in the correct cells on level 𝑙 + 1, these particles are also deposited on 
level 𝑙 + 1, but using the original particle width Δ𝑥𝑙. These particles thus have a width of 2Δ𝑥𝑙+1 and in 3D they can deposit into at 
most 9 grid cells on level 𝑙 + 1. Their deposition function on level 𝑙 + 1 is

𝑊 ′
cic(𝑥) =

⎧⎪⎨⎪⎩
1
2 , |𝑥| ≤ 1

2
1
2

(
3
2 − |𝑥|) , 1

2 < |𝑥| ≤ 3
2

0, otherwise.

(43)

4.3. Semi-implicit Euler-Maruyama method

The standard Euler-Maruyama method for equation (13) is

𝑿
𝑘+1
𝑝 =𝑿

𝑘
𝑝 +Δ𝑡𝑽 𝑘

𝑝 +
√

2𝐷𝑘
𝑝Δ𝑡 𝑝. (44)

Coupled to equation (39c), the discretization must be restricted by the dielectric relaxation time in order to be stable, i.e. Δ𝑡 ≤ 𝜎∕𝜖0
We remove this limitation by using a semi-implicit formulation as follows:

𝑿
𝑘+1
𝑝 =𝑿

𝑘
𝑝 +Δ𝑡𝑽 𝑘+1

𝑝 +
√

2𝐷𝑘
𝑝Δ𝑡 𝑝, (45)

where

𝑽
𝑘+1
𝑝 = sgn

(
𝑍𝑠
)
𝜇𝑘𝑝𝑬

𝑘+1
(
𝑿
𝑘
𝑝

)
(46)

and 𝑍𝑠 is the charge number for species 𝑠, and sgn is the sign operator. I.e., we have sgn
(
𝑍𝑠
)
= −1 for electrons and sgn

(
𝑍𝑠
)
= 1

for positive ions. We achieve this coupling by first solving the Poisson equation

∇ ⋅𝑬𝑘+1 = 𝜌𝑘+1

𝜖0
, (47)

which to first order in Δ𝑡 can be written

∇ ⋅𝑬𝑘+1 = 1
𝜖0
𝜌† − Δ𝑡

𝜖0
∇ ⋅ 𝑱 𝑘adv., (48)

where 𝑱 𝑘adv. is the advective current density and 𝜌† is the space charge density computed from the update

𝑿
†
𝑝 =𝑿

𝑘
𝑝 +
√

2𝐷𝑘
𝑝Δ𝑡 𝑝. (49)
10

For a species 𝑠 the advective current density at a grid point 𝒙𝒊 is
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𝑱
𝑠,𝑘

𝒊,adv.
= 𝑞e
||𝑍𝑠||∑

𝑝

𝜇𝑘𝑠𝑬
𝑘+1
(
𝑿
𝑘
𝑝

) (𝒙𝒊 −𝑿
𝑘
𝑝

)
. (50)

Expanding 𝑬𝑘+1
(
𝑿
𝑘
𝑝

)
as a polynomial around the grid point 𝒙𝒊 yields

𝑬
𝑘+1
(
𝑿
𝑘
𝑝

)
≈𝑬

𝑘+1
𝒊

−
(
𝒙𝒊 −𝑿

𝑘
𝑝

)
⋅∇𝑬𝑘+1

𝒊
+
((

𝒙𝒊 −𝑿
𝑘
𝑝

)2)
, (51)

where 𝑬𝒊 =𝑬(𝒙𝒊). Equation (50) yields

𝑱
𝑠,𝑘

𝒊,adv.
≈

[
𝑞e
||𝑍𝑠||∑

𝑝

𝜇𝑘𝑝
(
𝒙𝒊 −𝑿

𝑘
𝑝

)]
𝑬
𝑘+1
𝒊

−

[
𝑞e
||𝑍𝑠||∑

𝑝

𝜇𝑘𝑝
(
𝒙𝒊 −𝑿

𝑘
𝑝

)(
𝒙𝒊 −𝑿

𝑘
𝑝

)]
⋅∇𝑬𝑘+1

𝒊
, (52)

where the first term is the conventional Ohmic contribution that we recognize from semi-implicit formulations for fluid models [44]. 
The support of  is Δ𝑥, and so the second term scales as Δ𝑥 as well. When used together with equation (48) this term scales as 
 (Δ𝑥Δ𝑡) in the semi-implicit Poisson equation, and it also has a small error constant: The moments  (𝒙𝒊 −𝑿

𝑘
𝑝

)(
𝒙𝒊 −𝑿

𝑘
𝑝

)
are 

anti-symmetric in 𝑿𝑘
𝑝 with respect to the grid cell center 𝒙𝒊, so when particles distribute uniformly over a grid cell the summation 

yields the zero vector. This is, for example, the case in the discharge channels where there are many electrons per grid cell, whereas 
outside of the channel the current is negligibly small. Summing over all species 𝑠 to leading order yields

𝑱
𝑘
adv. =

(
𝑞e

∑
𝑠

||𝑍𝑠||𝜇𝑘𝑠 𝑛𝑘𝑠
)
𝑬
𝑘+1, (53)

where 𝜇𝑘𝑠 and 𝑛𝑘𝑠 are mesh variables for species 𝑠 (we have suppressed the index 𝒊). Thus, ignoring higher-order moments, equa-
tion (48) can be written in the familiar form [44]

∇ ⋅
[(

1 + 𝜎𝑘Δ𝑡
𝜖0

)
𝑬
𝑘+1
]
= 1
𝜖0
𝜌†, (54)

where

𝜎𝑘 = 𝑞e

∑
𝑠

||𝑍𝑠||𝜇𝑘𝑠 𝑛𝑘𝑠 (55)

is the conductivity of the plasma.
Equation (54) is discretized with finite volumes, using a standard 9-point stencil in the interior points (and flux matching at the 

coarse-fine interface). The embedded boundary fluxes are also constructed to second order, using additional interior points when 
evaluating the normal derivative on the cut-cell boundary centroids. The corresponding linear system is solved using geometric 
multigrid with V-cycling, using red-black Gauss-Seidel relaxation as the smoother on each grid level and a biconjugate gradient 
stabilized method (BiCGSTAB) as a bottom solver. A relative exit tolerance of 10−10 is used as a convergence criterion for multigrid. 
Further details regarding the finite volume discretization of the variable-coefficient Poisson equation and its embedding into geomet-
ric multigrid in the presence of embedded boundaries and Cartesian AMR are given in e.g. [67–70]. After obtaining the electric field 
𝑬
𝑘+1 we compute 𝑽 𝑘+1

𝑝 from equation (46) and complete the particle update (equation (45)).

4.4. KMC-particle coupling

The reaction algorithm solves for the total number of particles in a grid cell and leaves substantial freedom in how one assigns 
the chemistry products into new computational particles. Since we are concerned with methods that potentially use very large 
time steps, the creation of computational particles with physical weights 𝑤 = 1 is not possible due to the large number of physical 
particles generated in a time step. In this paper, if the reaction step led to net creation of particles we instead create at most 
𝑁new

ppc = 64 new computational particles in the cell. If the KMC solver gave 𝑁phys >𝑁
new
ppc physical particles in the cell, we construct 

𝑁new
ppc computational particles with weights

𝑤 =𝑁phys ÷𝑁new
ppc , (56)

where ÷ denotes integer division. The remainder mod (𝑁phys, 𝑁new
ppc ) is assigned to one of the new particles. These particles are later 

merged with the computational particles that already exist in the cell. If the KMC algorithm led to net loss of particles, we remove 
the weight directly from the existing computational particles.

Production of particles in cut-cells only takes place in the valid region of the cell. Particle positions 𝑿𝑝 are drawn from a uniform 
distribution in each coordinate direction with the requirement(

𝑿𝑝 − 𝒙𝑐

)
⋅ 𝒏̂𝑐 ≥ 0, (57)

where 𝒙𝑐 is the cut-cell boundary centroid and 𝒏̂𝑐 is the cut-cell boundary normal. Since cut-cell volume fractions can be arbitrarily 
small, we optimize this step by only drawing the position 𝑿𝑝 inside the minimum bounding box that encloses the valid region of the 
11

cut-cell.
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Fig. 6. Concept sketch of Cartesian 2D bounding volume hierarchy generation. Solid lines inside the cell indicate splitting lines (planes in 3D). From left to right: 
Original particles, two bounding volumes, four bounding volumes, and 16 bounding volumes.

