
 

SINTEF Energi AS 

Vannressurser 
2016-11-30 

 TR A7613 - Åpen 

  

Rapport 

A study of a Linear Orographic Precipitation Model 
 

Author(s) 
Sara Martino   

Sjur Kolberg 

 

 

 





A study of a Linear Orographic Precipitation Model

Sara Martino, Sjur Kolberg

December 6, 2016

Contents

1 Introduction 2

2 Model Description 3

3 Downscaling Experiment 5
3.1 Input parameters and model set-up . . . . . . . . . . . . . . . . . . . . . . 5

3.1.1 ERA-Interim and Altitude model . . . . . . . . . . . . . . . . . . . 6
3.1.2 Moist Brunt-Vaisala frequency . . . . . . . . . . . . . . . . . . . . 6
3.1.3 Hydrometeor formation and fall-out time . . . . . . . . . . . . . . 7
3.1.4 Humidity Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.5 Reduced vapor flux . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.6 Multi-domain runs . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 Yearly Precipitation Maps . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Intermittency Process . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Precipitation for different accumulation times . . . . . . . . . . . . 20

3.3 Areal accumulated precipitation . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Discussion of the Downscaling Experiment 29

5 Enki implementation 33
5.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Elevation gradient versus Linear Orography Model . . . . . . . . . . . . . 35

6 Conclusion and recommendations 39
6.1 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1



1 Introduction

Spatially distributed precipitation estimates are needed in hydrological modeling and
in regional climate analyses. In many areas with complex terrain, like high mountains,
regions with glaciers or difficult access, it is challenging to install and maintain a good
network of rain gauges. Hence, precipitation maps with high spatial resolution are dif-
ficult to obtain. A Linear Orographic Model (LOM) which includes inflow dynamics,
condensed water advection, and downslope evaporation was introduced in Smith and
Barstad (2004). It is a deterministic method driven by temperature, wind, geopoten-
tial and relative humidity. It models the major orographic precipitation processes in a
relatively simple and compact formulation, using a small set of equations and a limited
number of free parameters.

The LOM is computationally efficient and very fast to run even on a simple desktop;
this gives the possibility to produce precipitation fields over large domains at a fine
horizontal resolution. In Johannesson (2007) the LOM was used to simulate long time
series of precipitation maps over Iceland by downscaling the ERA-40 re-analysis data.
The produced data set was compared to precipitation observations from a rain gauge
network. The simulated data was found to be, in general, well in agreement with the
observed one. This was more true for large accumulation times (month and year) than
for daily accumulation.

In the framework of a weather generator, a model like the LOM could serve as a
tool to downscale the signal from a numerical weather predictor or a general circulation
model, adding details to a relatively smooth map. Precipitation has a complex spatial
structure and the LOM considers only one of the physical process connected to precipi-
tation (namely orographic enhancement). Still, the output of the LOM could serve as a
“first guess” to which one could add for example a convective precipitation generator.

The first experiment reported in this paper goes in this direction: we use the LOM
to downscale the European Centre for Medium range Weather Forecast (ECMWF) re-
analysis ERA-Interim and construct daily precipitation maps over the South of Norway
with a 1 km horizontal resolution over the period 1990-1999. The produced maps are
then compared to precipitation data coming from a gauge net to check the consistency.

Another use of the LOM could be to add terrain-induced variability to the spatial
interpolation of observed precipitation data. A well established technique is to use a lapse
rate predicting an increase in precipitation with altitude. An orographic justification of
this concept is that air being lifted will always increase its relative humidity, hence higher
areas have a larger probability of air saturation and precipitation fallout. Once saturated,
however, the water release per 100 m continued uplift reduces with elevation. For specific
conditions on a given day, the constant lapse rate is therefore an over-simplification.

Replacing absolute altitude with the terrain slope along the current wind vector, as
well as using the proper thermodynamic equations for airmass cooling and condensation,
is the basis for the ’raw upslope model’ Smith and Barstad (2004). The LOM is a further
elaboration of this idea, taking into account also air mass dynamics, atmospheric stability
and the time scale of hydrometeor formation and fallout. The LOM can therefore be
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regarded as a more physically plausible alternative to the fixed precipitation lapse rate
used in precipitation interpolation. The second experiment in this report investigates
this idea in a relatively small area in central Norway.

In what follows, a brief model description is given in Section 2. The downscaling
experiment is described in Section 3. The input and the model parametrization are
described in Section 3.1. Section 3.2 describes the results of the validation, considering
various temporal scales and statistical characteristics. Section 4 is a discussion of the first
experiment. Section 5 describes the second experiment and the ENKI implementation
of the LOM. Finally, section 6 concludes the report.

2 Model Description

In this section we provide a brief description of the LOM. Most of this section is taken
from Smith and Barstad (2004) and Johannesson (2012).

The Linear Orographic Model (LOM) proposed by Smith and Barstad (2004) sim-
ulates precipitation over complex terrain. First, assuming that air is saturated or near
saturation and flows over the terrain (no flow splitting and no stagnation), the dis-
tributed source of condensed water, S(x, y), resulting from terrain-forced vertical ascent
of moist air is calculated as follows:

S(x, y) =
Cw
Hw

∫ ∞
0

w(x, y, z)e−z/Hw dz (1)

The vertical velocity, w(x, y, z), is assumed to vary with altitude. At ground level,
w(x, y, z = 0) = U · ∇h(x, y), where U is the horizontal wind-speed vector and ∇h(x; y)
the topographic gradient. Hw is the depth of the moist layer (or water vapor scale
height):

Hw = −
RT 2

ref

Lγ
(2)

R = 461JkgK−1 is the gas constant for water vapor, L = 2.5 · 106Jkg−1 is the latent
heat and Tref is the temperature at the ground. The term

Cw =
ρsref Γm

γ

is the thermodynamics uplift sensitivity factor relating condensation rate to vertical
motion. Γm is the moist adiabatic lapse rate. The term

ρsref =
es(Tref )

RTref

is the saturation water vapor density and eS is the saturation vapor pressure. The ad-
vection of condensed water by the mean wind and the resulting precipitation is described
by the following equations:

Dqc
Dt
≈ U · ∇qc = S(x, y)− qc

τc
(3)
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Dqs
Dt
≈ U∇qs =

qc
tc
− qs
τf

(4)

Where qc(x, y) represents the vertically integrated cloud water density, qs(x, y) repre-
sents the vertically integrated hydro-meteor density, tc is the conversion time from cloud
water into hydro-meteors, tf is the hydro-meteor fallout time and qs/τf represents the
precipitation rate.

The solution of Eqs. (3) and (4) is obtained by taking the Fourier transforms of Eqs.
(1), (3) and (4). The dynamics of the forced ascent, w(x, y, z), is described using results
from mountain wave theory, which in Fourier space leads to ŵ(k, l, z) = ŵ(k, l, 0)eimz,
with ŵ(k, l, 0) = iσĥ(k, l). The term s = Uxk + Uyl is the intrinsic frequency which
defines the wind vector in Fourier space, k and l the horizontal wave numbers, m =
[(N2

m − σ2)σ−2(k2 + l2)]1/2 the vertical wave number and Nm the moist Brunt-Vaisala
frequency.

