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Abstract 
The recent discovery of a multitude of hypothetical materials for CO2 capture applications 
necessitated the development of reliable computational models to aid the quest for better-
performing sorbents. Given the computational challenges associated with existing 
detailed adsorption process design and optimization frameworks, two types of screening 
methodologies based on computationally inexpensive models, namely, data-driven and 
simplified physical models, have been proposed in the literature. This study compares 
these two screening methodologies for their effectiveness in identifying best-performing 
sorbents from a set of 369 metal-organic frameworks (MOFs). The results showed that 
almost 60% of the MOFs in the top 20 best-performing materials ranked by each of these 
approaches were found to be common. The validation of these results against detailed 
process simulation and optimization-based screening approach is currently underway.  
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1. Introduction
Among several CO2 capture technologies considered for post-combustion CO2 capture, 
solid adsorbents are seen as a promising alternative to traditional liquid solvents for the 
separation of CO2 from flue gases. These adsorbents are typically deployed in 
pressure/vacuum swing adsorption (PVSA) or temperature swing adsorption (TSA) 
processes. The choice of the adsorbent plays a critical role in determining the separation 
performance of PVSA or TSA processes [1][2]. Conventionally, better-performing 
adsorbents are identified through experimentation and testing of a few handfuls of 
adsorbents as means to understand their performance in the real process [3]. However, 
this approach is challenged by the recent advent of highly tunable adsorbents, such as 
metal-organic frameworks (MOFs) for CO2 capture applications, resulting in thousands 
of potential hypothetical adsorbents [3]. As the experimental evaluation of a multitude of 
adsorbents is practically impossible, computational screening of the adsorbents has been 
considered, where process simulations and optimizations based on adsorbent properties 
are carried out to evaluate the process-scale performance [2][4]. This approach is 
computationally expensive and time-consuming [2][4][5], which makes it 
computationally inadequate to handle large databases of adsorbents. 
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Different approaches have been proposed to reduce the computational costs of existing 
simulation and optimization tools. One approach is the development of simplified 
physical models obtained through a simpler description of the process which can be 
solved in seconds [6][7]. These models proved able to provide reasonable estimations of 
the process performance. The other approach is the development of surrogate or data-
driven models built based on statistical methods that act as faster approximations of 
process metrics [5]. With groundbreaking advances in machine learning, novel 
approaches that incorporate physics into surrogate models are also developed to reliably 
represent physical processes [8].  

The goal of this study is to compare the performance of data-driven and simplified 
physical modeling approaches in rapidly screening databases of adsorbents based on a 
techno-economic assessment for post-combustion CO2 capture applications. For this 
analysis, a set of 369 MOFs from the CoREMOF 2014 database provided by Leperi et al. 
[4] is used and the material performance is assessed using a four-step PVSA cycle with 
light product pressurization [1].  

2. Screening methodologies
2.1. Data-driven model-based optimization framework 
This methodology utilizes data-driven models built based on machine learning principles 
as a faster approximation for calculating process performance metrics. The data-driven 
models are coupled with the cost model and the non-dominated sorting genetic algorithm 
(NSGA – II) to optimize each material for the minimum cost of CO2 avoided. The data-
driven models used in this study are artificial neural networks (ANNs) based on the 
machine-assisted adsorption process learning and emulation (MAPLE) framework [5].  

The inputs to the MAPLE model are process features consisting of process operating 
conditions: adsorption step duration, vacuum pump flow rates, column size, high 
pressure, intermediate pressure, low pressure, and feed composition; and adsorbent 
features comprising dual-site Langmuir isotherm parameters of CO2 and N2, and particle 
morphology. Individual ANN models were trained for each output, namely, step 
durations, purity, recovery, and energy consumption. These predicted quantities form 
inputs to the cost model to calculate the cost of the CO2 avoided based on the approach 
presented in Subraveti et al. [1]. The neural network architecture comprises a feed-
forward fully connected network with one input layer including 19 process and adsorbent 
features, three hidden layers with 10-15 neurons, and an output layer with one output. A 
tanh activation function was used in the hidden layers and a linear activation was used for 
the output layer. Around 9000 unique combinations of the input variables generated using 
the Latin hypercube sampling along with the corresponding outputs were used as samples 
in the training of the neural networks. Note that the outputs were previously obtained by 
simulating the detailed adsorption process model until the cyclic-steady state condition 
[1][9]. The neural networks were trained using Bayesian regularization with the back-
propagation algorithm ‘trainbr’ in MATLAB 2022a [5][9].  