4.5. Photon generation and transport

Photons are also treated with a particle method, and for simplicity we consider instantaneous transport where we don’t have to 
track the photons in time. As with the particles, the KMC algorithm provides the number of physical photons that is generated in the 
reaction step, which we limit to 𝑁new

ppc = 64 computational photons. Photon weights and emission positions are assigned in the same 
way as we do for the particles.

Photon absorption positions are determined individually for each (super-)photon. For example, assume that a photon has some 
frequency 𝑓 and is emitted from an initial position 𝒀 0

𝑓
. This photon is absorbed at position

𝒀 𝑓 = 𝒀
0
𝑓
+ 𝑟𝑓 𝒄̂, (58)

where 𝑟𝑓 is a random number drawn from an exponential distribution with parameter 𝜅(𝑓 ), and 𝒄̂ is a uniformly distributed random 
point on the unit sphere. Here, 𝜅(𝑓 ) is the mean absorption coefficient in the gas for a photon with frequency 𝑓 , i.e. 1∕𝜅(𝑓 ) is 
the mean absorption length. Since spectral absorption lines also have a spectral width, the mean absorption coefficient 𝜅(𝑓 ) is 
frequency dependent. When we sample the photon generation, we begin by sampling the spectral line by stochastically determining 
𝑓 according to some distribution. We then use a known expression for 𝜅(𝑓 ) for stochastically determining 𝑟𝑓 for each photon. 
Depending on the photoionization model that is used, one can sample multiple spectral lines [34] in combination [71] or individually 
[26]. Photoemission is disregarded in this paper, so if a photon trajectory intersects an internal boundary (e.g. an electrode) or a 
domain boundary, it is removed from the simulation.

4.6. Superparticle management

In order to maintain a manageable number of particles, only computational particles that represent many physical particles are 
tracked. Our particle merging and splitting strategy uses a bounding volume hierarchy with 𝑘-𝑑 trees for locating spatial clusters of 
particles, and particles are merged/split within each cluster. We use a standard tree structure which uses top-down construction, i.e. 
it is hierarchically built from the root node and downwards. However, the algorithm that we use for splitting a leaf node is new and 
it is therefore discussed in detail.

Initially, a leaf node 𝐿 contains a list 𝑃𝐿 of 𝑀 particles that are each identified by a tuple ⟨𝑿𝑝, 𝑤𝑝⟩, where 𝑤𝑝 is the particle 
weight. Then, 𝑃𝐿 is sorted based on one of the axis coordinates and split into two bounding volumes such that the total weight of 
the two halves differ by at most one physical particle. This process is shown in Fig. 6 and proceeds as follows:

1. Pick a splitting direction. We choose the coordinate direction where the minimum bounding box enclosing the particles has the 
largest extent.

2. Sort the particle list 𝑃𝐿 from smallest to largest coordinate in splitting direction.
3. Locate the median particle with index 𝑝′ in the list, where 𝑝′ > 1 is the smallest index satisfying

𝑝′−1∑
𝑝=1

𝑤𝑝 +𝑤𝑝′ >
𝑀∑

𝑝=𝑝′+1
𝑤𝑝. (59)

The index 𝑝′ indicates the position of the particle on the splitting plane, i.e. all particles 𝑝 < 𝑝′ are found on the left hand side of 
the splitting plane and all particles 𝑝 > 𝑝′ are found on the right-hand side.

4. Transfer particles 𝑝 ∈ [1, 𝑝′ − 1] to a new list 𝑃𝑙 in the left leaf node, and particles 𝑝 ∈ [𝑝′ + 1, 𝑀] to another list 𝑃𝑟 in the right 
leaf node.

5. Assign the median particle 𝑝′:
(a) If the median particle is a physical particle the particle is assigned to whichever child list (𝑃𝑙 or 𝑃𝑟) has the lowest total 
12

weight.
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Fig. 7. Particle merging example. a) Initial particles. b) Merged particles with 𝑁ppc = 64. The labels on the colorbar indicate particle weights 𝑤𝑝. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

(b) If the median particle is a superparticle, i.e. 𝑤𝑝′ ≥ 2, it is split into two new particles with the same position 𝑿𝑝′ but with 
new weights. Due to the median selection in equation (59), these weights can be constructed such that the weight of 𝑃𝑙 and 
𝑃𝑟 differ by at most one physical particle.

Because we merge particles by groups rather than in pairs [72], the process above only proceeds until we have 𝑁ppc leaves in the 
tree. Choosing the final number of computational particles to be a factor of two gives a balanced tree where all the leaves exist on 
the same tree level, and in this case the number of physical particles between any two arbitrary leaves in the tree differs by at most 
one. At the end of the tree-building algorithm each leaf node represents a bounding volume with a list 𝑃 of computational particles. 
The particles in this list become a new superparticle with weight and position

𝑤 =
∑
𝑝∈𝑃

𝑤𝑝 (60a)

𝑿 = 1
𝑤

∑
𝑝∈𝑃

𝑤𝑝𝑿𝑝. (60b)

Particle merging is done on a cell-by-cell basis in order to prevent creation of particles that lie inside the embedded boundary. The 
algorithm also handles splitting of superparticles. If a cell contains a single particle with a large weight then step (v) in the above 
algorithm ensures that this particle is hierarchically split until we have created 𝑁ppc new particles.

Fig. 7 shows an example of merging 1000 initial particles whose positions are uniformly distributed within a cut-cell and whose 
weights are uniformly distributed on the interval 𝑤𝑝 ∈ [1, 100]. These particles are merged into 𝑁ppc = 64 particles, and as expected 
the final particle weights differ by at most one.

4.7. Final algorithm

The final algorithm for integration over a time step Δ𝑡 is as follows:

1. Compute the conductivity 𝜎𝑘.
2. Perform the diffusive advance:

𝑿
†
𝑝 =𝑿

𝑘
𝑝 +
√

2𝐷𝑘
𝑝Δ𝑡 𝑝.

3. Compute the space charge density 𝜌† = 𝜌 
(
𝑿

†
𝑝

)
and solve for 𝑬𝑘+1 using equation (54).

4. Interpolate particle velocities 𝑽 𝑘+1
𝑝 = 𝒗

[
𝑬
𝑘+1
(
𝑿
𝑘
𝑝

)]
.

5. Advect particles 𝑿𝑘+1
𝑝 =𝑿

†
𝑝 + 𝑽

𝑘+1
𝑝 Δ𝑡.

6. Move photons 𝒀 = 𝒀 0 + 𝑟𝜅 𝒄̂ using equation (58).
7. Advance the reaction network over Δ𝑡, see section 3.2 and section 4.4.
8. Manage superparticles, section 4.6.

Conceptually, the above algorithm uses a Godunov splitting between particle transport (steps 1 through 5) and plasma chemistry 
(step 7). The particle transport step is a first-order accurate semi-implicit discretization, and the plasma chemistry is solved with a 
13

stochastic reaction algorithm with adjustable accuracy through the factor 𝜖 (section 3.2). Setting 𝜖 =∞ will accept any tau-leaping 
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Fig. 8. Example of dual mesh load balancing for different kernels. Each colored square represents a grid patch (of e.g. 163 cells). The MPI rank ownership is indicated 
by numbers inscribed in each square. a) Example MPI rank assignment and load distribution for kernels whose load scale with the number of grid points. b) Example 
MPI rank assignment and load distribution for kernels that scale with the number of particles.

step, i.e. the chemistry is resolved with a time step Δ𝑡. On the other hand, setting 0 < 𝜖 ≪ 1 yields a highly accurate chemistry 
algorithm which may potentially take many substeps within Δ𝑡. But if high order chemistry is used together with a large splitting 
step Δ𝑡, the overall stability of the algorithm can deteriorate. The reason for this is that when transport and field updates are 
performed rarely but the chemistry integration is highly accurate, the number of free electrons that are generated in a grid cell 
is overestimated. This issue is not unique for Îto-KMC but also occurs for deterministic fluid models when using operator splitting 
methods with large splitting steps. Since we use fixed time steps in this paper, we therefore resolve the transport and chemistry with 
the same time step, i.e. we use 𝜖 =∞, and rely on the SSA steps primarily to avoid negative particle numbers. In the future, we will 
be extending our methodology to dynamic time stepping (either CFL or physics based), at which point we will be able to leverage 
the adjustable accuracy features in the KMC integrator.