After some algebra, the double Fourier transform of the precipitation field is given
by the following transfer function:

P̂ (k, l) =
Cwiσĥ(k, l)

(1− imHw)(1 + iστc)(1 + iστf )
(5)

where the double Fourier transform of the terrain is given by

ĥ(k, l) = (2π)−2
∫ ∫

h(x, y)e−i(kx+ly) dxdy (6)

Eq.(5) states that the spatial relocation of precipitation by topographic uplift is con-
trolled by several partly counteracting processes, namely airflow dynamics, cloud time
scales, and the advection of condensed water and hydrometeors. The amount of water
vapor that can be condensed (the source term S(x, y)) depends on the moist layer depth
and the ability of the forced vertical ascent to penetrate through this moist layer, which
is controlled by airflow dynamics. The condensation is reduced if the vertical uplift does
not penetrate through the moist layer. Also, an increase of stability (Nm) will cause the
available water vapor to increase (Cw and Hw) but will reduce the depth of the lifting
(increasing m).

If tc is short, condensed water will be formed quickly on the windward side and start
to precipitate before being advected downstream to the lee-side of the mountain where
it evaporates. If tf is short, precipitation will mainly fall on the windward side of the
mountain while if it is long, spill-over will take place and precipitation will also fall on
the lee-side. This also means that for given tc and tf values, the resulting precipitation
pattern will depend on the width of the mountain and the wind speed. High wind speeds
may advect air parcels over the lee-side before water vapor has time to condense and fall.
Large values of tc and tf will shift the condensation and precipitation downstream. The
residence time of an air-parcel on the windward side of a large mountain will be longer
than on a smaller one, increasing the amount of water that can be condensed and pre-
cipitation that can be formed. A detailed description of changes in spatial precipitation
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patterns and location of maximum precipitation in response to changing atmospheric
conditions, mountain geometry and horizontal topographic scales can be found in Smith
and Barstad (2004) and Barstad and Smith (2005).

The precipitation field is finally retrieved by taking the inverse Fourier transform of
Eq. (5) and truncating negative values of the total precipitation:

P (x, y) = Max

[
(

∫ ∞
−∞

∫ ∞
−∞

ĥ(k, l)ei(kx+ly) dk dl + P∞), 0

]
(7)

The term P∞ indicates the background precipitation or non-orographic precipitation.
A practical advantage of the LOM is its ability to encapsulate the major processes

governing orographic generation of precipitation in a simple and compact formulation.
The limited input parameters, namely P∞, U , V , T , Nm, τc and τf , make it fast to
implement and run even with high spatial resolutions and long time periods.

The main model limitations are the simplification of the vertical structure of the at-
mosphere and the assumption of a horizontal uniform background flow and atmospheric
properties. Moreover, non linear effect such as flow blocking are not captured and the
model does not work for unstable atmosphere. Finally the atmosphere is assumed to be
saturated.

The assumption of horizontal uniform background atmospheric conditions means that
temperature wind vectors, static stability and cloud delay times are assumed constant
in space.

The assumption of saturated atmosphere implies that time and/or space windows
defining when and where the model can be applied have to be defined. This will be
discussed further on.

Finally the assumption of constant vapor flux, together with the model assumption
that precipitation is proportional to vapor flux means that the air mass is not depleted
of its humidity downwind. A post-processing algorithm aiming at (partially) fixing this
will be discussed later.

3 Downscaling Experiment

In this section we describe the first experiment with the LOM. The goal is to use the LOM
to create time series of precipitation maps over the south of Norway and then compare
the simulated data set with precipitation data coming from a grid of 197 rain gauges
belonging to the Norwegian Meteorological Institute (MET). The spatial distribution of
the rain gauges is represented in Figure 1b)

3.1 Input parameters and model set-up

The input parameters needed by the LOM can either be derived directly from re-analysis
data set such as ERA-Interim or considered as free parameters whose value can be
optimized to better fit observed data. In this report, following Johannesson (2012), we
have tried to link as many of such parameters as possible to physical measurements.
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We describe here the input parameters, the model set up and some post-processing
algorithms aimed at correcting some of the known limitation of the LOM.

3.1.1 ERA-Interim and Altitude model

The input meteorological data to the LOM have been derived from the ECMWF re-
analysis (ERA-Interim). The time step of the ERA-Interim re-analysis is 6 hours, that
is 4 data points for each day.

The input meteorological data include:

• Geopotential height at two different pressure levels (850 and 1000 hPa)

• Temperature at two different pressure levels (850 and 1000 hPa)

• Wind vector at 850 hPa

• Relative humidity at 850 hPa

• Total precipitation

The choice of the pressure level from which to extract the input meteorological variables
was done following Crochet (2007).

With the exception of the relative humidity, all meteorological data where averaged
over the whole geographical area of interest. The relative humidity was used as a “soft”
threshold to determine the areas with precipitation, see Section 3.1.4.

In Johannesson (2012) the whole spatial information about background precipitation
contained in the ERA40 re-analysis was fully exploited. In this report we instead retain
only the spatial average.

The orographic model is defined over a 1× 1 km grid, see Figure 1a)

3.1.2 Moist Brunt-Vaisala frequency

In Crochet (2007) the value of the Moist Brunt-Vaisala frequency (Nm) was optimized
and then assumed to be constant over the whole time period. We follow Johannesson
(2012) and estimate Nm at each time step according to the atmospheric conditions.

The Moist Brunt-Vaisala frequency (Nm) was estimated after Smith and Barstad
(2004) as

Nm =
g

T
(γ − Γm)

where g is the gravitational acceleration constant. γ is the environmental lapse rate
computed as (zA − zB)/g where zA and zB are the geopotential height at two different
altitudes. Γm is the moist lapse rate computed as 0.1Tref − 34.3 (Celsius/Km) as in
Smith and Barstad (2004).
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a) b)

Figure 1: a) Altitude Model with location with superimposed the three regions used to
compute the input parameters for the LOM. b) Location of the 197 gauge stations used
for validation. Superimposed are the limits of the 9 areas used for validation purposes.

3.1.3 Hydrometeor formation and fall-out time

The parameters τc and τf express the time it takes for hydrometeors to form after
condensation, and to fall to the ground, respectively.

The hydrometeor formation time τc was considered constant in time and fixed to 1800
seconds. This value was chosen after optimizing some preliminary runs of the LOM.

The fall-out time τf was defined as in Johannesson (2012):

τf = Hw/Vt with

{
Vt = 1 m/s, if snow

Vt = 6 m/s, if rain

where Hw is the water vapor scale height, and Vt is the fall velocity, with approximate
values for snow and rain, respectively.