2.2. Simplified physical model-based optimization framework 
The other approach for the screening of adsorbent materials involves utilizing models that 
describe the physical phenomena occurring in an adsorption process but introducing 
simplifications to decrease the computational effort. The larger the simplification level 
applied, the lower the computational effort. Conversely, the expected accuracy of the 
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models is expected to decrease. For this work, two simplified models are proposed. The 
first one termed the modified equilibrium model (MEM), relies on the key assumption of 
local equilibrium, i.e., CO2 gets instantaneously adsorbed onto the adsorbent materials. 
The model is an extension of an approach presented in the literature [6]. The main 
modifications with respect to its original formulation include a different routine to solve 
the adsorption step and the possibility to simulate a 4-step cycle [10]. The second model, 
termed the reduced-order kinetic model (ROKM), attempts to go beyond the equilibrium 
assumption by introducing a methodology to implicitly solve the linear driving force 
(LDF) approximation and, hence, account for mass transfer resistances. The methodology 
builds on a set of simplifying assumptions, therefore a degree of inaccuracy in capturing 
the kinetics effects is expected.  

The simplified physical models are coupled with the same cost model as in the MAPLE 
approach and a Bayesian optimization (BO) algorithm to optimize each material for the 
minimum cost of CO2 avoided. The BO algorithm was developed in-house and tested for 
the optimization of PSA processes, showing a good balance between computational time 
and reliability [11]. Simplified physical models might not directly provide all necessary 
inputs to the cost model owing to the inherent assumptions made while developing these 
models. For example, the MEM model cannot provide the step durations that are critical 
for estimating cost. In such cases, relevant and consistent assumptions were made for all 
the materials to enable the integration of the techno-economic analysis framework for 
these simplified models. The MEM model needs more assumptions compared to the 
ROKM model for cost evaluation. 

3. Results and discussion
The two methodologies are compared in their ability to reliably screen adsorbents for 
post-combustion CO2 capture. Table 1 briefly summarizes the merits and demerits of each 
screening model in evaluating the adsorbent performance. In this study, a dry flue gas 
with CO2/N2 binary mixture is separated using a four-step PVSA process, a widely 
studied process that has been demonstrated at the pilot scale [12]. The cycle consists of 
adsorption (ADS) step, a co-current blowdown (BLO) step, a counter-current evacuation 
(EVAC), and a light-product pressurization (LPP) step.  

Table 1: Merits and demerits of both types of screening models for rapid evaluation of adsorbent performance. 

Screening model type Strengths Limitations 

Data-driven models 

• Very fast computations 
• Embeds all physical phenomena

from the detailed model 
• Predictions represent the real 

process performance 

• Requires computational efforts to
generate data for training 

• Black-box model – Applicability 
within the training range 

Simplified physical models 

• Interpretability through the
simplified description of physics 

• Easy to develop
• Entails wider model applicability 

• Simulations may not represent the
real process performance 

• May lead to convergence failures 
and false optima in optimizations 

The performance of each MOF is assessed based on its techno-economic performance in 
the four-step PVSA cycle. The metric used for ranking the materials was the minimum 
CO2 avoided cost obtained after optimizing the process operating conditions for each 
material. It is worth reiterating that both the surrogate and the simplified physical models 
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predict the process performance indicators which are later used as inputs to the cost model 
within the optimization framework. As mentioned earlier, the cost model employed 
herein is based on Subraveti et al. [1] for both approaches.  

The screening of 369 MOFs was individually carried out for MAPLE, MEM, and ROKM, 
and the top 20 best-performing materials in terms of cost from each of these 
methodologies are reported in Fig. 1 for three different CO2 compositions in the flue gas, 
namely, 7.5%, 13%, and 20%.  The top 20 MOFs from the MAPLE-based screening were 
compared with MEM and ROKM approaches, and the common MOFs are highlighted in 
green. For the 7.5% CO2 composition case, 8 out of 20 MOFs were featured in both 
MAPLE and MEM screening methodologies. On the other hand, 12 out of 20 were found 

(a)     (b)      (c) 

Figure 1: Top 20 best-performing MOFs obtained using MAPLE, MEM, and ROKM screening methodologies 
for (a) 7.5% (b) 13%, and (c) 20 % CO2 compositions in the flue gas. The common materials found in MAPLE, 
MEM, and ROKM are highlighted in green. The orange highlighted materials in MEM and ROKM were found 
in the Top 50 MOFs from MAPLE screening. The red ones were not found in the Top 50. Note that the MOFs 
are denoted with their index number in the list.  