4.8. Parallelization

Our computer implementation is parallelized with flat MPI, using the natural domain decomposition offered by the AMR grids 
where each MPI rank solves for a subset of the grids on each level. The simulations are performed away from the strong scaling limit, 
which left room for load balancing our application.

The field and particle updates have different computational metrics. A reasonable proxy for the computational load of the dis-
cretized Poisson equation is the number of grid cells in a grid patch, while for the particles the load is better estimated by the 
number of particles that are assigned to the patch. We have load balanced our simulations with dual grids. In this approach we use 
two sets of AMR grids where the grid levels consist of the same grid patches, but where the assignment of grid subsets among the 
MPI ranks differ, see Fig. 8. One AMR grid set is load balanced with the grid patch volume as a proxy for the computational load, 
and is used for grid kernels that scale with the number of grid points, e.g. the discretized Poisson equation or advancing the reaction 
network. On the other grid, we advance kernels that scale with the number of grid particles, i.e. transport kernels, mesh deposition 
and interpolation, and superparticle handling. The dual grid approach adds some computational complexity, but these drawbacks 
were offset by reductions in simulation times which were up to 40%.

5. Numerical tests

5.1. Simulation conditions

We consider a 10 cm3 computational domain with a vertical needle-plane gap. A cross section of the computational domain and 
the boundary conditions is shown schematically in Fig. 9. A 5 cm long cylindrical electrode with a spherical cap at the end sticks out 
of the live electrode plane, and the opposite plane is grounded. The electrode diameter is 1 mm and the vertical distance between 
the live electrode and the ground plane is 5 cm. Homogeneous Neumann boundary conditions are used for the Poisson equation on 
the side faces, and all simulations start from a step voltage of 20 kV. The peak initial electric field magnitude is roughly 11 kV∕mm
on the anode tip. All simulations use a coarsest AMR level of 1283 cells, but use up to another eight levels of refinement, i.e. up to 
effective domains of 32 7683 cells.

We use a three-species model for discharges in air, consisting of electrons, positive ions, and negative ions. The plasma kinetics 
that we use is summarized in Table 1. We focus on using a simple and well-known reaction set for our example simulations. Using 
more elaborate plasma chemistry is possible, but not required for our simulation examples. The electron diffusion coefficient 𝐷e, 
mobility 𝜇e, temperature 𝑇e, ionization frequency 𝑘𝛼 , and attachment frequency 𝑘𝜂 are field-dependent and are computed by using 
BOLSIG+ [52] and the SIGLO database [53]. The electron-ion and ion-ion recombination rates are

𝑘ep = 𝛽ep∕Δ𝑉 , (61)

𝑘np = 𝛽np∕Δ𝑉 , (62)
14

where Δ𝑉 is the grid cell volume and
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Fig. 9. Cross-section of the simulation domain, also showing the electrostatic boundary conditions. The dimensions are not to scale.

Table 1

Simplified air plasma chemistry used for the example simula-
tions. The notation ∅ indicates an untracked species (e.g., N2

or O2) incorporated directly into the rate constant for the reac-
tion.

Reaction Rate Propensity Ref.

e+∅→ e + e+ M+ 𝑘𝛼 (𝐸) 𝑘𝛼𝑄e [52]

e+∅→ M− 𝑘𝜂 (𝐸) 𝑘𝜂𝑄e(𝐸) [52]

e+ M+ →∅ 𝑘ep(𝐸) 𝑘ep𝑄e𝑄M+ [73]

M− +M+ →∅ 𝑘np 𝑘np𝑄M+𝑄M− [74]

e+∅→ e + 𝛾 +∅ 𝑘𝛾 (𝐸) 𝑘𝛾𝑄e [75,76]

𝛽ep = 1.138 × 10−11𝑇 −0.7
e m3∕s, (63)

𝛽np = 2 × 10−13 (300∕𝑇 )0.5 m3∕s, (64)

where 𝑇 = 300 K is the gas temperature and 𝑇e = 𝑇e(𝐸) is the electron temperature.
We use the Zheleznyak photoionization model [75] including the corrections by Pancheshnyi [76] for modeling photon transport 

for the reaction e +∅ 
𝑘𝛾
←←←←←←←←←←→ e + 𝛾 +∅. The rate constant is

𝑘𝛾 =
𝑝𝑞

𝑝+ 𝑝𝑞
𝜈𝑍 (𝐸)𝑘𝛼, (65)

where 𝜈𝑍 (𝐸) is a lumped function that accounts for excitation efficiencies and photoionization probabilities [76]. The quenching 
pressure is 𝑝𝑞 = 40 mbar and the gas pressure is 𝑝 = 1 bar. When a photon is generated within the reaction step we draw a random 
absorption coefficient as

𝜅𝑓 =𝐾1

(
𝐾2
𝐾1

) 𝑓−𝑓1
𝑓2−𝑓1

, (66)

where 𝐾1 = 530 m−1, 𝐾2 = 3 × 104 m−1, 𝑓1 = 2.925 PHz, 𝑓2 = 3.059 PHz, and 𝑓 is a random number sampled from a uniform 
distribution on the interval [𝑓1, 𝑓2]. The propagation distance of each photon is then determined by drawing a random number from 
an exponential distribution with parameter 𝜅𝑓 .

All simulations start by drawing 104 initial electron-ion pairs uniformly distributed in a sphere with a 500 μm radius centered at 
the needle tip. Electron-ion pairs whose positions end up inside the electrode are removed before the simulation starts.

In the computer simulations we refine cells on level 𝑙 if
15

𝛼Δ𝑥𝑙 ≥ 1, (67)
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Fig. 10. Comparison of the field distribution and electron density in the hydrodynamic and Îto-KMC descriptions. Left: Field magnitude. Right: Electron density.

and coarsen if

𝛼Δ𝑥𝑙 ≤ 0.2, (68)

where Δ𝑥𝑙 is the grid spacing on level 𝑙 and 𝛼 is the Townsend ionization coefficient.

5.2. Comparison with hydrodynamics

In this section we present a comparison between the Îto-KMC model and an equivalent drift-diffusion-reaction model based on 
deterministic hydrodynamics (equation (18) without the stochastic term), using the same photoionization model and transport data. 
Since we use cut-cell Cartesian AMR grids, the discretization of the fluid model is bit involved, and is therefore not discussed in 
detail here. For the fluid transport equation we follow the discretization that we used in [26]. There, we used a Godunov splitting 
between plasma transport and reactions, and employed a CTU scheme [48] that also include transverse slopes in the advective term, 
permitting a softer CFL constraint as discussed in Sec. 2. Here, the only major difference between that discretization and the current 
one is that we here use explicit diffusion and a semi-implicit coupling to the electric field.

Because both the Îto-KMC model and the fluid model are both stochastic, the latter due to discrete photoionization, the two 
models are compared in terms of ensemble averages where we quantitatively compare the average of ten computer simulations for 
each model. To initialize the fluid model we include draw particles from same particle distribution as for the Îto-KMC model and 
deposit them as a density using a nearest-grid-point scheme when the simulation begins. In the Cartesian 2D comparison we have also 
raised the potential on the electrode to 80 kV in order to facilitate propagation of the streamer. The Cartesian 2D version is included 
because fluctuations are reduced which leads to a single streamer, and the models can then be both qualitatively and quantitatively 
compared.

We compare the two models in 2D planar coordinates, using fixed time steps of Δ𝑡 = 2.5 ps for a total integration time of 
𝑡 = 10 ns. The field magnitude and electron density after 10 ns are shown in Fig. 10. We find that the two solutions are qualitatively 
very similar. Figs. 11a) and b) show the temporal evolution of the maximal electric field and the streamer propagation distance for 
the simulations. The streamer head position is here defined as the position where the electric field is at its maximum. Note that the 
data shows the average of many computer simulations, with error bars indicating standard deviations. Figs. 11c) and d) show the 
electron density and electric field measured along the streamer axis after 𝑡 = 10 ns.