3.1.4 Humidity Factor

As stated earlier, the LOM assumes saturated atmosphere. It is therefore necessary to
establish a criterion which indicates in which time steps or in which part of the domain
the LOM can be run.

In a first attempt to run the LOM we used the spatially averaged relative humidity
as a threshold, set to 80% at 850 hPa, to define when the model could be run. This
meant that, when the mean humidity was below threshold the model could not be run
and we assumed that all the stations in the domain were dry. On the other side, when
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the mean humidity was above the threshold, the LOM was run with the assumption that
the atmosphere was saturated over the whole domain. This lead, on one side, to too
many time steps when the domain was completely dry, and, on the other side, to a too
strong spatial correlation for the time steps for which the model was run.

In both Johannesson (2007) and Crochet (2007), the use of the LOM was restricted
within pre-existing wet areas defined by the background precipitation fields in the ERA
Interim dataset, and a constant humidity threshold so as to guarantee that near saturated
conditions were met.

In this report, we choose the approach of Johannesson (2012) where, as suggested also
in Sinclair (1994), a local humidity factor was introduced to better define the limits of
application of the model and reduce precipitation when unsaturated conditions prevail.
In Sinclair (1994), this humidity factor is defined as

λ(x, y) =


(
RHx,y−RHmin

β

)δ
if RHx,y < RHmin

0 otherwise

where RHx,y is the low-level relative humidity taken at 850 hPa, RHmin = 80% is the
lower relative humidity threshold below which no orographic precipitation is formed. β
and δ are adjustable parameters taken as β = 20 and δ = 0.3.

The precipitation field from the LOM is then corrected as follows:

Pcorr(x, y) = P (x, y) λ(x, y) (8)

To compute the humidity factor λ(x, y) the low level humidity field RHx,y was es-
timated at each grid point by bi-linear interpolation from the corresponding relative
humidity field in the ERA-Interim data set.

3.1.5 Reduced vapor flux

In the original formulation (Smith and Barstad, 2004), the LOM expresses precipitation
as proportional to the upstream water vapor flux, which is held constant over the whole
domain of interest. This means that for two hills with the same orographic structure the
LOM will simulate the same amount of precipitation, even if the second hill is located
in the rain shadow of the first one.

In a real case of a domain with a succession of mountain ridges, precipitation causes
the water vapor flux to be depleted downwind as the airflow passes over several hills and
orographic precipitation is formed, so that downwind located hills will receive less or no
precipitation.

In order to deal with this, Smith and Evans (2007) made the assumption that precipi-
tation is proportional to the local water vapor flux and proposed to scale the precipitation
down with the local fraction of water vapor remaining, as follows:

Preduced(x, y) = P (x, y)Θ(x, y) (9)
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where P (x, y) is computed with Eq. (7) and Θ(x, y) is the fraction of vapor remaining
defined as

Θ(x, y) = 1−
∫ x,y

−∞
Preduced(x

′, y′)ds/F0

where F0 = ρqwUHw is the incoming upstream horizontal water vapor flux and ds =
(Uxdx

′ + Uydy
′)/|U |. After some manipulations this leads to:

Θ(x, y) = eDRref (x,y);

where

DRref (x, y) =

∫ x,y

−∞
P (x′, y′) ds/F0 :

In our case, P (x, y) is replaced by Pcorr(x, y) in and the final precipitation estimate is
given as

Preduced(x, y) = Pcorr(x, y)Θ(xy) (10)

In practice, each precipitation map is produced as follows:

1. Compute P (x, y) from Equation 7

2. Correct for the humidity factor as in Equation 8, and obtain Pcorr(x, y)

3. Correct for the reduced vapor flux as in Equation 10 and obtain the final precipi-
tation field Preduced(x, y)

The four maps related to the same day are then added to each other in order to form a
daily precipitation map.

3.1.6 Multi-domain runs

For each model set-up, the model was run three times per time step over the entire
domain so as to better represent the spatial variability of atmospheric conditions, espe-
cially the mean wind whose direction may vary within the domain and will have a strong
impact on the spatial pattern of precipitation. In practice, the input meteorological pa-
rameters (except the humidity field) where calculated for three different sub-domains
and the LOM applied each time to the entire domain but the resulting precipitation
corresponding to each sub-domain only was selected. The final precipitation map was
obtained by merging the precipitation by each sub-domain. These domains roughly
correspond to homogeneous climatic zones (see Figure 1a).

3.2 Validation

The goal of our validation exercise is to understand weather the LOM can reproduce
some of the statistical characteristics of precipitation over the South of Norway. To do
so we produce daily precipitation maps using the LOM for the period 1990-1999, select
the time series relative to the spatial locations where the observation stations lies and
compare such simulated time series of precipitation with the observed ones.
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We want to establish how well the simulated data set can reproduce the occurrence
process (that is if it raining or not) of the precipitation over the South of Norway
We are interested in comparing observed and simulated precipitation at different time
scales: daily, monthly and yearly. Moreover, it is of interest to validate both the at-
site distribution and some regional summaries statistics that involve also the correlation
structure of the data set.

It is important to keep in mind that no precipitation data from gauges is used in run-
ning the LOM and the only information about precipitation coming from ERA-Interim is
a spatially averaged value of total precipitation. Moreover, all input parameters, except
for the humidity field, are averaged over the domain of interest.

3.2.1 Yearly Precipitation Maps

Before presenting the quantitative results, it is useful to provide a qualitative evaluation
of the maps produced by the LOM. Figure 2, panels a) and b) show maps of the annual
precipitation for two of the ten years considered in this study, 1990 and 1992. The maps
are built as spatial mosaics from the maps for each of the three sub-domains. No effort
was made to smooth the transition from one sub-domain to the other. Such transition
is especially visible for the 1990 map.

As comparison, Figure 2, panels c) and d), display also maps of annual precipitation
created by MET. These maps based on the precipitation data collected by the rain gauge
network and computed using a smoothing algorithm. The two set of maps (LOM and
MET maps) are produced in very different ways and should not be expected to produce
the same result when compared pixel by pixel. Still, is is fruitful to check how closely
the spatial distribution of precipitation as simulated by the LOM resembles the smooth
interpolated map.

There are some significant differences between the two sets of maps, the largest ones
are in the degree of resolution, the amount and the spatial distribution of precipitation.
The maps produces by LOM are much more detailed than those from MET. This is
as expected, given that the LOM simulates processes operating at smaller scales than
the gauge network represents, whereas the interpolation has a strong smoothing effect.
Further, the LOM appears to overestimate the yearly precipitation especially in some
areas of the west coast. The areas with large annual precipitation, in the MET maps
limited to the west coast, extend in the LOM maps eastwards towards the main water
divide, but not as a continuous surface. This could be a sign that the post-processing
algorithm described in Section 3.1.5 does not deplete the water vapor flux sufficiently,
causing precipitation events coming from the ocean to penetrate too much inland.