to be common for both MAPLE and ROKM. The MOFs highlighted in orange indicate 
that they appeared in the top 50 of the MAPLE-based ranking. This indicates that some 
of the top 20 MOFs from MEM and ROKM methodologies were also good-performing 
MOFs in the MAPLE-based screening. The red-shaded materials were not found in the 
top 50 of the MAPLE-based ranking. It is worth mentioning that the percentage 
differences in the minimum CO2 avoided cost between the top-ranked and the 50th-ranked 
MOF in the MAPLE-based ranking for 7.5%, 13%, and 20% CO2 composition cases are 
94%, 39%, and 31%, respectively. Similarly, the analysis is extended to 13% and 20% 
CO2 composition cases, and the common materials between MAPLE and ROKM 
approaches were found to be more than the matched materials between MAPLE and 
MEM approaches. The addition of simplified mass transfer kinetics in ROKM compared 
to MEM, which was only based on the equilibrium-based description of physics, could 
possibly be the reason for the improvement in the number of common materials. Note 
that the MAPLE model was trained on the data generated by the detailed process model 
that described the complete physics of adsorption column dynamics.  
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Figure 2: CO2 and N2 isotherms of the materials in the top 20 of the ROKM approach for the case of 13% CO2 
composition, out of which 12 were found in the MAPLE-based top 20 (green), 6 MOFs in the MAPLE-based 
top 50 (orange), and the remaining ones (red). Blue markers represent CO2 and N2 isotherms on zeolite 13X.  

The CO2 and N2 isotherms of the top 20 MOFs from the ROKM-based screening approach 
for the case of 13% CO2 composition are illustrated in Fig. 2. For comparison, CO2 and 
N2 isotherms of zeolite 13X are also shown as a reference. In Fig. 2, the green lines 
indicate CO2 and N2 isotherms of those MOFs that were found in the top 20 of both 
ROKM- and MAPLE-based screening. The orange lines represent the CO2 and N2 
isotherms of the MOFs in the top 20 of the ROKM-based ranking that were also found in 
the top 50 of the MAPLE-based ranking. The red line isotherms are those MOFs in the 
top 20 of the ROKM-based ranking that were not found in the top 50 of the MAPLE-
based ranking. It is interesting to notice that the best-performing materials have fairly 
linear CO2 isotherms and very low N2 adsorption. This observation remains consistent 
with several previous studies [1][13][14]. Finally, these common MOFs in the top 20 
along with their normalized costs are tabulated in Table 2. It must be stressed that the 
main objective of the models presented, especially the simplified physical models, is to 
rank adsorbents rather than provide precise cost figures. Hence, this comparative analysis 
focused on the relative performances among the adsorbents. 

Table 2: List of top-performing MOFs common in all three methodologies with normalized minimum CO2 
avoided cost for 13% CO2 composition case. Note that the normalized CO2 avoided cost was obtained by scaling 
the min. CO2 avoided costs between the CO2 avoided costs of the top-ranked MOF and the 20th-ranked MOF 
in each category. 

MOF Normalized minimum CO2 avoided cost (-) 
MAPLE model MEM model ROKM model 

CUGLTM01 0.00 0.47 0.28 
ARIBOS 0.05 0.57 0.31 
MEHPAQ 0.11 0.14 0.18 
CUGLTM02 0.39 0.16 0.37 
QUFFED 0.73 0.81 0.53 
CUGLTM 0.74 0.17 0.49 
QUGNOV 0.79 0.71 0.53 
QEYWUN 0.88 0.40 0.00 

4. Conclusions
Two types of computationally inexpensive modelling and optimization frameworks are 
assessed to enable rapid screening of adsorbents for post-combustion CO2 capture using 
a four-step PVSA cycle. On the one hand, the data-driven-based MAPLE model was 
coupled with the cost model and NSGA – II optimizer to minimize the CO2 avoided cost 
for the set of 369 MOFs to evaluate their techno-economic performance. On the other 
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hand, simplified physical models, MEM and ROKM, both with simpler descriptions of 
the physics of adsorption columns, were combined with Bayesian optimization to rank 
the set of MOFs in terms of minimum CO2 avoided cost. The results showed that almost 
60% of the MOFs in the top 20 best-performing materials ranked by each of these 
approaches were found to be common. The validation of these screening approaches 
against the detailed process simulation and optimization approach is currently ongoing.  
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