Quantitatively, only minor differences are found between the two models: For example, the largest difference between the maxi-
mum electric field in the two models is about 4%, while the average streamer velocities agree to within 0.01 mm∕ns.

5.3. Discrete particle noise

To determine if particle noise impacts the simulations, we consider three-dimensional numerical solutions obtained using a 
varying number of 𝑁ppc but fixed Δ𝑥 and Δ𝑡. Note that if there are 𝑁phys physical particles in a cell that are represented by 
16

𝑁ppc computational particles, then the computational particles have on average weights 𝑤 =𝑁phys∕𝑁ppc. Particle fluctuations (i.e., 
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Fig. 11. Quantitative comparison between the fluid and Îto-KMC model for ensembles of 10 simulations (per model). Lines and points indicate average values and 
error bars indicate standard deviations. a) Maximum field in the streamer head. b) Streamer head position (distance from electrode). c) Ensemble-averaged electron 
density in the streamer channel. d) Ensemble-averaged electric field in the streamer channel.

discrete particle noise) therefore increase by a factor of 
√
𝑤 compared to their physical level. We select Δ𝑥 ≈ 12 μm and Δ𝑡 =

20 ps and integrate for 5 ns. The same initial particles are used in these tests. Fig. 12 shows the resulting electron density in 
the neighborhood of the electrode using between 8 and 256 computational particles per cell (per species). There is no apparent 
disagreement or numerical artifacts for these simulations, which suggests that even 𝑁ppc = 16 is sufficiently accurate for these 
particular simulations. Similar results were obtained by Teunissen and Ebert [31]. This finding can not be extrapolated to coarser 
grids because if we keep 𝑁ppc fixed and reduce Δ𝑥 by a factor of two, the average particle weights increase by a factor of 8. It also 
warrants mention that there is no particle noise in the KMC algorithm itself, as it operates with the number of physical particles. 
However, elevated particle noise still arises due to transport and splitting/merging of superparticles.

5.4. Grid sensitivity

In this section we perform a grid sensitivity study by varying the spatial and temporal resolutions. We set 𝑁ppc = 32 and consider 
temporal resolutions ranging from 5 ps to 80 ps, and spatial resolutions ranging from 3 μm to 195 μm, and integrate for 50 ns. Fig. 13
shows the final state for the 35 different simulations, and we make several observations:

1. Simulations are stable for all time steps, also when the time step is orders of magnitude larger than the dielectric relaxation 
time. For the simulations with Δ𝑡 = 80 ps and Δ𝑥 ≈ 3 μm the time step is equivalent to using an advective CFL number of > 30.

2. Bounded solutions are obtained for all spatial resolutions, i.e. we do not have 𝑛e →∞ or 𝐸 →∞ for any Δ𝑥 we investigate. 
Here, the spatial resolutions range from moderately fine to extremely coarse. From experience with fluid simulations [26–28]
we have found that instabilities can occur for branching streamers, particularly if some of the branches become stagnant.

3. Numerical branching occurs on too coarse grids, which can be seen on the column Δ𝑡 = 80 ps where the streamer initially splits 
into four branches, but these four initial branches disappear on finer grids. Similar phenomena are seen on the row Δ𝑥 ≈ 24 μm
where we find small protrusion needles for Δ𝑡 ≤ 20 ps, and similarly for Δ𝑥 ≈ 12 μm for Δ𝑡 ≤ 10 ps. We believe that these 
branches appear due to spatial underresolution since for Δ𝑥 ≈ 12 μm we only have about 5-10 grid cells for resolving the cross 
section of the streamers with the smallest radii.

4. The degree of branching decreases when larger time steps are used, which is particularly evident for the row Δ𝑥 ≈ 3 μm. This can 
be understood in terms of the photoionization-induced noise ahead of the streamer. Bagheri and Teunissen [25] and Marskar 
[26] have shown that the branching behavior depends on the amount of photoionization ahead of the streamer. Increasing 
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the amount of photoionization reduces noise in the plasma density ahead of the streamer, which also reduces the amount of 
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Fig. 12. Electron density in the neighborhood of the rod electrode computed using various thresholds for the maximum number of computational particles, indicated 
in each frame by 𝑁ppc.

branching. As larger time steps are used there are more photoelectrons generated during time steps, which artificially suppresses 
fine-grained temporal variations in the plasma density ahead of the streamer.

5. The velocity of the streamers increase with increasing temporal resolution. There are at least two reasons for this:
(a) The number of electrons in the ionization zone in the streamer grows exponentially, and larger time steps lead to numerical 

underestimation of the electron impact ionization in the streamer tip.
(b) When large time steps are used the electrons in the reaction zones at the tip of the streamers can be moved completely out 

of it. For example, the simulation with Δ𝑥 ≈ 3 μm and Δ𝑡 = 80 ps used an effective CFL number of > 30. The reaction zone 
is just a few grid cells thick, and moving the electrons too far out of the reaction zone reduces the amount of ionization in 
it, and thus also velocity of the streamer.

6. The velocities of the streamers increase slightly when the resolution increases, which we can see on the column Δ𝑡 = 10 ps. We 
believe this occurs because coarse grids lead to under-resolution of the electric field ahead of the streamer. For coarser Δ𝑥 the 
electric field on the tips is therefore lower, and this reduces the amount of ionization.

7. Streamer radii agree with experimental observations only on the fine grids (Δ𝑥 ≲ 6 μm). Briels et al. [77] have measured streamer 
diameters in atmospheric air and found that diameters range from 100 μm to 3 mm, depending on experimental conditions like 
applied voltage, gap inhomogeneity, and various other factors. However, for Δ𝑥 = 97 μm to 195 μm we only find streamers with 
radii 𝑅 ∼ 1 mm. On finer grids streamers with smaller radii also emerge. E.g. for Δ𝑥 ≈ 3 μm we find streamer radii ranging from 
100 μm to 1 mm, which agree with experimental observations.

8. The electric field at the streamer tips vary by streamer radius. On the finest grid Δ𝑥 ∼ 3 μm we find 𝐸 ∼ 25 kV∕mm to 30 kV∕mm
for filaments with radii on the order of 𝑅 ∼ 50 μm to 150 μm. This is in agreement with fluid simulations of positive streamers 
[26] as well as analytical estimates [78]. On grids Δ𝑥 ≥ 24 μm we find that the electric field strength at the streamer tips is 
𝐸 ≲ 10 kV∕mm, but these solutions are quite clearly underresolved and thus have no practical relevance.

In summary, we find that the grid resolution should be Δ𝑥 ≤ 6 μm, which is about the same requirement as in fluid models [26]. 
The time step should be Δ𝑡 ≤ 10 ps, which at Δ𝑥 ≈ 6 μm is about a factor of 5 larger than that permitted through a conventional CFL 
condition like equation (7), as shown in Fig. 2. We also point out that the Îto-KMC method can maintain this time step even for finer 
grids, which is not possible for explicit fluid codes. Although Îto-KMC is quite forgiving for larger time steps, it is clear from Fig. 13
that lack of temporal resolution leads to suppression of several morphological features in the discharge, while underresolved grids 
lead to numerical branching. Also note that the fastest time scales in the Îto-KMC method are the same as in fluid methods, which for 
the reaction set in Table 1 is the electron ionization impact frequency 𝛼𝜇e𝐸. We have not been able to run numerical convergence 
tests due to the stochastic component that is involved, which would require ensemble studies at high spatial and temporal resolutions. 
We nonetheless observe that the solutions convergence to physically meaningful solutions with streamer diameters and velocities 
that quantitatively agree with experimental observations [77]. Section 5.3 showed that discrete particle noise had a comparatively 
low qualitative impact on the simulations, so the artificial branching for Δ𝑥 ≳ 12 μm is probably mesh-based. This finding can not 
18

be automatically extrapolated to different pressure due to very different plasma densities. For example, in our simulations with 
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Fig. 13. Simulation outputs after integrating for 50 ns. The rod diameter is 1 mm and the spatial scale is otherwise indicate in the top left and bottom right frames. 
Along the first column we include the effective number of grid cells along the indicated spatial direction.