Finally, it is worth noting that the strongest differences between the LOM and MET
maps of annual precipitation, occur in mountainous areas poorly covered by the gauge
network. The main mountain range and some of the main glaciers to the west of this
stand out as large-precipitation areas, which appears plausible, but non-verified due to
the lack of data.
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a) 1990 LOM map b) 1992 LOM map

c) 1990 MET map d) 1992 MET map

Figure 2: Yearly Precipitation maps produced by the LOM, panels a) and b) and
smoothed yearly precipitation maps from MET, panels c) and d).
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Figure 3: Observed and Simulated Probability of no-rain P0 for all the stations. The solid
and dashed lines represent the 1:1 relation and the best-fit regression line, respectively.
The value of R2 is 0.56.

3.2.2 Intermittency Process

In this section we discuss how well the LOM describes the intermittency process of
precipitation, that is, the spatio-temporal pattern of rain vs no-rain.

Figure 3 shows the observed and simulated probability of daily no-rain, p0, for the
different stations. The spatial variability is well represented. The coefficient of deter-
mination R2 between observed and simulated p0 is 0.56. There is a moderate positive
bias in the predictions, so p0 is more often overestimated than underestimated. Figure 4
reveals that such overestimation has a clear spatial pattern. While the correspondence
is very good along the coastline, the LOM clearly overestimates the probability of dry
state in the interior of the country.

When computing the daily probability of no-rain disaggregated at a seasonal level,
we notice also a seasonal pattern in the agreement/disagreement of observed and sim-
ulated data set. Figure 5 shows that the largest biases in the estimated seasonal daily
probability of no-rain happen in the summer period (R2 = 0.34). Some of the stations,
mainly located again in the interior of the country, see Figure 6, have a simulated prob-
ability of being dry close to 90% while the observed one is just above 50%. Given the
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Figure 4: Spatial distribution of P0 for the observed a) and simulated b) data set.

nature of the LOM, which is meant to model orographic precipitation, such results are
not too surprising. In particular away from the coast and during summer, convection is
an important process causing precipitation, but not represented in the LOM.

One important characteristic of the intermittency process is the at-site probability
of transition between dry and wet state. Such probabilities describe, for example, how
probable it is that a wet day is followed by a dry one. We define the quantity:

pij = Prob[state j on day t|state i on day t− 1] i, j = 0, 1

where i = 0 indicates dry state and i = 1 indicates wet state.
The LOM itself does not explicitly simulate the time dependence between precip-

itation in different time steps; this information arises only from serial dependency in
the input forcing from ERA Interim. In other words, LOM works independently with
each time step. Still, by modulating the input signal differently for each location ac-
cording to time varying input, the LOM introduces spatial variability in the temporal
interdependencies, and transfer temporal interdependencies between variables. Hence, it
is meaningful to assess the temporal dynamics of LOM output as property of the LOM;
different from, but not independent of the temporal dynamics of its input.

As it turns out, LOM reconstructs the transition probabilities with considerable skill
for all the stations in the domain, including their spatial variability (Figure 7). As
expected, the probability of rain given that the previous day was wet p11, is higher
(almost double) than the same probability given that the previous day was dry p01, and
this is well captured by the LOM. For the stations in the interior of the country (plot
not reported here) the simulated values of p00 are too high (and p01 are too low). This
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Figure 5: Observed (x-axis) and Simulated (y-axis) probability of no-rain P0 in the four
season of the year. The solid (dashed) lines are the 1:1 (regression) lines. The R2 values
are (0.42,0.52,0.34,0.62) for (Winter, Spring, Summer, Winter)
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Figure 6: Spatial distribution of seasonal P0 for the observed (left) and simulated (right)
data set.
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Figure 7: Observed and simulated probability of transition from dry to dry state p00,
dry to wet state p01, wet to dry state p10 and wet to wet state p11 computed over the
four seasons. The solid (dashed) lines are regression (1:1) lines.
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means that, according to the LOM, for the stations in the interior of the country it is
more probable to be dry and to stay in the dry state than it is observed through the
data. The remaining two probabilities p11 and p10 are better represented by the LOM.

One important feature of the precipitation phenomenon, which is also difficult to
reproduce, is the length of wet and dry spells, that is the number of days during which
one stations stays in the wet or in the dry state. We have computed the mean and
the standard deviation of the length of dry and wet spell periods for both the observed
and the simulated data set. Figure 8 shows these quantity plotted against each other.
While the LOM seems to reproduce the mean and sd of the wet spells quite well (R2 =
(0.64, 0.56) respectively), the length of dry spells is worse explained. The R2 index is
0.35 for the mean and 0.34 for the standard deviation. Moreover, the length of dry spell
is largely overestimated for many stations inland (Fig 9). This is, of course, in agreement
with the fact that for the same stations the probability of staying dry is overestimated
while the probability of transition from dry to wet state is underestimated (Figure 7).
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Figure 8: Observed vs simulated mean and sd of the length of dry and wet spell periods
for all the stations. Solid lines represent the 1:1 relation and dashed lines the best-fit
linear regression model.
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Figure 9: Spatial distribution of the mean length of dry spell period for observed (left)
and simulated (right) data set.
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Daily Weekly Monthly Yearly

LOM 0.40 0.65 0.67 0.73
ERA-Interim 0.49 0.73 0.75 0.73

Table 1: Linear correlation between observed and simulated precipitation over different
accumulation periods for the LOM simulated data set and the ERA-Interim data

3.2.3 Precipitation for different accumulation times

We want to compare the simulated and the observed data set over different accumulation
times. Figure 10 displays observed vs simulated precipitation amounts at daily, weekly,
monthly and yearly accumulation. The monthly (weekly) accumulations are computed
for each month (week) of each year. The LOM performance improves considerably with
the accumulation period, as shown in Table 1 where the linear correlations between ob-
served and simulated data are reported. The same table reports also the correlation
coefficients computed by comparing observed data and precipitation extracted directly
from the ERA-Interim data base. ERA-Interim performs better especially at the lower
accumulation time, it is equivalent to LOM for the yearly accumulation. When compar-
ing the scores of ERA-Interim and LOM it has to be kept in mind LOM achieves this
skill level for detailed, information-rich precipitation maps, whereas the ERA-Interim
predictions are smooth surfaces for which locational errors produce only small residuals.
Still it is clear, at small accumulation times ERA captures some processes that are not
captured by LOM. We believe that one of the problem of the LOM is its difficulty, with
the parametrization taht we used, to well identify, especially in some days, the wet and
dry areas, see all the discussion below about days with bad and good performance

At the daily scale the correlation is quite low. When we compute correlation for each
station separately (Fig 11) we notice two things:

• The correlation values have a quite large spatial variation

• There is a clear spatial structure, with the stations along the coast being much
better simulated than those inland.

If we look at the daily performance of the LOM, comparing observed and simulated
precipitation day by day, we observe that the model performed well in many cases but
in others (not a negligible number) the performance was quite poor. An inspection of
a high number of cases indicated that a very large source of discrepancy was a wrong
identification of the wet and dry regions, leading sometimes to very large errors. Maybe
using the whole total precipitation field from ERA-Interim and not just the spatial mean
as background precipitation in equation 7 would help improving this. Still Johannes-
son (2012), who did not average the total precipitation field, noticed the same kind of
problem in their experiment.

Some effort was made to try to identify characteristics of the input variables which
lead to good or poor simulations. For example, we made the hypothesis that in days
with less stable atmosphere the simulations would be bad, or that the performance of
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Daily Precipitation Weekly Precipitation

Monthly Precipitation Yearly Precipitation

Figure 10: Observed vs simulated precipitation at different accumulation times. Daily
(upper left), weekly (upper right), monthly (lower left) and yearly (lower right). The
solid (dashed) lines are regression (1:1) lines.
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Figure 11: Correlation index between observed and simulated precipitation for each
stations.

simulations was linked to the wind direction of strength. These and a variety of other
relationships were evaluated, but unfortunately we did not manage to find a reliable
criterion to discriminate apriori in which conditions the LOM performs well or poorly.
To illustrate what to expect from the model performance when run on a day-to-day
basis, we presents a validation for two days (September 16th 1997 and December 4th
1998) when the LOM performed very good and very bad, respectively.

Figure 12 illustrates the situation on a day when the LOM manages to replicate the
observed precipitation pattern well. Panel d) in Figure 12 shows the wind direction in
the tree sub-regions for the four time points belonging to the day in discussion. The
westerly wind brings quite a lot of precipitation on the west coast and no precipitation
on the east side of the mountains. The LOM correctly identifies the wet and dry areas,
and manages to replicate, more or less correctly, also the amounts of precipitation. Panel
e) in the same figure is the precipitation map extracted from ERA Interim, the detail
level is quite low but clearly the wet area is the same as in the observed data set and in
the LOM simulations.

Figure 13 illustrates the situation on a day when the LOM performance is poor, in
this case because the large-scale location of the wet and dry areas is wrong. Panel d)
in Figure 13 shows that the wind blows from the east-northeast, and this signal is quite
homogeneous in both space and time. Still rain is only observed on the west coast.
The LOM simulates rain on the east side of the mountains thus showing a precipitation
pattern totally different from the observed one. The ERA Interim map in panel e)
displays the correct location of the wet area at the northwestern coast (in addition to a
strong event over western Sweden, not detected by the Norwegian gauge network). The
humidity map used as a threshold to identify areas with high humidity as explained in
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Figure 12: Precipitation on 1997-09-16, observed a) and simulated b). Panel c) plots
observed and simulated precipitation against each other. The solid (dashed) lines are
1:1 (regression) lines. Panel d) shows the input wind vector for the 3 sub-domains and
the 4 time points. Panel e) displays a precipitation map from ERA Interim.
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a) b)

c) d)

e)

Figure 13: Precipitation on 1998-12-04, observed a) and simulated b). Panel c) plots
observed and simulated precipitation against each other. The solid (dashed) lines are
1:1 (regression) lines. Panel d) shows the input wind vector for the 3 sub-domains and
the 4 time points. Panel e) displays a precipitation map from ERA Interim.

24



section 3.1.4 does not help in this case to identify the wet areas as it is quite homogeneous
and above 80% for the whole south of Norway (not shown).

These two days were chosen randomly between those with good and bad performance
but they illustrate the difficulty of finding criteria which indicate apriori when the LOM
is going to perform well.

Some statistical characteristics of the daily precipitation were estimated each year
and for each month over the period 1990-1999 at each of the 197 stations. We computed
the mean and some quantiles (25%, 50%, 75% and 90%) for precipitation larger than
0.1 mm plus the probability of no-rain. These quantities are illustrated in Figure 14.
The global performance is not impressive but the performance for region along the coast
is considerably better, also the summer months are particularly bad represented, as
noticed also earlier (not shown). The probability of no-rain also appears quite poorly
estimated, with the same time and space variability in performance as for the other
statistical quantities.

At the monthly scale the LOM appears to be able to capture the main characteristics
of the precipitation process but presents some temporal biases. Figure 15 shows the
observed and simulated monthly precipitation. This is the same quantity as in the lower
left plot of Figure 10, but this time we have plotted each month separately. During the
summer month the LOM seems to overestimate quite a lot the monthly precipitation
for some of the stations. Such stations are mainly located inland (not shown). The
explained variance goes from little above 0.5 for the winter months to around 0.3 in the
summer months.

Finally, the simulations aggregated at yearly scale (lower right plot in Figure 10 and
Table 1) are quite good, still the quality of the model performance has a clear spatial
structure (not shown) with better performances along the coast. Notice how this plot
based on LOM predictions at gauge locations gives a much better agreement between
LOM and MET annual precipitation than Figure 2, which is based on the same LOM
data, but at all locations. Again, this highlights the fact that we lack data to verify
LOM at the locations where it predicts the highest precipitation.

3.3 Areal accumulated precipitation

Areal accumulated precipitation is an important component in hydrological modeling.
Areal statistics depend on the correlation structure of the data set. In this section we
examine how the LOM can reproduce observed statistics of areal accumulated precipi-
tation.

Figure 18 shows the empirical spatial correlation function for the precipitation in-
tensity (i.e. computed only on days with contemporary positive precipitation). The
simulated precipitation data set has a stronger correlation structure than the observed
one. Many stations with a distance between 200 and 400 km are much more correlated in
the simulated data set than in the observed one. At the largest distances, the observed
correlation tends to be negative. This is not replicated by the LOM simulated data set
where at all distances there is positive correlation. At the shortest distances, on the
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a) b)

c) d)

e) f)

Figure 14: Comparison of statistical characteristics of daily LOM simulations and gauge
data calculated each year, for each month over the period 1990-1999. (a)-(d) 25%, 50%,
75% and 90% quantile. (e) mean and (f) probability of no-rain-
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Figure 15: Observed and simulated monthly intensity of precipitation.
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Figure 16: Spatial correlation for the precipitation intensity between station 197 (indi-
cated by a cross) and all the other stations. On the left is the correlation computed in
the observed data set, on the right the correlation computed in the simulated data set.

other side, some stations with short geographical distance show lower correlation in the
simulated data set than in the observed one.

The larger correlation in the LOM data set is not surprising if we remember that the
input of the LOM is spatially averaged, that means that all the stations located in the
same sub-domain are subject to exactly the same input. Moreover the LOM only “sees”
the orography of the domain and not the distances, so location with the same orography
tend to be more correlated than they are in reality. Post-processing the LOM output
using a reduced vapor flux as explained in Section 3.1.5 has reduced this phenomenon
but it is still quite visible also in the corrected precipitation maps. As an example,
Figure 16 shows the estimated correlation between Station 197 (indicated with a cross)
and all the other stations in both the observed and the simulated data set. While in the
observed data set the correlation drops quite fast with the geographical distance, in the
simulated data set there are stations far in the south with a high correlation.