𝑛e ≈ 1018∕m3, Δ𝑥 ≈ 10 μm and 𝑁ppc = 64, particles have an average weight 𝑤 ≈ 15.6 in the streamer head. But in sprite discharges 
one may have 𝑛e ≈ 1010∕m3 and Δ𝑥 ≈ 1 m, so 𝑁ppc = 64 yields particle weights 𝑤 ≈ 1.56 × 108. Discrete particle noise is therefore 
much higher for sprites than for atmospheric pressure streamers.

5.5. Positive streamer evolution

We now run the simulation with Δ𝑥 ≈ 6 μm and Δ𝑡 = 10 ps, using 𝑁ppc = 64 particles per cell until 𝑡 = 150 ns. This simulation 
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case is probably not completely grid converged, which we can see from the fact that the discharge tree in Fig. 13 for Δ𝑥 = 6 μm and 
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Fig. 14. Snapshots of the electron density at various time instants. The circle shown in panels with 𝑡 ≥ 90 ns indicates one of the stagnant streamer branches.

Δ𝑡 = 5 ps is approximately 25% faster. Part of this difference can also be due to a natural variation in the front velocity, depending 
on how the discharge tree develops. Since we only ran a single simulation per spatial and temporal resolution, we do not know the 
size of these deviations. Comparing with the panel Δ𝑥 = 3 μm and Δ𝑡 = 5 ps in the same figure, we find that we are probably also 
missing some fine-scale features in the discharge tree as well. Ideally, this is the simulation that we would have run further, but the 
case Δ𝑥 = 6 μm, Δ𝑡 = 10 ps was the largest case we could fit in our current compute quota.

The simulation case is nonetheless quite challenging. Positive streamers in air have smaller radii and branch more frequently than 
negative ones, and the branching behavior is also voltage-dependent as positive streamers in air branch more frequently at lower 
background fields. In our case the average background electric field measured along the symmetry axis is just 0.4 kV∕mm, which 
is below the so-called positive streamer stability field of ∼ 0.5 kV∕mm. Under these conditions, experiments show that repeated 
branching leads to development of a discharge tree consisting of multiple small-diameter positive streamers [77]. Streamers may 
also stagnate, which has been identified as a challenge for fluid models [26,46,47,51].

Fig. 14 shows temporal snapshots of the positive streamer evolution every ten nanoseconds until 𝑡 = 150 ns. We have not (yet) 
been able to skeletonize the discharge structure for quantitative analysis, but from the figure(s) we extract the following information:

• The streamer radii vary between ∼ 1 mm and ∼ 100 μm. The thicker streamers appear closest to the anode, and as they propagate 
they branch into thinner filaments.

• In addition to propagating towards to the ground plane, electrostatic repulsion between the filaments yields numerous sideways 
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branches, which determines the radius of the tree.
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Fig. 15. Different views of the positive streamer after 𝑡 = 150 ns. a) Side view. b) Looking into the streamer from below.

• The front velocity is on average 0.2 mm∕ns, and is defined by the velocity of the front streamers.
• The total length of the discharge tree at 𝑡 = 150 ns is approximately 3 cm and its radius is approximately 1.5 cm.
• Many streamer filaments stop propagating after some distance, but do not lead to unbounded growth in the plasma density. We 

have indicated one of these branches in Fig. 14, but many more can be identified.

Fig. 15 shows the discharge at 𝑡 = 150 ns from additional perspectives. This data corresponds to the bottom-right panel in Fig. 14. 
As an amendment to Fig. 14 and Fig. 15, we have added an animation of the corresponding data to the supplemental material in this 
article.

In the simulations we do not observe streamer merging, which can occur if two streamer heads are sufficiently close in space 
and there is sufficient photoionization between them [79]. Although streamer merging is fundamentally possible under very specific 
conditions, the prerequisites for it to occur are obviously not present in our simulations. Streamer reconnection [80] is not observed 
in the simulations either. Reconnection occurs when a streamer connects into the wake of another streamer, and is thus a different 
phenomenon from streamer merging where two streamer heads merge directly. We have observed streamer reconnection in other 
3D fluid simulations when one of the streamer filaments reach the ground plane and acts as a virtual ground for the other streamers. 
Further details regarding this finding will be reported elsewhere.

The simulation results presented here clearly can not be understood from axisymmetric simulations. Many axisymmetric studies of 
streamer discharges have been reported in the last decades, but these only show the emergence of a single filament and therefore have 
a limited range of applicability. The radius and velocity of the streamer then tend to increase with streamer length [38] (depending 
on the field conditions), but experiments generally show repeated branching into thinner filaments [77]. Because thinner streamers 
propagate slower than thicker streamers, it is reasonable to expect that repeated branching lowers the front velocity. It is obvious 
that the front velocity of the tree is determined by the velocity of the front streamers, but we point out that these streamers are also 
influenced by fields set up by neighboring branches. The dynamics of such streamers and corresponding single-filament streamers 
with the same radii are therefore not necessarily the same.

In our simulations the streamers branch into small-diameter streamers, and the most relevant parametric 2D studies are the 
ones pertaining to so-called minimal streamers. Such streamers have the smallest experimentally observed radius, do not branch, 
but still propagate over comparatively long distances. In order to compare our front velocity with that of single streamers, we 
consider the case in Li et al. [51] who presented a computational analysis of steady and stagnating positive streamers in air. The 
reported velocities in [51] varied from 0.25 mm∕ns to 1.25 mm∕ns when the streamer radii varied from 25 μm to 125 μm, and 
the corresponding electric field at the streamer tip varied from 220 kV∕cm to 150 kV∕cm. In our simulations we observe the same 
emerging radii and velocities, while the electric field is slightly higher at approximately ∼ 250 kV∕cm to ∼ 280 kV∕cm. We do not 
know the source of this discrepancy, but it could be due to the slightly larger numerical resolution used in our simulations. Another 
factor could be that Li et al. [51] use a correction to the 𝛼-coefficient while we do not. Both of these factors can facilitate small-scale 
features with higher fields. Regardless of these finer points, the streamer radii, velocities, and fields that emerge in our simulations 
are consistent with the parametric study in Li et al. [51].

5.6. Computational characteristics

We now present some of the computational characteristics for the simulation in section 5.5. The simulation was run on 32 nodes 
on the Norwegian supercomputer Betzy, and ran to completion in about 4 days. Each node on Betzy consists of two AMD Epyc 
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7742 CPUs for a total of 128 cores per node, so we used 4096 CPU cores in total. When we terminated the simulation it consisted 
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Fig. 16. Computational characteristics, showing the time (in seconds) spent in various computational kernels.

of approximately 500 million grid cells and 1010 computational particles, so there were approximately 15.6 million grid cells and 
312.5 million particles per node. Although our simulations are firmly footed in the realm of high-performance computing, they do 
not represent a large burden for modern supercomputers (which currently can have more than one million CPU cores).

Fig. 16 shows a breakdown of the kernel costs for the time step at 𝑡 = 150 ns, showing the wall clock time spent in various 
computational routines. This particular time step took around 26 s, but time steps varied down to around 1 s at the very beginning of 
the simulation. Radiation transport for our simulations has a negligible cost, but this would not be the case e.g. for sprite simulations 
where many more physical photons are generated per cell. The KMC algorithm has a cost of about 5% to 10%, whereas setting up and 
solving the Poisson equation had a relative cost of approximately 35%. Particle-related routines like superparticle handling, particle-
mesh operations, transport, and spatial binning of particles had an accumulated cost of around 50%. There was also significant load 
imbalance for the super-particle handling since we load-balanced using the number of particles. This distributed the load along the 
streamer channels, but did not account for particle merging/splitting which mainly occurred in the streamer head.

Regridding the solution had about the same cost as 1-2 time steps, which was done every ten time steps. The majority of the 
regrid cost comes from 1) recomputing cut-cell stencils and re-solving the Poisson equation on the new grids, and 2) redistributing 
particles on the new grids. Particle redistribution is, unfortunately, quite expensive since virtually all computational particles change 
MPI rank ownership during regrids.

Two forms of I/O were used in the simulations: Plot files and checkpoint files. Plot files contained data for analysis and ranged 
up to 160 GB per file. Checkpoint files contained data for restarting simulations, e.g. in case of hardware failures or for allocating 
more nodes as the simulation mesh grows. These ranged up to 360 GB per file. Plot and checkpoint files took about two minutes to 
write, and were written every 100th time step.