The total number of daily wet stations gives us an idea of how dry each day is over
the whole domain. Figure 17 displays the observed frequencies of the number of wet
stations together with its simulated counterpart. The largest disagreement between the
simulated and the observed quantities is related to the number of days where no rain is
recorded in any station. While in the observed data set the percentage of days when all
stations are dry is below 1%, in the simulated data set it is above 4%. The LOM also
tends to simulate too little days when all the stations (or almost all) are wet.

Finally we check whether the LOM, fed with the ERA Interim parameters, can repli-
cate the observed variability of annual total precipitation averaged over the 9 different
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Figure 17: Observed (black) and simulated (red) frequency of total number of stations
with positive precipitation.

regions. This region are defined by MET (Hanssen-Bauer et al., 2015) and illustrated in
Figure 1b).

To this end, Figure 19 displays observed and simulated annual regional mean precipi-
tation for our 9 precipitation areas plotted against each other. There is a good agreement
between the observed and simulated quantities for the areas on the West coast (areas
3,4,5 and 7). Regions 2 (Agder) and 9 (Trndelag) show an additive bias: the LOM un-
derestimates the annual regional mean precipitation but there is a good correspondence
between observed and simulated quantities. The two inland areas 1 (Southeast) and 6
(Dovre-Tynset) see a poorer correspondence between observed and simulated regional
annual total precipitation, the situation being worse for region 6.

4 Discussion of the Downscaling Experiment

We have used the LOM to construct simulated daily time-series of precipitation over the
south of Norway. The input parameters for the LOM are the spatially averaged values
of geopotential height, wind, temperature and total precipitation from the ERA-Interim
reanalysis data.

We have compared such time series with observed precipitation values from a grid
of 197 gauge stations belonging to the Norwegian Meteorological Institute. Such com-
parison has been done separately for the occurrence process and for the precipitation
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Figure 18: Observed (black) and simulated (red) empirical spatial correlation for daily
precipitation intensity.
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Figure 19: Observed (x-axis) vs Simulated (y-axis) regional annual mean precipitation
for the nine areas defined in Figure 1b).
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amounts at different aggregation time scales.
It is important to bear in mind that only the domain-average precipitation from

ERA-Interim is used in computing the LOM simulations, no information of spatial vari-
ability in precipitation is transferred from ERA-Interim to LOM. Moreover, the input
atmospheric variables, with the exception of the relative humidity (that is geopotential,
temperature, wind and total precipitation) are spatial averages and held constant over
the whole domain. Last, the LOM is meant to simulate only one type of precipitation,
namely the orographic enhancement of precipitation and does not simulate precipitation
coming from other physical processes such, for example, convective precipitation.

Still, the LOM manages to recover quite well many of the spatial characteristics of
the precipitation fields in the South of Norway. The simulated yearly maps, present a
realistic spatial structure even though they clearly overestimated precipitations in some
areas.

There are some bias both in the spatial and in the temporal distribution of the
statistics we have taken into account in this study. Not surprisingly, the LOM is much
better at recovering the precipitation in the coastal, mountainous regions than inland.
The largest discrepancies, both regarding the occurrence and the intensity process, are,
in fact, observed in the stations located on the east side of the mountain range.

As for the time dimension, the LOM simulations are closer to the observed data
during the autumn and winter season, and a less good predictor during summer. This
could be due to the higher proportion of rain due to convective phenomena in summer
than in winter. This creates a large small-scale variability which the LOM does not
aspire to simulate. Still the LOM appears to overestimate the precipitation during the
summer months rather than under-estimate it.

The performance of the LOM when compared to observed data varies with the ac-
cumulation period considered. The longer the accumulation period, the better the cor-
respondence between simulated and observed data. This agrees with the findings in
Johannesson (2012) where the minimum accumulation period considered is three days.
For the daily precipitation the correspondence between simulated and observed data set
is very variable both in space and in time. Again, the coastal stations and winter periods
are better reproduced by the LOM simulations.

Performance when comparing simulations and observations from day to day ranges
from very good to very poor. Surprisingly, it was not possible to define stable criteria
for predicting a priori which days would yield good performance and which days would
yield poor performance. Moreover, the simulated daily precipitation appears to have a
spatial correlation structure with some features that do not appear in the correlation
structure estimated from the observed data. Stations that are quite far in space and
virtually uncorrelated when looking at the observed data set appear to have a strong
spatial correlation in the simulated one. This could be, at least partially, corrected by
adding a convection generating mechanism with small spatial range and/or improving
the post-processing algorith which computes the air-flow depletion. Often, in days with
poor perfomance, the main error lies in the localisation of wet and dry area, the same
phenomenon is also reported in Crochet (2007).
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In general it appears that the LOM, with the set-up and input choices made in this
report, can be a good way to reconstruct climatological precipitation maps (which are
based on long accumulation times). The variability of the performance makes it difficult
to recommend its use on short time aggregation periods like daily or hourly, where
its prediction skill is slightly lower that obtained using the ERA-Interim precipitation
maps directly. It is noteworthy, however, that the LOM achieves this skill level for
detailed, information-rich precipitation maps, whereas the ERA-Interim predictions are
smooth surfaces for which locational errors produce only small residuals. It would be
advantageous, therefore, to analyse these results using scale-discriminating techniques,
to see if a moderate lowpass filter on the LOM output could reduce the small-scale noise
and still preserve most of the intermediate-scale information. This has been outside the
scope of the current investigation.

We have chosen to post process the output of the LOM (using a smooth humidity
factor and reducing the vapor flux) in order to try to fix some of the know model biases.
Possibly better post-processing algorithms could be developed. The introduction of the
reduced vapor flux, for example, improved the results with respect to a previous exper-
iment were no post-processing was involved, still the high spatial correlation between
stations which are very far but have similar orography shows that, with the current post-
processing algorithm, not enough of the water vapor flux is depleted downwind once the
airflow has passed over several hills.

The gauge data are not corrected for wind induced undercatch. The reason for this is
that wind is generally not measured at the station sites, leaving fixed exposure compen-
sation as the only option. An exposure classification does exist (Førland et al., 1996),
but has large uncertainties in addition to no temporal variability. The two most obvious
expected effects of not correcting gauge data before evaluating the LOM, would be 1)
an apparent general LOM over-estimation of precipitation, and 2) stronger apparent
over-estimation during winter than during summer. As revealed by figures 10 and 15,
the opposite result is evident for both of these.

To end, the LOM is quite easily implemented and run on a PC, and the simulations
are very fast. The model set-up and parametrization, on the other side, are not trivial.
Many choices have to be taken with respect to the physical variables that are involved in
the computations, for instance the atmospheric pressure levels from which to calculate
gradients and the Brunt-Vaisala frequency, the hydrometeor formation time etc). It is
possible that the strong physical basis makes the LOM too sensitive to data with large
uncertainty. Influential is also the size of the spatial domain, since the LOM assumes
nearly all input to be spatially homogeneous. The sub-domains used in this investigation
were defined on the basis of the MET definition of precipitation areas in Norway. Other
choices could have been possible.

5 Enki implementation

In addition to the R implementation, the orographic model is implemented in C++, both
as a self-standing library callable from e.g. Python as well as other C++ programs, and
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as an extension to the two standard Enki interpolation routines (Kriging and IDW).
It will also work under IDW’s two special cases (all-map average and nearest-neighbor
interpolation). The extension of LOM to apply a downstream depletion of moisture
(3.1.5) is included in the Enki implementation, but the humidity correction (3.1.4) is
not.

The Enki implementation is primarily directed towards using LOM as a part of
daily operational simulation, unlike the original stochastic weather generator context.
The LOM process representation itself is not affected by this, but these routines post-
process the LOM output together with the precipitation input data. In addition to some
diagnostic variables, two main output variables are produced:

1. The raw, simulated output from LOM

2. The interpolated precipitation surface using LOM as an external trend.

In short, the first of these forms a gridded map of pure LOM output. From this
surface, LOM values at gauge locations are extracted, and the differences between these
and the original observations are noted. These differences are now interpolated to a new
gridded surface, which is added to the LOM output to yield the second output; the final
LOM-gauge-combined precipitation map.

In order to allow simulation with minimal input, the primary LOM input charac-
terizing an atmospheric depth profile is reduced to standard ground-based input vari-
ables. Depth-average relative humidity is simply replaced with surface values. The
temperature lapse rate is estimated from the elevation dependency of surface tempera-
ture observations at different altitudes, which is clearly a non-optimal estimator for the
free-atmosphere lapse rate. Also, as an alternative to accepting wind vectors as input
variables, the routines offer the possibility to optimize a synthetic wind vector, selecting
from a library the speed and direction which produce the best correspondence between
raw LOM output and the station values.

The LOM extensions to the Kriging and IDW methods retain these routines’ possi-
bility to perform evaluation by cross-validation. The Enki operator turns on this mode
by defining the target geometry (usually the model grid) as identical to the source geom-
etry (the station map). This apparently meaningless interpolation setup is used as a flag
to exclude each target location’s nearest gauge (which is itself when only gauge locations
are considered) from its list of neighbors. It is thus ignored during interpolation, which
is the core of the cross-validation technique.

5.1 Evaluation

In addition to the direct comparisons, LOM has been evaluated as a trend surface gener-
ator to support spatial interpolation of precipitation. As a predictor of how the terrain
influences precipitation, LOM output can be seen as an alternative to the elevation lapse
rate. This experiment was performed using the Enki implementation of the LOM.

The case study selected is a 26000 km2 mountainous area in Norway (Fig. 20), around
the main water divide. Elevations range from 0 to 2469 m a.s.l. Annual precipitation
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varies from below 500 mm to more than 2000 mm. Data are daily observations from 60
stations, with standard correction for wind-driven undercatch.

Interpolation with LOM support was evaluated using the leave-one-out cross-validation
method. A station is withheld from interpolation, and compared to the value estimated
at its location. The exercise is repeated for all stations, over time generating a space-
time array of differences. This array can be summarized along both rows and columns,
corresponding to spatial and temporal performance at each day or each station, respec-
tively.

For absolute characterization of performance, a weakness of the method is that the
exclusion of stations alters the distribution of neighbor distances, so the station network
analysed appears sparser than the true network. Comparing different methods in the
similar way, this effect largely cancels out. For spatial and temporal comparison, the
temporal and spatial vector of results, respectively, were condensed into a single aver-
age NSE (Nash-Sutcliffe Efficiency Criterion). It may be noted that this measure, by
normalising w.r.t variance, give very poor values on nearly-dry days.

5.2 Results

A somewhat surprising experience from the initial analyses is that the estimation of
covariance structure (Semivariogram) used for the interpolation, showed that the most
of the variability in this station network takes place at scales below the station density.
This resulted in very high nugget estimates, suggesting that around 70% of the variance
is small-scale ’noise’ (variance at non-detectable scales). It is possible to force a low
nugget value (for instance, see it as an observation variance), but this simply results in
covariance ranges being estimated to less than five km. As an evaluation of the LOM
per se, this data set is thus not optimal.

In the main experiment, three different interpolation techniques (Kriging, Inverse
Distance, and simple average) were calibrated and combined with four treatments of
terrain-dependent correction (None, gradient (-H), LOM with ERA wind (-EW), and
LOM with optimised wind (-OW)). Bar diagrams showing the cross-validation perfor-
mance are shown in Fig. 21 for temporal performance, and Fig. 22 for spatial perfor-
mance.

It is striking that spatial NSE tend to be on average negative, whereas temporal NSE
achieves moderate values around 0.35. Using correlation rather than NSE give around
0.08 and 0.6, indicating that bias plays a considerable role in the low NSE values. The
low spatial correspondence appears because the region-wide synchronous response to
overall dry days or large frontal situation is not influencing spatial NSE (or correlation).
Also notable is that the interpolation method seems more important than the terrain
correction, and that a crude spatial mean performs better than IDW.

5.3 Elevation gradient versus Linear Orography Model

In figures 21 and 22, Kriging and IDW respond differently to the two terrain-driven
corrections, with IDW seemingly preferring elevation gradient, whereas Kriging favours
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Figure 20: Elevation map over the study area used for evaluating the LOM in precipi-
tation interpolation
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Figure 21: Temporal NSE from cross-validation
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Figure 22: Spatial NSE from cross-validationp

LOM. The overall effect of both corrections, however, is small when compared to the
overall variance. This may be partly connected to the NSE expressing the ratio of
explained to total variance, and that LOM is only being run for a subset of days. The
distribution of variance and interpolation performance on days with or without LOM
being operated, have not been compared. Avoiding variance normalised measures, we
can look at the number of cases where the gradient or LOM improves the performance.
This view favours LOM versus the elevation gradient, as can be seen from table 2 showing
the number of days on which the corrections improve the estimates.