6. Conclusions and outlook

6.1. Main findings

We have presented the foundation of a new type of model for streamer discharges based on a microscopic drift-diffusion model 
with a Kinetic Monte Carlo solver for the plasma chemistry. A thematic discussion on the role of Îto-KMC and its connection to 
conventional fluid models was presented. The model was coupled to photoionization with Monte-Carlo radiative transport, and 
a particle merging and splitting algorithm was presented. Suitable algorithms for integrating the equations of motion were then 
presented. These algorithms were implemented in 2D and 3D and adapted to cut-cell Cartesian AMR grids. We then implemented 
an example model for streamer discharges in air in needle-plane gaps, and showed that the Îto-KMC model agrees qualitatively and 
quantitatively with conventional fluid models. Example simulations that demonstrate the output and stability of the Îto-KMC model 
were then provided. The simulations presented in this paper demonstrate the feasibility of simulating discharge trees containing 
many streamer branches.

There are some advantages to using the new model, which are listed below:

• The model takes the same input as a fluid model, e.g. mobility and diffusion coefficients, and reaction rates.
• It is inherently a PIC model and maintains particle discreteness.
• Îto-KMC incorporates both reactive and diffusive fluctuations.
• The model is exceptionally stable in both space and time, even on very coarse grids and for large time steps. The absence of a 
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CFL condition is particularly liberating.
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We conjecture that the Îto-KMC method will be suitable for hybrid modeling [62,63] where some of the electrons are treated 
kinetically. Unlike hybrid models based on a fluid description, transfer of electrons between Îto-KMC and PIC-MCC descriptions can 
be done without disturbing the original charge distribution.

6.2. Future work

In this paper our focus has been on an all-discrete approach where also the ions are treated using Îto diffusion. Future works will 
benefit from a mixed description where the electrons are treated using Îto diffusion while (some of) the heavy species are treated 
using a continuum model. This can substantially reduce the computational load when more species of ions are tracked. However, 
the relative cost of the Poisson solver is already quite high, and even with this improvement the Poisson equation will remain a 
computational bottleneck.

As the Îto-KMC is highly stable, higher order algorithms become particularly attractive. In the absence of solid boundaries, fourth 
order deposition and interpolation methods exist [81], but these techniques have not been extended to cases where embedded 
boundaries are involved. For the Poisson equation, fourth order discretizations that include embedded boundary formulations have 
been reported [82]. In time, only second-order convergence can be expected in the context of splitting methods and, furthermore, 
higher-order integration for particle transport is a significant challenge due to the presence of the Wiener process. Suppressing 
numerical streamer branches for coarse-grid simulations is also desirable. Moving forward, we will explore strategies for suppressing 
these by filtering the solutions [83].

The KMC-particle reactive coupling used in this paper adds some numerical diffusion into the system. Here, the algorithm is set 
up to uniformly distribute reactive products over a grid cell, and so it will end up placing secondary electrons in the wake of primary 
electrons. This can become a source of numerical instability quite similar to the one seen in fluid simulations, but fortunately we have 
not (yet) observed these types of instabilities in our simulations. Regardless, future efforts may benefit from reducing this source of 
numerical diffusion by introducing sub-grid models for the KMC-particle coupling.

We expect that 3D streamer simulations will become increasingly more sophisticated in the future. In parallel with this de-
velopment, there is an emergent need for improving the tools that we use for analyzing such simulations. While two-dimensional 
simulations are relatively straightforward to analyze, 3D discharge trees are much more complex. Quantitative analysis requires us 
to skeletonize the discharge trees in full 3D for extraction of branching ratios and angles, filament lengths, velocities, and so on. In 
the future, we will also focus on establishing such analysis procedures.

CRediT authorship contribution statement

Robert Marskar: Conceptualization, Methodology, Formal analysis, Software, Investigation, Writing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Code availability statement

The computer code that was used to perform the calculations in this paper is publically available at https://github .com /chombo -
discharge /chombo -discharge. Input scripts are available upon reasonable request.

Data availability

Data will be made available on request.

Acknowledgements

This study was partially supported by funding from the Research Council of Norway through grants 319930 and 321449. The com-
putations were performed on resources provided by UNINETT Sigma2 - the National Infrastructure for High Performance Computing 
and Data Storage in Norway. The author expresses his gratitude to Fanny Skirbekk for providing the images used in Fig. 1.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2024 .112858.

References

[1] S. Nijdam, J. Teunissen, U. Ebert, Plasma Sources Sci. Technol. (2020), https://doi .org /10 .1088 /1361 -6595 /abaa05.
23

[2] V.P. Pasko, U.S. Inan, T.F. Bell, Geophys. Res. Lett. 25 (1998) 2123, https://doi .org /10 .1029 /98GL01242.

https://github.com/chombo-discharge/chombo-discharge
https://github.com/chombo-discharge/chombo-discharge
https://doi.org/10.1016/j.jcp.2024.112858
https://doi.org/10.1088/1361-6595/abaa05
https://doi.org/10.1029/98GL01242


Journal of Computational Physics 504 (2024) 112858R. Marskar

[3] H.C. Stenbae-Nielsen, D.R. Moudry, E.M. Wescott, D.D. Sentman, F.T.S. Sabbas, Geophys. Res. Lett. 27 (2000) 3829.
[4] R.A. Marshall, U.S. Inan, Radio Sci. 41 (2006), https://doi .org /10 .1029 /2005RS003353.
[5] U. Ebert, S. Nijdam, C. Li, A. Luque, T. Briels, E. van Veldhuizen, J. Geophys. Res. Space Phys. 115 (2010), https://doi .org /10 .1029 /2009ja014867.
[6] K.V. Laer, A. Bogaerts, Plasma Sources Sci. Technol. 25 (2015), https://doi .org /10 .1088 /0963 -0252 /25 /1 /015002.
[7] Q.Z. Zhang, A. Bogaerts, Plasma Sources Sci. Technol. 27 (2018) 035009.
[8] W. Wang, H.H. Kim, K.V. Laer, A. Bogaerts, Chem. Eng. J. 334 (2018) 2467.
[9] K.V. Laer, A. Bogaerts, Energy Technol. 3 (2015) 1038.

[10] S.M. Starikovskaia, Plasma Assisted Ignition and Combustion, 2006.
[11] I.V. Adamovich, I. Choi, N. Jiang, J.H. Kim, S. Keshav, W.R. Lempert, E. Mintusov, M. Nishihara, M. Samimy, M. Uddi, Plasma Sources Sci. Technol. (2009), 