It is clear that with the atmospheric temperature and moisture profiles estimated

Elevation Days inapplicable Fraction of days with Fraction of days with
or with no effect: improved performance poorer performance

Elevation gradient 2%
39 % (max
NSE 0.056)

59 % (min
NSE -0.052)

LOM, ERA Interim wind 84 %
12 % (max
NSE 0.200)

4 % (min
NSE -0.002)

LOM, optimised wind 64 %
29 % (max
NSE 0.230)

7 % (max
NSE -0.065)

Table 2: Number of days on which the corrections improve the estimates

38



from ground stations only, a large majority of days are classified as not satisfying LOM
operating conditions. Selecting the best synthetic wind vector to some extent improves
the situation. Negative results may still occur because the library of standard wind
vectors is pre-produced using LOM-favourable temperature and humidity conditions,
whereas the actual estimation is based on measured temperature. At last, it must be
remembered that none of the current evaluations of the linear orography model compare
it to measurements of what the model actually predicts. Neither do the attempts to
account for stratiform precipitation fully remove its influence; and the total lack of
convective processes is even more obscuring the results, in particular for variance-based
measures. The main LOM process representation, and in particular its improvement
from the pure upslope model, mainly address spatial variance in a small scale where
gauge based evaluation (using the standard national network) does not bring sufficient
data to the evaluation.

6 Conclusion and recommendations

• Comparing LOM simulations at gauge locations with gauge observations, the LOM
is reasonably well performing in terms of overall bias, with a slight underestimation
of average values. The LOM volumes are not calibrated, and the observations
are not corrected for catch deficit. The variance is also underestimated in the
LOM output, more for daily aggregation than for weekly, monthly and annual
aggregation.

• Visually comparing gridded LOM maps at 1km resolution to 1km interpolated
maps from MET, the LOM predicts much larger spatial variability than MET’s
interpolated precipitations maps. This is due to 1) a dominance of locations with
smoothed values on the interpolated map, and 2) a tendency for LOM output to be
very high in some high-altitude and glaciated areas, which are generally ungauged.

• The spatial correlation between LOM predictions and gauge recordings is good for
annual and monthly aggregation, but poor for daily data. This makes LOM a good
alternative to i.e. an elevation lapse rate for climatology, but indistinguishable for
short time scales. It is believed that a major reason for this is uncertainty in
LOM’s input data forcing and unrealistic assumptions of homogeneity, to some
extent supported by the improvements obtained by trying to mitigate these by
post-processing LOM predictions.

• The correspondence between LOM and gauge data is good at large scales, both
spatial and temporal, for instance by correctly locating a high-precipitation zone
well to the west of the mountain range, rather than along the main water divide.

• The spatial correspondence is poorly documented at small scale due to a sparse
network of precipitation gauges. Important small-scale processes simulated in the
LOM are therefore left largely non-validated.
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• The correspondence between LOM output and gauge data is better along the coast,
in particular in Western Norway, than in the Eastern inland areas.

• The correspondence between LOM output and gauge data is better during winter,
spring and autumn than in the summer.

• The LOM, as driven by ERA-Interim forcing, slightly over-estimates the probabil-
ity of dry days, mainly due to a bias during the summer months. The main spatial
pattern in the P0 probability is recreated.

• For two consecutive days, the dry to wet (zero to non-zero precipitation) transition
probability is underestimated, (and the dry to dry probability is correspondingly
overestimated) by the LOM as compared to gauge data.

• The mean duration of wet spells (number of consecutive days with precipitation)
is well simulated, whereas the mean dry spell length is markedly over-estimated,
in particular in South-Eastern Norway.

• The temporal variability in LOM performance is high; some days the spatial pat-
tern is excellently predicted, some days LOM fails completely. The project has not
succeeded in modelling this variability by explanatory variables.

• The spatial correlation structure for daily data is in general stronger in LOM
predictions for gauge locations than in the gauge data themselves. This is due
to the input-homogeneity assumption, and that some stations are very similarly
situated in terms of topography, but far apart in distance.

6.1 Recommendations

As a general model for topographic influence on precipitation, the LOM predicts well
the main features of climatological precipitation distribution in southern Norway. It
correctly locates the highest precipitation between the Western coast and the main water
divide, and not along this divide itself, as would the more commonly used lapse rate.
The LOM predicts some very high values in locations without measurements, and in
practical use, one may want to filter out the most extreme predictions. Explaining 53%
of the spatial variance in annual precipitation, however, the LOM can be recommended
as a clear improvement from the lapse rate as a correction of spatial precipitation bias.

An important purpose of the LOM is to predict small-scale spatial variability. Several
terms in the model (air flow dynamics, formation and fallout time scales) represent
processes which have their main consequences at scales below 20 km. This is below
the typical gaugedensity, and these properties of the LOM output have been difficult to
evaluate by the gauge data in this investigation. The cross-validation evaluation reveals
a very high short-distance variance (nugget) in the gauged data, but also that LOM adds
little skill to the interpolation, i.e. explains little of this short-distance variance. This
investigation therefore does not lead to a recommendation of the LOM for downcaling
in the range below 30 km.
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For the purpose of the Stochastic Weather Generator project under which this in-
vestigation has taken place, explicit downscaling by the LOM is currently replaced by
empirical transfer models tuned at the station level, but with parameters interpolated to
complete maps. This means that topographic effects are represented to the extent that
they are evident in the recorded values, whereas the small-scale variability governed by
terrain data alone is abandoned. This may change as research progresses.

6.2 Further work

It is our belief that simple models of orographic enhancement could be more fruitful
for practical application than we have been able to prove in his project. This includes
application for shorter temporal and spatial scales.

An obvious line of continued research into using the LOM for downscaling precipi-
tation, is to improve its forcing. This may include using a larger set of values from the
ERA-I columns, replacing ERA-I with real radiosonde measurements, and decreasing the
domain size to make the homogeneity assumption more realistic. Indications that such
attempts may lead to improvement are found in the positive effects of adding downwind
depletion and humidity scaling.

Another line is to improve the evaluation technique, in particular by investigating
more directly the scale decomposition of the difference between two spatial images. This
could help understanding the reasons behind the well- and poor-performing aspects of
the LOM, and provide guidelines for modifying the model itself or its pre/post processing
routines. Support for this were found in a comparison between LOM-generated daily
maps and the spatially variable ERA-I precipitation estimates. The latter were of course
very smooth compared to the LOM maps, which is usually favoured in comparisons. Still
the two showed comparable skill in predicting gauge values.

This investigation has revealed that gauge data from the national daily network
is insufficient to evaluate all aspects of the LOM simulations, in particular the small-
scale effects of air flow dynamics and formation/fallout time scales. A next step could
be the use of weather radar data, which in addition to high detail level would also
limit the uncertainty in input data and provide much better diagnostics. Also, runoff
recordings and satellite-derived SWE maps (Kolberg and Gottschalk, 2010) could enrich
the validation data set.

It should be noted that both a two-layer LOM version (Barstad and Shuller, 2011)
and a considerably more detailed simulator ICAR (Gutmann et al., 2016) for downscaling
precipitation have been proposed, suggesting the direction for improving the results by
adding more precise process description.

For free simulation, it could be beneficial to add a separate large-scale precipita-
tion generator and a convection generator, and to calibrate/evaluate the sum of these
three jointly, rather than comparing the single-process LOM against precipitation re-
sulting from several processes. This is particularly linked to the LOM’s poor handling
of instability in the atmospheric column.
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