https://doi .org /10 .1088 /0963 -0252 /18 /3 /034018.
[12] N.L. Aleksandrov, S.V. Kindysheva, I.N. Kosarev, S.M. Starikovskaia, A.Y. Starikovskii, Proc. Combust. Inst. (2009), https://doi .org /10 .1016 /j .proci .2008 .06 .124.
[13] D. Breden, L.L. Raja, C.A. Idicheria, P.M. Najt, S. Mahadevan, J. Appl. Phys. 114 (2013), https://doi .org /10 .1063 /1 .4818319.
[14] S.M. Starikovskaia, Plasma-Assisted Ignition and Combustion: Nanosecond Discharges and Development of Kinetic Mechanisms, 2014.
[15] A. Starikovskiy, Physics and Chemistry of Plasma-Assisted Combustion, 2015.
[16] A. Abou-Ghazala, S. Katsuki, K.H. Schoenbach, F.C. Dobbs, K.R. Moreira, IEEE Trans. Plasma Sci. 30 (2002) 1449.
[17] J.S. Clements, A. Mizuno, W.C. Finney, R.H. Davis, IEEE Trans. Ind. Appl. 25 (1989) 62.
[18] J.S. Clements, M. Sato, R.H. Davis, IEEE Trans. Ind. Appl. IA-23 (1987) 224.
[19] G. Dinelli, L. Civitano, M. Rea, IEEE Trans. Ind. Appl. 26 (1990) 535.
[20] S.A. Nair, K. Yan, A.J. Pemen, G.J. Winands, F.M. van Gompel, H.E. van Leuken, E.J. van Heesch, K.J. Ptasinski, A.A. Drinkenburg, J. Electrost. 61 (2004) 117.
[21] D.R. Grymonpré, A.K. Sharma, W.C. Finney, B.R. Locke, Chem. Eng. J. 82 (2001) 189.
[22] M. Laroussi, Plasma 1 (2018) 47.
[23] U. Ebert, M. Arrayás, A. Rocco, W. Hundsdorfer, Spontaneous branching of negative streamers, in: IEEE Conference Proceedings, 2002, p. 148.
[24] M. Arrayás, U. Ebert, W. Hundsdorfer, Phys. Rev. Lett. 88 (2002) 1745021.
[25] B. Bagheri, J. Teunissen, Plasma Sources Sci. Technol. 28 (2019) 45013.
[26] R. Marskar, Plasma Sources Sci. Technol. (2020), https://doi .org /10 .1088 /1361 -6595 /ab87b6.
[27] R. Marskar, Plasma Res. Express 1 (2019) 015011.
[28] R. Marskar, J. Comput. Phys. 388 (2019) 624.
[29] J. Teunissen, U. Ebert, J. Phys. D, Appl. Phys. 50 (2017) 474001.
[30] B. Lin, C. Zhuang, Z. Cai, R. Zeng, W. Bao, J. Comput. Phys. (2020), https://doi .org /10 .1016 /j .jcp .2019 .109026.
[31] J. Teunissen, U. Ebert, Plasma Sources Sci. Technol. 25 (2016), https://doi .org /10 .1088 /0963 -0252 /25 /4 /044005.
[32] A. Fierro, J. Stephens, S. Beeson, J. Dickens, A. Neuber, Phys. Plasmas 23 (2016), https://doi .org /10 .1063 /1 .4939475.
[33] A. Fierro, C. Moore, B. Yee, M. Hopkins, Plasma Sources Sci. Technol. 27 (2018) 105008.
[34] J. Stephens, M. Abide, A. Fierro, A. Neuber, Plasma Sources Sci. Technol. 27 (2018), https://doi .org /10 .1088 /1361 -6595 /aacc91.
[35] C. Köhn, O. Chanrion, L.P. Babich, T. Neubert, Plasma Sources Sci. Technol. 27 (2018) 015017.
[36] C. Pavan, M. Martinez-Sanchez, C. Guerra-Garcia, Plasma Sources Sci. Technol. 29 (2020) 095004.
[37] F.J. Gordillo-Vázquez, F.J. Pérez-Invernón, Atmos. Res. 252 (2021) 105432.
[38] B. Bagheri, J. Teunissen, U. Ebert, M.M. Becker, S. Chen, O. Ducasse, O. Eichwald, D. Loffhagen, A. Luque, D. Mihailova, J.M. Plewa, J.V. Dijk, M. Yousfi, Plasma 

Sources Sci. Technol. 27 (2018), https://doi .org /10 .1088 /1361 -6595 /aad768.
[39] A. Luque, M. González, F.J. Gordillo-Vázquez, Plasma Sources Sci. Technol. (2017), https://doi .org /10 .1088 /1361 -6595 /aa987a.
[40] L. Niemeyer, L. Pietronero, H.J. Wiesmann, Phys. Rev. Lett. (1984), https://doi .org /10 .1103 /PhysRevLett .52 .1033.
[41] M. Akyuz, A. Larsson, V. Cooray, G. Strandberg, J. Electrost. 59 (2003) 115.
[42] A. Luque, U. Ebert, New J. Phys. 16 (2014) 013039.
[43] M. González, F.J. Gordillo-Vázquez, A. Luque, Plasma Sources Sci. Technol. (2019), https://doi .org /10 .1088 /1361 -6595 /ab4e7a.
[44] P.L.G. Ventzek, R.J. Hoekstra, M. Kushner, J. Vac. Sci. Technol., B Microelectron. Nanometer Struct. 12 (1994) 461.
[45] A. Villa, L. Barbieri, M. Gondola, A.R. Leon-Garzon, R. Malgesini, Comput. Fluids 105 (2014) 1.
[46] M. Niknezhad, O. Chanrion, J. Holbll, T. Neubert, Plasma Sources Sci. Technol. 30 (2021), https://doi .org /10 .1088 /1361 -6595 /ac3214.
[47] S.V. Pancheshnyi, A.Y. Starikovskii, Plasma Sources Sci. Technol. 13 (2004), https://doi .org /10 .1088 /0963 -0252 /13 /3 /B01.
[48] P. Colella, J. Comput. Phys. 87 (1990), https://doi .org /10 .1016 /0021 -9991(90 )90233 -Q.
[49] V.R. Soloviev, V.M. Krivtsov, Plasma Phys. Rep. 40 (2014) 65.
[50] J. Teunissen, Plasma Sources Sci. Technol. 29 (2020), https://doi .org /10 .1088 /1361 -6595 /ab6757.
[51] X. Li, B. Guo, A. Sun, U. Ebert, J. Teunissen, Plasma Sources Sci. Technol. 31 (2022) 65011.
[52] G.J. Hagelaar, L.C. Pitchford, Plasma Sources Sci. Technol. 14 (2005) 722.
[53] Siglo database, www .lxcat .net, retrieved on November 1, 2022.
[54] R.R. Arslanbekov, V.I. Kolobov, Plasma Sources Sci. Technol. 30 (2021), https://doi .org /10 .1088 /1361 -6595 /abeff4.
[55] D.S. Dean, J. Phys. A, Math. Gen. (1996), https://doi .org /10 .1088 /0305 -4470 /29 /24 /001.
[56] Y. Cao, D.T. Gillespie, L.R. Petzold, J. Chem. Phys. (2005), https://doi .org /10 .1063 /1 .1992473.
[57] Y. Cao, D.T. Gillespie, L.R. Petzold, J. Chem. Phys. (2006), https://doi .org /10 .1063 /1 .2159468.
[58] D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem. 81 (25) (1977) 2340–2361.
[59] A. Luque, U. Ebert, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 84 (2011) 046411.
[60] D.T. Gillespie, Annu. Rev. Phys. Chem. 58 (2007), https://doi .org /10 .1146 /annurev .physchem .58 .032806 .104637.
[61] A. Noel, D. Makrakis, IEEE Trans. Nanobiosci. (2018), https://doi .org /10 .1109 /TNB .2018 .2878065.
[62] C. Li, U. Ebert, W. Hundsdorfer, J. Comput. Phys. 229 (2010) 200.
[63] C. Li, U. Ebert, W. Hundsdorfer, J. Comput. Phys. 231 (2012) 1020.
[64] H.K. Meyer, F. Mauseth, R. Marskar, A. Pedersen, A. Blaszczyk, IEEE Trans. Dielectr. Electr. Insul. 26 (2019) 1163.
[65] H.K. Meyer, R. Marskar, H. Gjemdal, F. Mauseth, Plasma Sources Sci. Technol. (2020), https://doi .org /10 .1088 /1361 -6595 /abbae2.
[66] H.K.H. Meyer, R. Marskar, F. Mauseth, Plasma Sources Sci. Technol. 31 (2022) 114006.
[67] P. Colella, D.T. Graves, T.J. Ligocki, G. Miller, D. Modiano, P.O. Schwartz, B.V. Straalen, J. Pilliod, D. Trebotich, M. Barad, B. Keen, A. Nonaka, C. Shen, 

Ebchombo Software Package for Cartesian Grid, Embedded Boundary Applications, 2003.
[68] H. Johansen, P. Colella, J. Comput. Phys. 147 (1998) 60.
[69] P. McCorquodale, P. Colella, H. Johansen, J. Comput. Phys. 173 (2001) 620.
[70] P. Schwartz, M. Barad, P. Colella, T. Ligocki, J. Comput. Phys. 211 (2006) 531.
[71] O. Chanrion, T. Neubert, J. Comput. Phys. 227 (2008) 7222.
[72] J. Teunissen, U. Ebert, J. Comput. Phys. (2014), https://doi .org /10 .1016 /j .jcp .2013 .12 .005.
24

[73] X.M. Zhao, J.C. Diels, C.Y. Wang, J.M. Elizondo, IEEE J. Quantum Electron. (1995), https://doi .org /10 .1109 /3 .364418.

http://refhub.elsevier.com/S0021-9991(24)00107-4/bibB371BAC2448BA6DAC7150482009C0515s1
https://doi.org/10.1029/2005RS003353
https://doi.org/10.1029/2009ja014867
https://doi.org/10.1088/0963-0252/25/1/015002
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibA9D2AEB984C0586E21EE089214AD9A78s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibFF65B9D36E1CC99D978D401CCAE85592s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib84B59B22C4AD8C635455A95B89330895s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib2EB5410C4E6C8B4C654494382E54D0C6s1
https://doi.org/10.1088/0963-0252/18/3/034018
https://doi.org/10.1016/j.proci.2008.06.124
https://doi.org/10.1063/1.4818319
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib34377608ABED112CC18F8FE32C5A5C83s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibD53D3C021D75C2040D59B380450D201Cs1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib91717894DF8D9345894381B7E116A94Bs1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib7780DEE418096D1E5CC1CDDE8DE01679s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib4C1FA27E7B816F8EC6F1F0BCB8F31469s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib4DA642A43C5B00D6F65EAFA9784D7FD2s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib46DDBBC5C8C934AFD1534C5ED7148395s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibDB9E3A8C1CF7262C1BA75B5EE74206BBs1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibA7BBE445598D151FD4EE02367D03B116s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib2C87956A187793625098C50AD0544892s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibB97B7CF10E0E85A9EB35CE76FA60854Ds1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibC3D7C38C854FC7AF6BC1D5F667D55CF1s1
https://doi.org/10.1088/1361-6595/ab87b6
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib006387762B4BBB65E96E0608D320571Es1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib0118DFD284409145692EEDC4DC20421Fs1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib9AB4B33E7F1585671D1FBE60C783637Cs1
https://doi.org/10.1016/j.jcp.2019.109026
https://doi.org/10.1088/0963-0252/25/4/044005
https://doi.org/10.1063/1.4939475
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib513D175FC59FC47CFE3BC613E6CCB160s1
https://doi.org/10.1088/1361-6595/aacc91
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib329105A04BCEB4ECB19D123DE59ED3AEs1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib3375B956DC742ACF719A6C505F18721Ds1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib87EB1B9B1F4068F9AC1C84752A26F906s1
https://doi.org/10.1088/1361-6595/aad768
https://doi.org/10.1088/1361-6595/aa987a
https://doi.org/10.1103/PhysRevLett.52.1033
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibF9ECC464CE148005BB6A1CAD7FE40544s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib89B47BAF0699305F5327418573C4F556s1
https://doi.org/10.1088/1361-6595/ab4e7a
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib7E22A7F936383476584CC6AF4120A7EDs1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib3026ECCA36968151DC68E7C293E23D14s1
https://doi.org/10.1088/1361-6595/ac3214
https://doi.org/10.1088/0963-0252/13/3/B01
https://doi.org/10.1016/0021-9991(90)90233-Q
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib1B86BC0C11961C2C95506F243A071D82s1
https://doi.org/10.1088/1361-6595/ab6757
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib0C27860E0D50573653DEDA743A47FE6Fs1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib05D43872E8E54BD686D57252D45FBDC4s1
http://www.lxcat.net
https://doi.org/10.1088/1361-6595/abeff4
https://doi.org/10.1088/0305-4470/29/24/001
https://doi.org/10.1063/1.1992473
https://doi.org/10.1063/1.2159468
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib7847C77D406C419DDDAE9610CEEFBC8Fs1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib59952EFC3AA451E5541AAFB3CB96EC8Bs1
https://doi.org/10.1146/annurev.physchem.58.032806.104637
https://doi.org/10.1109/TNB.2018.2878065
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib412057F8452CC10B893438D4C41C1A44s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibFCE545DFB5234D56DC81A4272D1A42D8s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibA26A0B6A56A6266E0AB2DAE3774102C2s1
https://doi.org/10.1088/1361-6595/abbae2
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib6AA9A4782C8056205BEC2201F0E3D4A7s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib291B248AEEC98C4D24B7244C16347392s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib291B248AEEC98C4D24B7244C16347392s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibCD323E71D8E6DAD1AF399C7F257034ACs1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib41CD4ECA90C15EEB698C30D4E92AAE5Fs1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib1E357EB900E7BA547186DE43A4528F3Ds1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib9B794DA7A02A5A88E883FBB368A3952Es1
https://doi.org/10.1016/j.jcp.2013.12.005
https://doi.org/10.1109/3.364418


Journal of Computational Physics 504 (2024) 112858R. Marskar

[74] I.A. Kossyi, A.Y. Kostinsky, A.A. Matveyev, V.P. Silakov, Plasma Sources Sci. Technol. 1 (1992) 207.
[75] M.B. Zheleznyak, A.K. Mnatsakanyan, S.V. Sizykh, High Temp. 20 (1982) 357.
[76] S. Pancheshnyi, Plasma Sources Sci. Technol. 24 (2015), https://doi .org /10 .1088 /0963 -0252 /24 /1 /015023.
[77] T.M. Briels, J. Kos, G.J. Winands, E.M.V. Veldhuizen, U. Ebert, J. Phys. D, Appl. Phys. 41 (2008), https://doi .org /10 .1088 /0022 -3727 /41 /23 /234004.
[78] S. Chen, R. Zeng, C. Zhuang, J. Phys. D, Appl. Phys. 46 (2013), https://doi .org /10 .1088 /0022 -3727 /46 /37 /375203.
[79] A. Luque, U. Ebert, W. Hundsdorfer, Phys. Rev. Lett. 101 (2008) 075005.
[80] S. Nijdam, C.G.C. Geurts, E.M. van Veldhuizen, U. Ebert, J. Phys. D, Appl. Phys. 42 (2009) 045201.
[81] A. Myers, P. Colella, B.V. Straalen, SIAM J. Sci. Comput. (2017), https://doi .org /10 .1137 /16M105962X.
[82] D. Devendran, D. Graves, H. Johansen, T. Ligocki, Commun. Appl. Math. Comput. Sci. 12 (2017) 51.
25

[83] C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, 2004.

http://refhub.elsevier.com/S0021-9991(24)00107-4/bib3E185783ECFF5247C1A983BB518F01C9s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib39E9B29906A1D465932B96CDDC715A5Es1
https://doi.org/10.1088/0963-0252/24/1/015023
https://doi.org/10.1088/0022-3727/41/23/234004
https://doi.org/10.1088/0022-3727/46/37/375203
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib44C25C6BE2CF5EFC9960B6735C7E3D3Es1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibC9A7350A3855C337F273C0ED99DAD0D2s1
https://doi.org/10.1137/16M105962X
http://refhub.elsevier.com/S0021-9991(24)00107-4/bib3BB174DA51D5BD7AB85B4018C6336A28s1
http://refhub.elsevier.com/S0021-9991(24)00107-4/bibBAABA8D4ABC358D27043161F6A856CBFs1

	Stochastic and self-consistent 3D modeling of streamer discharge trees with Kinetic Monte Carlo
	1 Introduction
	2 Prelude
	3 The new model
	3.1 Particle transport
	3.2 Kinetic Monte Carlo
	3.2.1 Stochastic simulation algorithm (SSA) and tau-leaping
	3.2.2 Connection to the reaction rate equation
	3.2.3 Reaction algorithm outline
	3.2.4 Comparing reaction algorithms

	3.3 Model remarks

	4 Computer implementation
	4.1 Spatial discretization
	4.2 Charge deposition & interpolation
	4.3 Semi-implicit Euler-Maruyama method
	4.4 KMC-particle coupling
	4.5 Photon generation and transport
	4.6 Superparticle management
	4.7 Final algorithm
	4.8 Parallelization

	5 Numerical tests
	5.1 Simulation conditions
	5.2 Comparison with hydrodynamics
	5.3 Discrete particle noise
	5.4 Grid sensitivity
	5.5 Positive streamer evolution
	5.6 Computational characteristics

	6 Conclusions and outlook
	6.1 Main findings
	6.2 Future work

	CRediT authorship contribution statement
	Declaration of competing interest
	Code availability statement
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References


